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ABSTRACT
To address the issues related to high perishability and limited shelf life of 
food proteins from muscle origin, different innovative processing, and pre-
servation techniques, as well as analytical methodological approaches have 
been developed to meet environmental challenges and consumer demand 
for food of high quality and sustainable production supported by circular 
economy principles. This development has been enhanced and increased 
during the ongoing age of the fourth industrial revolution (Industry 4.0), 
which has been gaining momentum since 2015, coming up with a range of 
automated and digitized technologies. This review provides an updated 
overview of the recently developed thermal and nonthermal processing 
and preservation technologies, along with selected advanced analytical 
techniques used in the industry of muscle foods. Particular attention has 
been given to Industry 4.0 technologies and their role in achieving smart 
production with high automation and digitalization rates. As in other indus-
try sectors, technology breakthroughs are reshaping the food industry, 
including the muscle food sector. Emerging technologies, such as pulsed 
electric field, high-pressure processing, ohmic heating, nanotechnology, 
advanced mass spectrometry and hyperspectral imaging sensors are 
among the key elements in the current food revolution 4.0. Although 
Industry 4.0 offers countless possibilities, more studies are still needed to 
capture its full potential and further harness its technologies to solve current 
challenges and move forward toward Industry 5.0.
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Introduction

Nowadays, food security is facing major challenges posed by resource depletion, climate change, loss 
of biodiversity, current geopolitical issues, as well as the growing world population, which is expected 
to reach nearly 10 billion people by 2050. These contemporary issues present formidable societal and 
environmental problems that can be addressed only by deep-structural changes and ambitious socio- 
economic initiatives. The challenge of feeding all people requires innovative strategies and new 
multicultural rethinking and paradigms toward more sustainable use of the available natural and 
human resources, to ensure food and nutrition safety.[1–6]

From the standpoint of human nutrition, muscle foods (such as chicken, lamb, beef, hog, ham, and 
fish) are among the most significant food commodities.[7] Consumption of muscle foods has been 
increasing in recent years due to their high-quality proteins, vitamins, and minerals.[8,9] However, 
muscle foods are very perishable and their quality decays quickly unless adequately prepared, packed, 
and kept under refrigerated conditions or other approved preservative strategies.[10,11] The deteriora-
tions and degradations are caused mostly by high fat and moisture contents, making them prone to 
biological factors, such as protein degradation, lipid oxidation, or putrefactions, which are interceded 
by microbial and endogenous enzymes, leading to a shortened shelf life.[12,13] As a result, a variety of 
preservation and processing procedures have been developed over the years. Because of their avail-
ability and simplicity, traditional thermal treatments, such as broiling, frying, roasting, and grilling 
have been frequently utilized for centuries.[8,14,15] Thermal treatments are used to prepare food and 
improve sensory characteristics and digestibility, inactivate germs and assure food safety, and increase 
shelf life.[16] Nevertheless, applying high heat loads may result in degradations and negative impacts 
on the sensory and nutritional quality characteristics of the treated foods, particularly in the case of 
muscle food items, which are recognized for their high susceptibility to heat treatments.[10,17] 

Furthermore, the ever-increasing customer demand for fresh, safe, nutritious, and healthful food, as 
well as unique consumption patterns (e.g., minimally processed foods) have pushed the food sector to 
create novel and revolutionary thermal processing processes.[16,18,19] For example, different research 
has focused on the application of microwave,[20–22] radio frequency,[23,24] ohmic heating,[25,26] and 
infrared processing [18,27] approaches in different areas of food processing and manufacturing.

More innovative preservation procedures have arisen in recent years to fulfil consumer expecta-
tions for high-quality products with prolonged shelf life, greater safety, and increased process 
efficiency. Several studies have shown that such preservation methods are energy-efficient and allow 
for the inactivation of microbes and enzyme activity in food items while maintaining sensory quality 
characteristics.[28–33] With these considerations in mind, a variety of nonthermal treatments, such as 
high-pressure processing,[34,35] pulsed electric field,[36,37] ultrasound,[38] modified atmosphere 
packaging,[39,40] and cold plasma [41] have gained in popularity in recent years. Certain of these 
emerging technologies can be used for assisting the traditional conservative approaches such as 
freezing [42] or other preservative technologies.[43]

Food quality, safety, and authenticity are important issues that have attracted much attention in 
recent years from the industry, the scientific community, and consumers. Traditional analytical 
methods used in food analysis are characterized by several challenges, encouraging the development 
of novel tools and instruments.[44–47] Moreover, the outbreak of the COVID-19 pandemic has high-
lighted the need for the development of analytical techniques that reduce human contact with food 
products.[48] Analytical techniques, especially hyperspectral imaging [49–51] and mass spectrometric 
fingerprinting,[52–54] are two promising approaches that have been extensively studied to fight against 
food fraud and ensure food authenticity in a rapid and non-targeted manner.

Some of the aforementioned preservative, processing, and analytical approaches are currently in 
use in the food industry, while others are still in progress and need refinement. The advent of the 
fourth industrial revolution (Industry 4.0) technologies could accelerate the transition of these 
technologies from the laboratory to the industry. Industry 4.0 has recently emerged with the con-
vergence and interaction of biological, physical, and digital worlds in which automation, digitalization, 
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and networking play a crucial role.[55–57] Industry 4.0 has been gaining momentum, being an incentive 
to address critical global challenges and to achieve sustainable development.[58–60] The major Industry 
4.0 technology clusters that are more relevant to the food industry are Artificial Intelligence (AI), 
smart sensors, autonomous robotics, the Internet of Things (IoT), big data, blockchain, additive 
technologies, and advanced nano-biotechnology, among others.[6,61–63]

Several review papers dealing with either thermal/nonthermal processing techniques[10,28,64] or 
analytical methodologies[65–67] have recently been published. However, a comprehensive review that 
covers a wide range of processing, preservation, and analytical technologies in muscle foods in the age 
of Industry 4.0 is not available. To the best of our knowledge, this work is the first to raise awareness of 
the importance of considering a wide range of emerging technologies simultaneously, meeting the key 
principle of Industry 4.0. Thus, this manuscript will highlight the main Industry 4.0 technologies and 
show how to harness these technologies, especially those associated with preservation/processing and 
analytical techniques, to address current challenges in the muscle food industry. This manuscript will 
first give a general overview of key technologies associated with Industry 4.0. Emerging technology 
breakthroughs in processing, preservation, and analytical techniques will be then discussed. Finally, 
future perspectives will be highlighted and briefly explained.

Industry 4.0 in the food field

All industrial revolutions have characteristics that allow them to be classified as revolutions rather 
than simply evolutionary changes in the industry (Fig. 1). Industry 4.0 is occurring because of 
advancements in many technologies, such as smart sensors, additive manufacturing, robots, IoT, 
blockchain, AI, and other information and communication technologies.[61,68,69] These technologies 
have enabled custom mass production with increased productivity, flexibility, and efficiency.[70,71] 

Several publications argued that Industry 4.0 technologies could help to achieve several United 
Nations Sustainable Development Goals.[71] By adopting new technologies and harnessing Industry 

Figure 1. The evolution of the Industrial Revolution.
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4.0 technologies, a digital transformation of both manufacturing/production and consumption is 
currently taking place.[62,69,72] 

The implementation of Industry 4.0 principles offers several possibilities in the meat and muscle- 
based food industry. One example is the significant advancement in several spectral fingerprinting 
techniques used for online measurement of composition and quality predictions, safety, and authen-
ticity of muscle foods. Miniaturization of spectral techniques has driven the development of portable 
and hand-held devices in recent years.[46,73–75] Moreover, smartphones are more and more used as 
promising biosensors for non-invasive, portable food quality assessment.[76] Additive manufacturing 
or 3D printing constitutes another example of technologies that have boomed in the age of Industry 
4.0. Although it is still at the conceptual stage, 3D food printing offers numerous possibilities for the 
development of tailored animal protein-based products, such as meat and other muscle food 
products.[77,78]

Robotic technology is advancing in all fields, including the muscle food industry. For instance, 
robots can be used in cutting and packaging in meat processing industries, or in collecting data such as 
temperature, relative humidity, and ammonia concentrations in poultry barns.[79] Misimi et al.[80] 

developed a novel robotic 3D vision-guided concept for chicken fillet harvesting, while a similar 
intelligent robot was recently designed for half-ship cutting.[81] A detailed overview of the possibilities 
and limitations of implementing different robotic technologies in the food sector was provided.[82] 

More recently, several intelligent robotic systems used for carcass cutting, deboning, and other 
relevant automation in abattoirs were reviewed in detail.[83]

The food industry has seen unprecedented digital shifts due to the COVID-19 pandemic, which has 
put enormous pressure on food supply chains, with consumers being at the centre of this transforma-
tion. There has been an increased focus on food sustainability with a surge in demand for food 
availability, convenience, and traceability. Blockchain technology, which is a decentralized, distributed 
data structure and public digital ledger, has recently been suggested for food traceability and enhance-
ment of sustainable operations.[74,84] This technology provides information on the entire history of 
a product as it travels along the whole supply chain. For instance, it can be applied to trace fish lots, 
back and forth, throughout the entire fisheries value chain.[85,86]

Recent advances in muscle food processing methods

With the ever-growing global population, technology has an essential role today in assisting the food 
industry to progress toward more sustainable production and consumption systems.[87] In fact, the 
recent technological advances and innovations that emerged in the age of Industry 4.0 have enabled 
a digital transformation of food production systems to meet new food production requirements, 
including among others less resource and energy consumption and less waste, better food quality and 
safety, and more diversity and convenience to consumers. Advanced engineering research has resulted 
in the emergence of a large variety of “green technology” based on thermal and nonthermal processing 
techniques in the food industry. In the muscle food sector, several innovative technologies including 
ohmic heating (OH), radio frequency (RF), pulsed electric field (PEF), cold plasma (CP), high- 
pressure processing (HPP), as well as ultrasound technologies have been under exponential develop-
ment and some of them are already adopted by certain food sectors.

Thermal processing

Thermal processing can be used in muscle food products for several purposes such as cooking, 
thawing, extraction, pasteurization, sterilization, enzyme inactivation and microbial 
decontamination.[17,88] Conventional methods used for cooking muscle food involve the use of hot 
water or steam, leading to surface overheating with slow heat conduction while waiting for the interior 
to reach the suitable temperature.[89–91] To overcome these shortcomings, intensive research has been 
conducted in the field of OH, RF, and microwave cooking of muscle foods (Table 1).
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The OH is based on the production of heat as a result of the electrical resistance of a material to the 
flow of electric current.[110,111] In contrast to traditional cooking approaches, OH cooking has the 
benefits of shortening cooking time, providing regular temperature distribution and higher heating 
yields. In addition, ohmic-cooked muscle food has a much more constant appearance, better gelation 
characteristics, less cooking loss, softer texture, and more satisfactory tenderness compared to tradi-
tional cooking methods.[26,111–113] Therefore, OH can be successfully integrated with a design of 
Industry 4.0 driving the development of environmentally friendly technologies.[114] Due to the 
growing demand for rapid thawing methods, the potential of OH was investigated as an alternative 
method in meat and fish products.[115,116] For instance, ohmic thawing is a promising alternative 
thawing method for minced beef, providing a shorter process time and less water loss compared to 
conventional thawing methods. Besides, OH was applied to loosen the connection between the shell 
and meat, improving the peelability of shrimps (Pandalus borealis).[97] In another recent study, the 
application of OH at 120 voltages for 5 min was found to be suitable to process green mussel meat, 
achieving higher nutritional quality and lower loss compared to conventional cooking methods, such 
as steaming and boiling.[117]

As OH, RF heating is a volumetric heating technology that may be employed in many applications 
in the food industry. However, thawing frozen products is one of the main applications of RF in 
muscle foods.[89,103,118] The impact of RF on the thawing process was explained by ionic displacement 
and polar molecules in frozen samples that induce dipole rotation, converting the energy of the 
electromagnetic wave to heat, leading to thawing.[89,118,119] For example, Bedane et al.[103] showed that 
RF thawing could be performed on beef blocks using a moving conveyor belt. According to the 
authors, the movement and the rotation of frozen lean beef meat block can promote the redistribution 
of the electromagnetic field and improve the heating uniformity. They also explored the effects of 
different processing parameters and conditions on the heating uniformity of samples under static and 
moving situations on the conveyor belt. The results indicated that RF at a frequency, power, and 
conveyor belt speed equal to 27.12 MHz, 6 kW and 3 m/hr, respectively could moderately improve the 
heating uniformity. Despite the limited applications of RF in the muscle food industry presently, it is 
believed that the arrival of Industry 4.0 technologies would accelerate the processes and RF technology 
optimization. For example, computer modelling and simulation of RF heating could be one of the 
main research directions due to the rapid increases in computation power and improvements in 
commercial software.[120,121]

The implantation of microwaves, which are electromagnetic waves having frequencies ranging 
between 300 MHz and 300 GHz corresponding to wavelengths ranging from 1 m to 1 mm, has 
revolutionized the way food is processed and prepared both commercially and 
domestically.[91,122,123] Microwave cooking can be considered an alternative and efficient method to 
minimize time, preserve nutritional quality, reduce cost and save energy due to volumetric heating. 
However, microwave heating was traditionally associated with several issues, including uneven 
heating/cooking, creating hot and cold spots, inability to brown food, and excessive drying of foods. 
In addition, the penetration depth of microwaves is affected by the dielectric properties of food, which 
in turn are affected by the moisture content. It should be highlighted that the penetration depth of 
microwaves into foods depends among others on frequencies, noticing that lower frequency can 
penetrate deeper into food. That is why frequency at MHz level (penetration depths are large) is used 
for industry processing, whereas frequency at GHz level (penetration depths are small) is used for 
household microwave ovens. It should be also noticed that the penetration depth of microwaves varies 
with other factors, such as temperature and salt contents, etc.[124,125]

Compared with OH and RF, microwave heating is more suitable for household applications. Recent 
advances in microwave technologies, such as the use of solid-state generators or coupling microwaves 
with other emerging processing technologies [126] could expand the application range of microwaves. 
For example, the use of solid-state generators as alternative power sources to conventional magnetrons 
could be considered a techno-economically promising solution that has the potential to control 
frequency and power, increase repeatability and reproducibility, reduce energy consumption, and 
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overcome the non-uniform heating of traditional microwaves. Such advanced applications (i.e., the 
use of solid-state and/or coupled technology) could pave the way for the development of smart 
cooking/kitchen and smart processing systems,[127] which is in line with Industry 4.0 principles.

Nonthermal processing

PEF and CP are related to high-voltage pulsed technologies, and both employ a similar food treatment 
experimental setup (Fig. 2). The PEF system is comprised of a pulsed power source and metal 
electrodes in a treatment chamber.[37] The high voltage and ground electrodes are both solid for 
PEF, while only the ground electrode is solid for CP. The high voltage electrode of CP is a hollow metal 
pipe with a needle tip. This hollow pipe is filled with a working gas and a strong electric field or voltage 
triggers the breakdown of gas molecules. The PEF and plasma jet ground electrodes are coupled to 
a high-voltage pulsed power supply through a current-limiting resistor.

Meat tissue is a single layer of longitudinal muscle cells, and a PEF treatment cut the muscles across 
the fibre direction. PEF meat treatment is done in either a batch or continuous treatment chamber. 
The batch chamber is filled with fluids depending on the number and kind of treated meat pieces. The 
treatment of cross-contamination makes this approach undesirable in meat processing. Other possi-
bilities for continuous treatment of meat parts might include conveying belts, cartridges or pistons to 
transport slightly compressed meat pieces via electrode systems. Cell electroporation, in PEF- 
treatment, increases membrane permeability to normally non-permeable molecules, allowing mole-
cular transport and improving meat tenderization.[128,129] Scanning electron microscopy of the treated 
food demonstrated that PEF-treated meat displayed pore development in connective tissue.[130]

The synergistic effect of PEF may expedite proteolysis, resulting in increased meat tenderization on 
frozen samples. Faridnia et al.[131] stored beef muscle samples (4°C) before applying moderate PEF 
treatments with varying electric field strength and frequency (0.2–0.6 kV/cm, 1–50 Hz, 20 s). They 
found no significant variations in colour stability, pH, cooking losses, or protein profile in the meat. 
However, Ma et al.[132] discovered that samples of cooked lamb meat chops treated to lengthy storage 
duration and frozen-thawed pre-treatment before PEF resulted in substantial increases in volatile 
chemicals owing to lipid and protein oxidation. Therefore, building a thawing phase before PEF 
treatment is critical to achieving a good meat product.

Figure 2. Schematic assembly (a) Pulsed electric field (PEF) treatment, (b) Cold plasma (CP) treatment.
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PEF-treated meat showed better mass transfer during drying and better water-binding during 
cooking due to increased micro diffusion of brine and water-binding chemicals. Khan et al.[133] 

revealed that high PEF (10 kV, 200 Hz and 20 s) treatments may severely impact beef quality compared 
to low PEF treatments (2.5 kV, 200 Hz and 20 s). With another research, the function of the most 
critical process parameters (150 vs. 300 and 450 vs. 600) and (0.60 vs. 1.20 kV/cm) in assessing the 
influence of PEF on the critical technical qualities of chicken meat was investigated.[134] The authors 
found no effects on pH or brightness or yellowness. However, there was a considerable tenderizing 
impact of PEF treatment on beef[129,135]; and a meta-analysis found that PEF increased beef tender-
ization by 20%.[136] In addition, a PEF combined with mechanical pressing offers a platform for the 
extraction of functional compounds from meat wastes.[137] Ghosh et al.[138] demonstrated that PEF 
may be utilized to produce protein-rich functional products from biorefinery waste. This technique 
should encourage farmers and meat processors to recycle trash. Zhou et al.[139] demonstrated that PEF 
extraction is quicker and yields more protein than standard approaches.

PEF methods used for post-mortem tenderization to enhance meat quality have shown modest 
promise in limited research with muscle foods. However, optimal processing parameters seem to vary 
amongst muscles. Moreover, not many research discusses the customization of PEF treatments and 
their impact on the various quality features of meat.[140] As a result, the variable influence on meat 
texture across various muscles must be addressed, and further research is needed to figure out how 
PEF affects muscle structure. More examples of the application of PEF on muscle foods can be found 
in Table 2.

CP has been tested in chicken,[145–148] beef,[149,150] and pork.[151–153] A 300-second CP exposure 
provided a maximum decrease of 1.5 logs bacterial load using a high oxygen atmosphere, but utilizing 
air or high nitrogen atmospheres resulted in lesser antibacterial effectiveness.[154] Moutiq et al.[146] 

detected a 2-log CFU/g decrease in natural chicken microflora after 5 minutes of treatment and 24  
hours of storage at 100 kV for 1, 3, and 5 minutes. Wang et al.[155] tested the impact of voltage and time 
on in-package raw chicken meat. After 24 hours at 4°C, CP treatment with 55, 65, or even 80 kV for 3  
minutes did not affect raw chicken breast meat microbial populations. Pérez-Andrés et al.[156] found 
that CP treatment altered functional capabilities depending on the protein’s natural structure and 
nature. Roh et al.[148] found that CP treatment results in homogeneous microbial inactivation in 
stacked or non-stacked meat cube samples regardless of sample location or surface-to-volume ratio.

HPP is another promising technique that has been widely used to get rid of microorganisms and 
undesirable enzymes and extend the shelf life of muscle food products. The efficiency of HPP in 
destroying spoilage microorganisms and deactivating food enzymes can be influenced by various 

Table 2. Effects of pulsed electric field (PEF) and cold plasma (CP) treatments on various muscle foods.

Product Application Process parameters Main results Reference

Beef biceps Tenderization 
during ageing

PEF (0.61 kV/cm 20 Hz) No significant effect on the sheer force of 
tough muscles

[141]

Mussels Protein 
extraction

PEF(20 kV/cm, 8 pulses) 77.08% improved the extraction yield with 
improved extraction speed

[139]

Beef 
semimembranosus

Digestion PEF (5 kV, 90 Hz,20 μs; 10 kV, 
20 Hz, 20 μs)

Favourable impact on the kinetics of in vitro 
digestion

[142]

Beef and chicken 
breasts

Effects of 
minerals

PEF (2.5 kV, 200 Hz, 20 μs; 10 
kV, 200 Hz, 20 μs)

Release of minerals from the electrodes to 
the treated samples

[143]

Lamb meat Extend shelf life PEF (1–1.4 kV/cm, 90 Hz, 20 
µs, 964 pulses)

Frozen-thawed beef reduces cooking loss 
while lowering the fat content.

[144]

Chicken fillets Extend shelf life CP (80 kV for 180 s) Retains look without affecting shelf life for 
one day

[145]
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factors including process parameters, type and growth period of microorganisms, and the type of food 
being processed. HPP enhances the water holding ability of muscle foods, thus keeping the food fresh 
for a long time. Pressure levels between 100 to 600 MPa are generally used to extend the shelf life of 
muscle food products.[157] The common mechanism of microbial destruction by HPP includes many 
aspects, such as modification in the cell wall, and cell membrane, as well as protein and enzyme 
function.[158] When HPP is used at commercial levels (Table 3), pressure ranges from 400 to 600 MPa 
with an extreme temperature of 15°C.[174] 

Previous studies showed that high-pressure levels (>100 MPa) completely deactivate microorgan-
isms while moderate or low levels of pressure (10–50 MPa) only decrease the reproduction and growth 
rate of microorganisms. Microbial deactivation by HPP can also be effected by different parameters 
involving water activity, temperature, pH, concentrations of sugar and salt as well as the time of 
process implementation.[28,31,175] A comprehensive overview of the effect of HPP on the physical, 
chemical, microbial, and nutritional quality attributes of crab meat was carried out in a recent 
study.[35] In another recent study, the application of HPP treatment at 600 Mpa for 8 min could be 
efficient for reducing L. monocytogenes in dry-cured sausage and loin.[171] More applications of HPP 
in muscle foods and other food products have been reviewed thoroughly in recent papers.[175,176]

Ultrasound is the energy produced through mechanical waves of vibration frequencies higher than 
20,000 cycles/sec, which is beyond the hearing capacity of humans. Ultrasound is a newly developed 
nonthermal green eco-friendly technology that increases the efficiency of food handling procedures in 
the food industry.[177] It can be used in combination with pressure (manosonication) and with 
temperature (thermosonication) giving more efficiency in food handling and processing.[178] In 
addition, the technique can be applied in combination with other existing and novel technologies 
including HPP, microwave, supercritical CO2, and enzymatic extraction, among others.[179,180]

Ultrasound techniques can be classified into two categories (i.e., high-intensity ultrasound and low- 
intensity ultrasound) according to the frequency and intensity ranges.[177,179,181] Ultrasound technol-
ogy inactivated microorganisms by producing cavitation in the liquid media containing the sample, 
generating free radicals (e.g., H2O2 and their hydroxyl radicals) that destruct the cell 
membrane.[177,180] The antimicrobial activity of high-intensity ultrasound could be influenced by 
several parameters such as temperature, type of microorganism, contact time with microorganism, 
and quantity and composition of treated food.[182] The main applications of ultrasound in muscle 
foods include thawing, tenderization, curing, and decontamination.[181,182]

The application of CP and ultrasound technologies is still very limited in food processing in general 
and in the muscle food industry in particular. However, with the considerable advances offered by 
Industry 4.0 technologies, it is expected that these technologies could be implemented in the food 
industry in near future.

Impact of emerging technologies on the protein digestibility of muscle food

Muscle foods are an important source of dietary proteins and can fulfil the protein requirement of the 
human body.[183] As discussed before, muscle foods are subjected to different processing methods, 
both thermal and nonthermal, before they are ready for human consumption. Salting, smoking, 
curing, marinating, drying, and chilling are among the most used treatments before and during 
manufacturing processes. These nonthermal processing methods have the potential to affect the 
digestibility of meat proteins and have been widely studied.[183] Meat and meat products are also 
subjected to various thermal processes such as oven roasting, frying, braising, broiling or stewing, 
either by the manufacturer or by the consumer. While the effects of thermal processing on the 
digestibility of muscle proteins have been widely studied,[17] little information is available on the 
effect of emerging technologies on the digestibility of muscle proteins. Only recently a review [184] was 
published highlighting the effects of emerging technologies on the digestibility of meat and seafood 
proteins.
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Several emerging technologies are studied for various applications in the meat industry. 
Nonthermal technologies such as PEF, ultrasonication, HPP, and shockwave technology are widely 
applied to fresh and processed meat products, inducing various beneficial effects such as improved 
tenderization and microbial quality.[141,185,186] Thermal-based emerging technologies including OH, 
or re-emerging technologies (e.g., sous-vide) are becoming popular and widely studied as alternative 
processing methods for the development of minimally processed foods.[187] Limited literature is 
available on the effect of emerging technologies on the digestibility of meat and seafood proteins 
and needs scientific attention. Fig 3 shows the underlying mechanisms for different emerging 
technologies, which improve the digestibility of muscle proteins.

Overall, a positive effect of PEF processing has been reported on the digestibility of beef and 
venison proteins. Baht et al.[142,188] reported a positive effect of PEF treatment on the digestibility of 
beef Longissimus dorsi and Biceps femoris, respectively, during in vitro gastrointestinal digestion. 
A similar effect of PEF treatment was also observed on the protein digestibility of deer Longissimus 
dorsi during in vitro gastrointestinal digestion.[189] High-intensity treatments (10 kV, 20 or 90 Hz, 20  
µs) were more effective in improving the digestibility of the proteins. While these studies used 
uncooked meat proteins, a positive effect of PEF treatment was also confirmed on the protein 
digestibility of cooked beef and venison muscles.[190,191]

Whereas Alahakoon et al.[192] did not observe any effect of PEF treatment (0.7–1.5 kV/cm) on the 
protein digestibility of sous-vide processed beef brisket, Chian et al.[193] reported an increase of 18 to 
31% in the protein digestibility of PEF-treated beef Longissimus thoracis (1.0–1.25 kV/cm). This 

Figure 3. Mechanisms of the pulsed electric field, high-pressure, ultrasound, and shockwaves for improving the digestibility of 
muscle proteins.
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positive effect on protein digestibility was attributed to various protein structural modifications and 
microstructural changes induced in the food matrices by PEF treatments.

Most of the studies have reported a positive impact of HPP on the digestibility of muscle proteins. 
Kaur et al.[194] observed faster hydrolysis of the beef proteins treated with HPP (175 and 600 MPa) 
during in vitro gastrointestinal digestion. The effect was more pronounced for the samples treated at 
600 MPa. This positive effect was attributed to pressure-induced structural and microstructural 
modifications and other related changes such as protein solubilisation and denaturation. 
A significant increase was reported by Xue et al.[195] in the protein digestibility of cooked rabbit 
meat batters treated with HPP (100–300 MPa, 9 min, 25°C) during in vitro simulated digestion. An 
increase of 6.13% and 61.31% was recorded for HPP-processed samples during gastric and intestinal 
digestion, respectively. Cepero-Betancourt et al.[196] observed a positive effect of HPP processing 
(200–500 MPa, 5 min) on the digestion of abalone muscle proteins during in vitro gastrointestinal 
digestion. The effect was independent of the magnitude of the applied pressure and was attributed to 
pressure-induced unfolding of the proteins. Rakotondramavo et al.[197] observed a significantly higher 
digestibility and digestion rate for HPP-treated cooked ham compared to raw meat after in vitro 
gastrointestinal digestion.

Like PEF and HPP, ultrasonication seems to have a positive effect on the digestibility of muscle 
proteins and induce conformational changes which lead to the exposure of enzyme cleavage sites.[184] 

Dong et al.[198] reported an increasing trend for protein digestibility with processing time (20 kHz, 400 
W, 0–20 min) and significantly higher values were observed for the shrimp samples processed for 20  
min. Bagarinao et al.[199] found similar results that are a significantly higher protein digestibility for 
ultrasound processed (20 kHz, 464 W, 5 min) abalone (Haliotis iris) samples after in vitro gastro-
intestinal digestion.

Recently, a positive impact of shockwave technology, an emerging technology that uses mechanical 
high-pressure pulses produced by high-voltage electrical discharge, was reported on the digestibility of 
muscle proteins. Chian et al.[200,201] studied the effect of shockwave processing (0.57 Hz, 35 kV, 18 μF, 
11 kJ/pulse) on the digestibility of beef brisket proteins using in vitro gastrointestinal and in vitro 
gastric digestion models, respectively. Both these studies reported a positive and significant effect of 
the shockwave processing on the protein digestibility of the beef samples. This positive effect was 
attributed to various structural and microstructural changes induced by shockwave processing.

Current trends and advancements in muscle food preservation techniques

Traditionally, ice, drying, smoking, fermentation, or salting have been widely used as preservative 
treatments to maintain the quality of food.[202] More advanced techniques have emerged in recent 
years as a result of the implementation of Industry 4.0 technologies. In the following sections, current 
trends and advancements in muscle food preservation techniques are discussed.

Freezing-based techniques

Freezing, one of the most ancient preservation techniques, firstly used cryogenic freezing, plate contact 
freezing, and air blast freezing.[203] Nevertheless, these techniques sometimes present poor freezing 
rates and can trigger cellular damage due to ice crystals and protein denaturation. Thus undesirable 
effects such as changes in texture, water-holding capacity (WHC), color, etc. are taken place.[42,204] 

Considering these inconveniences, new trends include other advanced techniques such as high- 
pressure freezing (HPF), electrically assisted freezing (EF), magnetically aided freezing (MF), ultra-
sound-assisted freezing (UAF), microwave-assisted freezing (MAF), osmo-dehydro-freezing (ODF) 
and antifreeze protein (AFP).[42,205] Some examples of the application of freezing-based techniques are 
tabulated in Table 4. The HPF began to be used in the late 1990s although it has not been extensively 
applied to food matrices yet. In the literature, a few examples of muscle foods (i.e., abalone, pink 
salmon, or tuna) are available [211,223] whereas a higher number of applications focused on the use of 
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high-pressure pretreatment before freezing.[206,208] The principles of HPF differ in small particularities 
though they all can reduce quality loss because of the formation of small ice crystals uniformly 
distributed.[224,225] The EF, MF, or the combination of both referred to as electromagnetically freezing 
(EMF) are known to modify the molecular structure of water and have been used since the early 
2000s.[214,226] The EF might break and debilitate the hydrogen bonds of water molecules leading to 
a less ordered structure or contrarily, reorganize the water molecules thus reducing the free energy. 

Table 4. Freezing-based techniques applied to muscle food products.

Product Technique Conditions Results Ref.

Thunnus alalunga fillet HPP+ABF 200 MPa, 6 min 
+ −50 ºC and 

v (1, 5 m/s)

Thawing loss reduction, improved quality in long 
storage.

[206]

Lates calcarifer fillet HPP+ABF 150–200 Mpa, 3 
min + −18º 

C, 4 h

Increased hardness, inhibition of secondary lipid 
oxidation compounds

[207]

Oncorhynchus mykiss fillet HPP+LS+F 200 Mpa, 15 min 
+ 0.50%, v/v + 

−80°C

Bacterial reduction against Listeria monocytogenes (> 
5-log CFU/g).

[208]

Oreochromis aureus fillet ICF −5 ºC, 0.9% 
saline solution

Maintenance of the integrity and inhibit protein 
structural damage.

[209]

Dicentrarchus labrax fillet PSF −15 ºC and −25 
ºC, 200 Mpa

Ice crystals reduction, lower protein denaturation and 
higher WHC.

[210]

Oncorhynchus gorbuscha, 
Gadus chalcogrammus, 
Thunnus albacares fillets

HPF −32 ºC, 250 Mpa, 
3 min

Bacterial reduction against Listeria monocytogenes and 
Salmonella enterica (3-log CFU/g).

[211]

Pork minced meat EMF 0.2 T, 20 kHz, 2 
V/cm

No alteration in freezing dynamics. [212]

Pork small blocks PMFF 15.98 mT, −30°C 
(4°C/min)

Decreased nucleation point, phase change time and 
subcooling time.

[213]

Fresh crab sticks EMF <2 mT,6–59 Hz No advantage of EMF over ABF (drip loss, WHC, 
toughness, whiteness).

[214]

Gluteus medius sirloin meat EF 5.8 × 104V/m, 
−20 ºC

60% decrease in ice crystals size. Retained hardness, 
reduced drip loss, no effect on color.

[215]

Larimichthys crocea fillet UAF 20–40 kHz, 175 
W, 30 s

Increased freezing rate, preserved quality and reduced 
lipid oxidation.

[216]

Fresh chicken breast UIF 30 kHz, 165 W, 
−25 ºC, 8 min

Accelerated freezing rate, smaller ice crystals, reduced 
thawing and cooking loss.

[217]

Fresh chicken breast UIF 30 kHz, 165 W, 
−25 ºC, 8 min

Maintenance of the myofibrillar protein structure, 
reduced loss of the elastic response, gel strength, free 
water, and WHC. Promotion of compact and 
homogeneous gel networks.

[218]

Dicentrarchus labrax fillet UIF 45 kHz, 320 W, 
−40 ºC, 15–25 

min

Less affected by small ice crystals, so lower thawing and 
cooking loss, maintenance of protein structure.

[219]

Cyprinus carpio fillet UIF 30 kHz, 75 W, 
−25 ºC, 9 min

Inhibited the growth of ice crystals, reduced free water, 
reduced thawing and cooking loss, retarded increase 
in TBARS and TVB-N.

[220]

Smaller and uniform ice crystals maintained sarcomere 
integrity and protein thermal stability and no 
changes in the SDS-PAGE pattern.

[221]

Porcine longissimus muscle UIF 30 kHz, 180 W, 
−18 ºC

Shorter freezing time, lower thawing loss, no effect on 
color or pH, smaller and uniformly distributed ice 
crystals.

[222]

Abbreviations: high-pressure processing (HPP), air blast freezing (ABF), isochoric freezing (ICF), pressure shift freezing (PSF), high 
pressure assisted freezing (HPF), air velocity (v), liquid smoking (LS), freezing (F), electromagnetically freezing (EMF), permanent 
magnetic field freezing (PMFF), water holding capacity (WHC), electrically aided freezing (EF), ultrasound-assisted freezing (UAF), 
ultrasound-assisted immersion freezing (UIF), total volatile base nitrogen (TVB-N), thiobarbituric acid reactive substance (TBARS).
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The MF directly affects water by organizing water molecules, increasing hydrogen bonding, and 
weakening the van der Waals bonding force.[212,226,227] Recently, different works have applied this 
technology to muscle foods, but further studies are needed to prove its effectiveness.[212,214] UAF uses 
a frequency between 20 and 100 kHz in food processing. UAF can accelerate the freezing rate due to 
the enhancement of ice nucleation, increasing the rate of mass and heat transfer and controlling the 
size and formation of ice crystals.[228,229] 

Although several studies focused on fruits and vegetables, UAF application has been improved in 
the last few years on muscle food products.[230] Among these studies, most of them used ultrasound- 
assisted immersion freezing (UIF), which uses a liquid medium for ultrasound transmission thus 
significantly shortening freezing time.[217,231] MAF is still one of the less applied techniques, based on 
the use of 2.45 GHz microwave irradiation to better maintain the structure of the food while 
freezing.[232] MAF has been applied to fresh pork tenderloins while radiofrequency waves have been 
used in fresh rainbow trout fish.[233,234] However, further efforts need to be made towards the 
development of this technique. Regarding ODF, its application is still very limited and no applications 
on muscle food products have been found in the literature.[235]

Packaging and other non-thermal treatments

Packaging, such as modified atmosphere packaging (MAP), is known to increase perishable food 
safety and shelf life. Together with other non-thermal treatments such as the use of natural preserva-
tives or the application of nanotechnology can prevent microbes and enzyme activity in muscle foods 
maintaining sensory quality characteristics.[32,42,236]

Natural preservatives
The use of natural preservatives is one of the most recent trends among consumers and the scientific 
community. This increment is mainly due to the consumer´s concern about synthetic additives thus 
changing to natural strategies to extend the shelf-life of food products.[202,237] Among the different 
properties of these natural preservatives, antioxidant and antimicrobial activities have been high-
lighted for their combined use to prevent contamination and the loss of the sensory quality char-
acteristics of muscle foods. Therefore, the compounds most used can be classified according to their 
origin: vegetal (e.g., essential oils and plant extracts), animal (such as chitosan, lysozyme) or microbial 
(bacteriocins) sources.[237–240] In this section, those compounds that are fundamentally used directly 
on the food product are addressed. However, the same compounds can be included in edible films and 
coating for packaging purposes. Some of the most recent studies using natural preservatives in muscle 
foods are compiled in Table 5.

Regarding natural additives of vegetal origin, plant extracts and essential oils are the most used as 
food preservation techniques. Oregano, thyme, or rosemary have been successfully used to preserve 
not only muscle foods but also other such plants (e.g., orange, pomegranate). Essential oils (EOs) and 
phenolic compounds, together with terpenes and alkaloids are secondary metabolites present in plants 
which usually present antioxidant and antimicrobial activities, among others.[237,263,264] Therefore, 
natural additives are an alternative to synthetic preservatives, although more research is still needed 
towards the industrial application of these molecules.

Edible films and coatings
Edible films and coatings are considered primary packaging systems made from edible ingredients that 
have been proposed as alternative methods for food preservation.[265] In recent years, they have been 
increasingly studied owing to different advantages over synthetic materials used for food packaging, 
namely high efficacy in retarding food degradation, extended shelf life, lack of toxicity, as well as an 
eco-friendly character.[249266].

The main difference between films and coatings is related to their application procedure. Edible 
films are prepared separately as solid sheets and then used to cover the surface of the food, whereas 
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Table 5. Packaging and other non-thermal treatments applied to muscle food products.

Seafood Technique Results Ref.

Atlantic Mackerel 
(Scomber scombrus) 
fillets

Rosemary and basil EO Delayed lipid oxidation and formation of TVB-N. Extension of the shelf- 
life of products.

[241]

Rainbow trout 
(Oncorhynchus 
mykiss)

Rosemary, thyme, 
laurel and sage EO

Antimicrobial and antioxidant properties. Enhance of the organoleptic 
quality of fish

[242]

Pink shrimp 
(Parapenaeus 
longirostris)

Orange EO Antioxidant and antimicrobial properties (Enterobacteriaceae family). 
Shelf-life extension of nearly 10 days.

[243]

Lamb burgers Guarana and pitanga 
PE

Reduced lipid and protein oxidation. [244]

Uncured pork sausages Black and green tea PE Antioxidant activity without effects on the sensory attributes. [245]

Rabbit meat Onion and cranberry 
PE

Improve the microbial control against Pseudomonas and 
Enterobacteriaceae.

[246]

Salmon carpaccio Gelatin-Ch films Moderate antimicrobial activity. [247]
White shrimp (Penaeus 

vannamei)
Microalgal 

exopolysaccharide 
coating

Inhibition of microbial growth and deterioration. Preservation of 
sensory properties.

[248]

Smoked herring (Clupea 
harengus)

Ch coating Inhibition of microbial growth and lipid oxidation. Antioxidant effects. 
Improvement of sensory parameters.

[249]

Pacific white shrimp 
(Litopenaeus 
vannamei)

Oregano EOs and ε- 
polylysine

Inhibition of microbial growth and proteolysis. Improvement of sensory 
properties.

[250]

Yellow croaker 
(Larimichthys crocea)

Ch -lysozyme edible 
coating

Inhibition of microbial growth, proteolysis, and lipid oxidation. Color 
and odor characteristics were preserved.

[251]

Scomberoides 
commersonnianus

Ch-WPI-EO coating Inhibition of microbial growth, proteolysis, and lipid oxidation. 
Preservation of sensory properties (color, odor, texture, and 
appearance) during storage.

[252]

Beef Ch-gelatine Improvement of color preservation and reduced weight loss and lipid 
oxidation.

[253]

White shrimp 
(Litopenaeus 
vannamei)

Ch-gelatine Shelf-life extension. Decreased lipid oxidation and improvement of 
texture and color.

[254]

Cooked pork sausages Ch- clove EO Inhibition of microbial growth, late lipid oxidation and extension of the 
shelf-life.

[255]

Pacific Mackerel Fillets Ch-gallic acid Inhibition of microbial growth, biogenic amine formation, lipid 
oxidation and nucleotide and protein breakdown.

[256]

Pork patty Pectin-green tea 
powder

Decrease of lipid oxidation, increase of radical scavenging effects and 
reduction of total aerobic bacteria

[257]

Golden Pomfret fillets Gelatine- tea 
polyphenol

Reduction of weight loss, pH lowering and microbial growth inhibition. 
Retard myofibril degradation during cold storage

[258]

Golden Pomfret fillets Gelatine-Ch Inhibition of myofibril degradation during cold storage [259]

Rainbow Trout Fillets Gelatine-oregano EO Decrease of total volatile basic nitrogen, peroxide value, thiobarbituric 
acid and microbial growth

[260]

Whey protein Frozen Atlantic salmon Decrease of lipid oxidation of fish fillets. Increase in whiteness of cooked 
samples

[261]

Pike-Perch fillets WPI-lactoperoxidase 
system-α- 
tocopherol

Antibacterial and antioxidant properties directed towards shelf-life 
extension.

[262]
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coatings are formed directly onto the food surfaces.266,267] Most the edible materials are formed from 
natural biopolymers from animal-derived compounds (chitin, chitosan), plant-derived (cellulose, 
starch, pectin,), seaweed-derived (agar, alginate, carrageenan) as well as microbial-derived (pullulan, 
xanthan gum). In addition, lipid compounds such as oil, resins or waxes have been used and protein- 
based films (gelatine, collagen and milk, soy or whey proteins) are being widely investigated as 
well.[236,265] As happened with plant extracts and EOs, edible coatings and films act as antioxidant 
and antimicrobial agents due to the bioactive molecules. In recent years, different studies have tested 
the efficacy of these materials in different muscle food products (Table 5). The successful results 
obtained with these materials have led to this trend having considerable relevance in the preservation 
of muscle food and continues to be further explored.

Recent development and application of analytical techniques for muscle foods

Spectroscopic and hyperspectral sensors

Advanced analytical tools have been developed over the years giving the possibility to realize simple 
and rapid measurements with or without sample contact in the specific fringe of the electromagnetic 
spectrum, Vis (Visible), UV (Ultraviolet), MIR (Mid-infrared), NIR (near infrared), Raman, and 
fluorescence. Each spectral range is associated with specific chemical and physical information 
about the molecular content of the studied sample. For example, the NIR (780–2,500 nm) and MIR 
(2,500–25,000 nm) infrared ranges are associated with the absorption spectrum of organic 
molecules[268] with fundamentals vibrations observed in the MIR and combinations/overtones vibra-
tions observed in the NIR range, respectively. Raman spectroscopy is based on the inelastic scattering 
of light observed after radiation with monochromatic light of an organic molecule.[269] Fluorescence 
can be considered as the emission of lower energy light by a fluorophore after excitation by UV (200– 
400 nm) or Vis (400–700 nm) light.

Hyperspectral imaging (I), also called chemical or spectral imaging, can be considered one of the 
most recent and disruptive innovations or development in the field of spectroscopy sensors and was 
proposed for the first time for airborne detection and mapping.[270] Food products, especially muscle 
foods are generally anisotropic and can have high local heterogeneity in physical properties (e.g. size 
and shape) and chemical composition (e.g., fat, protein, and collagen) making it challenging to control 
and optimize the quality of final food product. TIHSI technique is very smart since it gives the 
possibility to both record spectral and spatial information of the analyzed sample, allowing addressing 
this heterogeneity challengesIhe HSI data analysis is generally associated with multivariate or chemo-
metrics techniques (e.g., principal components analysis, partial least squares analysis and artificial 
neural network) to build predictive models or to visualize quality treats variations based on distribu-
tion maps of muscle food products (e.g., fish, chicken, red meats).[271–273] HSI sensors to evaluate the 
quality of treats (e.g., sensory properties, grade, and nutrition properties) of muscle food products has 
been the subject of different research/review papers and book chapters.[48,75,274] Therefore, its interest 
in the field of the implementation of this technique in muscle food industry 4.0 is no longer to be 
proved.

An HSI sensor generally contains four elements, including a “brain” (a computer with appropriate 
software), a sample stage, a “vision” system (CDD hyperspectral camera), and an illumination source 
(e.g. tungsten-halogen, UV lamp). The illumination source should be chosen carefully depending on 
the application, to provide illumination homogeneity and prevent heating effects.[275] When using UV 
lamps, a cooling system must be included in the system. For example, in the study of Zhuang et al.[276] 

two DC cooling fans (12 V, 5.4 W) were used in the HSI analysis of meat pork.
HSI sensors generate 3D data or hypercube including two spatial dimensions (length: X and width: 

Y), and one spectral dimension (I) (Fig. 4). The HSI sensors can provide images using three config-
urations: reflection, transmission, and interactance. In general, in muscle product analysis, the 
reflectance mode is the most used probably because it is the most convenient and informative.[277] 
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Depending on the image acquisition procedure, four techniques can be used to record 3D HSI, the 
whiskbroom (i.e. point scan), pushbroom (i.e. line scanning), tunable filter (or staring), and snapshot 
systems. The selection of the mode to use in the muscle food industry is affected by different factors, 
such as the application targeted (e.g. out-line, at-line, in-line), and the device cost and its robustness.

The simplest approach is called staring, in which an image plane is collected at one waveband after 
another with a fixed image field of view. In this configuration, the system generally uses filters (band- 
pass filters, a circular-variable filter, a liquid-crystal tunable filter or an acousto-optical tunable 
filter),[278] giving the possibility to record simultaneously both spatial dimensions (X and Y) while 
the spectral dimension is acquired sequentially.[279] However, this system is not well adapted to 
process monitoring because acquisition is quite slow and the sample needs to be in a fixed position 
which makes it poorly compatible with the high production rate that is generally required by the 
muscle food industry. This acquisition technique is more adapted for multispectral (MSI) systems. The 
MSI system proved its effectiveness in predicting different properties of muscle foods (e.g. microbial 

Figure 4. Different sensing and image acquisition modes that can be used for muscle foods analysis by hyperspectral imaging.

FOOD REVIEWS INTERNATIONAL 19



spoilage, muscle breed discrimination, sensory properties, chemical composition, and adulteration 
detection).[280–287]

The whiskbroom or point-scanning mode gives the possibility to record the full spectrum on 
a single pixel of the sample image. Therefore, the three dimensions (λ, X, and Y) are recorded 
separately and the sample is moved to give the possibility to the HSI camera to map the entire pixels 
of the sample image. With this mode, an optical grating, prism or a similar element is required to 
achieve light dispersion. However, since a double scan (i.e. spatial and spectral) is required, the 
acquisition time is a barrier to its implementation on a food processing line. This acquisition mode 
has mainly been used in microscopy analysis of muscle foods. For example, microspectroscopy was 
used to evaluate the thermal denaturation of proteins in the muscle fibre and connective tissue of 
bovine muscles[288] and to study the effects of high-pressure treatment on the muscle structure of 
salmon (Salmo salar).[34]

The push broom can be considered an upgrade of the point-scanning system. The principle is based 
on line-scan acquisition in which each line contains full-spectrum information for every spatial pixel. 
Thus, the spectral dimension and one spatial dimension are acquired simultaneously, while the second 
spatial dimension is acquired sequentially. Similar to whiskbroom instruments, a dispersing element is 
used in the spectrograph. However, as an entire line of pixels is recorded at once, a two-dimensional 
dispersing element and a two-dimensional detector array are required. As this method does not 
require the changing of filters and only requires the sample to be moved in one direction (the direction 
of the second spatial dimension), it is well suited to implementation for non-destructive evaluation of 
quality control during processing. This mode is the most commonly used for online applications in 
muscle food analysis.

This technique was investigated to predict or monitor chemical composition (e.g. moisture, total 
fat, protein, and biogenic amine) and sensory properties of different muscle foods (fish, chicken breast, 
minced pork, fresh minced beef, lamb cuts, and mutton).[289–291] Recent advances in optical compo-
nents and data analytics have revolutionized imaging spectroscopy, allowing the emergence of 
a variety of specialized research and industrial platforms. For instance, a range of advanced cameras 
(called HySpex) has been developed by a Norwegian research and development organization to be 
used for various applications, including quality control and inspection of fish. This system can be used 
for sorting raw material passing through the production lines based on different qualities, or even fish 
species in real time.[292]

The most recent HSI sensors are called single shot or snapshot HSI.[293] This state-of-the-art 
technology has been developed recently taking advantage of the advancements that Industry 4.0 has 
provided (e.g., the availability of a larger amount of spatial resolution). These sensors are capable to 
record both spatial and spectral information in all the object area in one shot without scanning. This 
system provides advantages such as collecting HSI images at video frame rate making the sensors more 
appropriate for real-time applications, ultra-portability or miniaturization. The acquisition rate (e.g. 
150 frames per second permits) of these devices permits to have a fixed platform and detector and 
therefore more robustness of the acquisition system. This technology is developed by different 
companies; for example, an HSI camera presenting 50 bands in the 450–850 nm range, a frame rate 
higher than 15 Hz, a resolution of 250 × 250 pixels, with small dimensions (29 × 29 × 49 mm) is 
proposed by Cubert Company.

In the past few years, snapshot HSI systems have gained attention in the research area of muscle 
food processing. For example, Ma et al.[294] used a single shot camera (SPM-EVM-VIS, Interuniversity 
Microelectronics Centre, Leuven, Belgium) with 16 bands (465, 474, 485, 496, 510, 522, 534, 546, 548, 
562, 578, 586, 600, 608, 624, and 630 nm) and a rate of 340 fps to evaluate protein content of processed 
pork meat (freezing, thawing, salting and drying). The prediction models, combining Back 
Propagation with Neural Network and HSI absorbance spectra, gave good cross-validation results 
for the protein content of the different processed samples (R2

CV = 0.8318 and RMSECV = 8.38 mg/g). 
In another study,[295] two snapshot HSI cameras were used in the NIR (25 wavelengths between 673– 
957 nm) and VIS (16 wavelengths from 467–639 nm) range to discriminate between three red meat 
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species (pork, beef, and lamb). The exposure times of the snapshot were 2 ms and 3.9 ms for the NIR 
and VIS cameras, respectively. The combination of the HSI image features and a new chemometrics 
method (3D-CNN: deep 3D convolution neural network) gave discrimination models with good 
overall accuracy for both NIR (96.9%) and VIS systems (97.1%). However, more research is still 
needed to fully exploit the potential of the snapshot acquisition mode in more food applications.[51]

The rapid development in imaging and spectroscopic technologies including both hardware and 
software [291] has been spurred by Industry 4.0, extending the possibilities and providing innovative 
technologies in emerging applications. Recently, many publications have argued that Industry 4.0 
technologies, such as smart sensors based on HSI and spectroscopy can enhance food traceability [296] 

and food quality.[63] Such smart technologies are connected by networks to software and can help the 
muscle food industry to move to the next level by enabling real-time monitoring and reducing 
measurement time. For example, the role of these sensors and digitalization in the move towards 
smart farming in the livestock industry was reviewed recently by Fuentes et al.[297] In the processing 
industry of meat, these smart sensors can be used to optimize inventory use by checking the 
confirmation of the carcass, missing parts, size, and presence or absence of defects, thus sorting 
meat products into various categories according to their properties.[79]

Advanced mass spectrometry

In recent years, mass spectrometry (MS) methods have been developed for the high throughput non- 
targeted analysis of muscle foods.[52] Among them, ambient mass spectrometry (AMS) techniques 
deserve special mention for their innovative approaches and powerful performances. AMS covers 
a family of techniques that allow the generation of ions under ambient conditions after minimal 
sample preparation. One of the advantages of AMS techniques is its ability to quickly reveal the food 
chemical profile[298] that can be used to set up non-targeted methods as recommended by the 
European Community and the United States Pharmacopeial Convention to successfully face food 
frauds.[299,300] A graphical representation of the most recent AMS techniques applied to muscle food 
analysis is reported in Fig. 5. Since no chromatography separation is performed, ambient sources are 
usually coupled to high-resolution mass spectrometry to obtain very precise information related to the 
encountered metabolites and to facilitate the identification of the examined muscle food.

Desorption electrospray ionization-mass spectrometry (DESI-MS) is one of the most famous and 
well-established AMS techniques, developed by Cooks and co-workers in 2004.[301] DESI is character-
ized by a nitrogen-assisted charged solvent that, on hitting the sample surface, desorbs and ionizes the 
analytes that are then revealed by MS. Although it is not extensively applied to food authentication, it 
has been recently tested for the screening of paralytic shellfish toxins in clams [307] (Fig. 5a).

Haddad et al.[308] created a voltage-free, easy ambient sonic spray ionization (EASI) MS method 
(Fig. 5b) able to efficiently desorb and ionize analytes directly from the sample surface. While the 
technique has been extensively used for the authentication of different types of honey, oil, emulsifiers 
and propolis,[309] thermal imprints of salmon fillets were screened by EASI-high resolution MS 
(HRMS) to monitor the impacts of the fish-raising regime on the triacylglycerol composition of 
salmon fat.[310]

Another well-established and commercially available AMS technique called direct analysis in real- 
time mass spectrometry (DART-HRMS), has been recently applied for the rapid authentication of 
thawed-frozen fish [311,312] (Fig. 5c). Specifically, DART-MS successfully revealed the freshness of 
salmon collected from a local market and analyzed at the purchase time and after a few days of storage 
under refrigerated conditions.[312] In the same vein, Massaro et al.[311] combined DART-HRMS data 
for the rapid assessment of fish freshness, opening new avenues for the development of species- 
independent approaches for the differentiation of fresh and thawed-frozen fish.

Rapid evaporative ionization coupled with mass spectrometry (REIMS-Fig. 5d) is, nowadays, one of 
the most widely used AMS techniques in food authentication. REIMS is characterized by the point 
heating of a sample using a soldering iron, a laser beam or an electronic surgical knife. The aerosol is 
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pulled using a Venturi pump through the tubing, from where part of the sample gas flow is diverted 
into a mass spectrometer via an impact heater.[313] While Rigano et al.[314] used this technique for the 
rapid authentication of Mediterranean sea fish species, Song et al.[315] applied it for the discrimination 
of salmon and rainbow trout. Moreover, efficiency and times of analysis for REIMS-MS and poly-
merase chain reaction (PCR) were compared for the detection of mislabelled fish species such as cod, 
coley, haddock, pollock and whiting. The REIMS-MS showed promising performances.[316] REIMS- 
HRMS is also able to quickly and reliably screen for meat adulteration (2.5% of protein-based 
adulterants) [317] as well as the fraudulent addition of offals to meats.[318] In the same manner, REIMS- 
HRMS measured the chemical fingerprints of meat, revealing the characteristic ionic features related 
to species, geographical origin, breed, types of strip loin sections and their tenderness.[313,319,320]

The same research group compared the power of REIMS-HRMS and DART-MS in determining 
distinct production systems for poultry. REIMS-HRMS showed >90% accuracy in differentiating 
organic and conventional poultry, while DART-HRMS showed a predictive ability of >99%.[321] 

Notably, Abigail et al.[322] implemented the MasSpec Pen technology, a handheld device connected 
to a high-resolution mass spectrometer that uses a water droplet for gentle desorption and ionization 
of the sample (Fig. 5e) for rapid authentication of muscle foods. Different meat and fish types, 
including grain-fed beef, grass-fed beef, venison, cod, halibut, Atlantic salmon, sockeye salmon, and 
steelhead trout, were successfully differentiated.

Liquid extraction surface analysis mass spectrometry (LESA-MS – Fig. 5f) is another innovative 
technology that combines micro-liquid sample extraction with nano-electrospray mass 
spectrometry.[323] In 2015, a LESA-MS method was developed for the authentication of processed 
meat products by detecting heat-stable peptide markers. Since skeletal muscle proteins are species- 
specific, Montowska et al.[324] exploited the potential use of these muscle protein markers for meat 
authentication. After suitable digestion, peptidic ions derived from myofibrillar and sarcoplasmic 
proteins were detected and correlated to meat species for the authentication of sausages and minced 
meat.

Hiraoka et al.[325] developed a point analysis technique for food by using sheath-flow probe 
electrospray ionization/mass spectrometry (sfPESI/MS). An acupuncture needle, inserted into a fine 
plastic capillary filled with solvent, was placed on the food surface (Fig. 5g). This enabled the solvent 
preloaded in the plastic capillary to rapidly extract the analytes on the sample surface. After sampling, 

Figure 5. Schematics of ambient mass spectrometry techniques that have been applied to authentication of muscle foods. a) 
Desorption electrospray ionization (DESI-MS)[301]; b) Easy ambient sonic-spray ionization (Easi)[302]; c) Direct analysis in real-time 
(Dart)[303]; d) Rapid evaporative ionization mass spectrometry (Reims)[304]; e) MasSpec pen[304]; f) Liquid extraction surface analysis 
(Lesa)[305]; and g) Sheath-flow probe electrospray ionization (sfPesi).[306] Adapted with permission from the publishers (Wiley, Royal 
Society of Chemistry, ACS, AAAS, and Elsevier).
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the probe was moved up to the highest position and a high voltage (HV) was applied. After lifting the 
probe to the default position, the analytes were transferred into the mass spectrometer via a self- 
aspirating electrospray source.

Other advanced techniques

Food safety analysis involves well-established techniques such as gas chromatography (GC), MS, 
ultrahigh performance liquid chromatography (UHPLC), quantitative real-time polymerase chain 
reaction (qPCR) as well as enzyme-linked immunosorbent assay (ELISA).[326] In addition, some 
traditional methods are still used for determining muscle food freshness [327,328] including chemical 
measurements (meat pH, total volatile base nitrogen (TVB-N), and 2,3,5-triphenyltetrazolium chlor-
ide (TTC)), microbiological measurements and sensory evaluations. These last two approaches, 
however, can be very long (bacterial cultures), and dependent on the human factor (high expertise, 
judgment deviations due to fatigue and subjectivity). Finally, the fact that sensory analysis cannot be 
used for online measurement is also a significant caveat. There are, however, several studies reported 
in the literature that constitute promising and innovative applications to improve muscle foods 
analysis throughout the food chain, providing more efficient alternatives to conventional detection 
techniques. Among those technologies, there are sensors and immunoassays designed to measure 
specific analytes, like a gold nanoparticles (NP) sensor for histamine.[329] This biogenic amine can 
easily be produced in certain fishes, fermented foods and beverages under deficient manipulation, 
causing many intoxications.[330] Recent and promising advances in the design and development of 
NP-based sensors, with colorimetric and electrochemical detection, focusing on sensors for assessing 
food safety, mainly for the detection of chemical (pesticides, heavy metals) and biological contami-
nants (bacterial pathogens and natural toxins), were reviewed by Bülbül et al.[331]

Within the same subject, Chen et al.[332] fabricated and implemented a novel and low-cost 
colorimetric sensor array, with a specific calorific fingerprint to volatile compounds. This sensor 
uses chemically responsive dyes printed on a C2 reverse silica-gel flat plate, to evaluate chicken 
freshness. In addition, they proposed a novel algorithm, namely AdaBoost – OLDA (orthogonal linear 
discriminant analysis coupled with adaptive boosting) for sensors data classification and compared it 
with two classical classification algorithms – linear discriminant analysis (LDA) and back propagation 
artificial neural network (BP-ANN). Sionek et al.[333] explored the potential of biosensor technology to 
assess the quality of pork meat, significantly improving meat quality assessment while reducing 
simultaneously the cost of analysis in meat plants and slaughterhouses. They hypothesized that the 
biosensors used to measure triglycerides, lactic acid and glucose could be effectively applied to 
measure these metabolites in natural meat drip loss and that the results could be related to the 
technological quality of meat.

Choi et al.[334] reviewed paper-based nucleic acid testing (NAT) as alternative to laborious, 
expensive and time-consuming conventional assays, presenting substantially higher sensitivity and 
specificity than immunoassays. Non-destructive techniques such as the electronic tongue[335] electro-
nic nose (E-Nose),[336] computer vision (CV),[337] spectroscopic techniques,[338] and artificial tactile 
(AT) sensory technologies [339] have been proposed for meat and freshness assessment. Nonetheless, 
since they are used only to detect freshness information parameters (e.g., odour, colour, and rubbery 
state) these technologies cannot be used to carry out a comprehensive assessment of muscle food 
freshness or spoilage. Furthermore, they are relatively expensive, time-consuming, labour-intensive, 
and in addition, require trained professionals to operate specialized instrumentation. This makes these 
technologies unsuitable for a point-of-need food safety inspection, especially in low- and middle- 
income countries, where insufficient equipment and facilities preclude modern methods of detection 
and therefore foodborne illnesses are more prevalent. In this context, the development of simple, cost- 
effective, and robust analytical devices for muscle-based food safety monitoring are mandatory to 
create effective prevention and control strategies. Among these, (e.g., three-dimensional paper-based 
microfluidic and lateral flow test strips devices), microfluidic chip-based devices (e.g., poly(methyl 
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methacrylate) (PMMA), polydimethylsiloxane (PDMS)-based chips), which have significant impact 
due to their high performance, rapidly gained popularity for use in quality control and food 
safety.[334,340] Regarding this, Pang et al.[341] developed a self-priming polydimethylsiloxane 
(PDMS)/paper hybrid microfluidic chip (SPH chip) with mixed-dye-loaded loop-mediated isothermal 
amplification (LAMP) for multiplex foodborne pathogens detection, using Staphylococcus aureus (SA) 
and Vibrio parahaemolyticus (VP) for method verification. In turn, Shih et al.[342] developed a simple 
paper-based ELISA (colorimetric) platform as an innovative point-of-care diagnostic tool to rapidly 
detect E. coli, and possibly other pathogens, in contaminated foods. This technique is easier to 
perform, less time-consuming, and less expensive than conventional methods.

Smartphone-based analytical techniques have also become popular for health-related and food 
safety monitoring.[343] A food allergen testing platform with a specially designed optical attachment to 
image and analyze immunoassays performed in microwells was built by Coskun et al.[344] The 
smartphone camera was used to acquire the transmission images of the assay. Liu et al.[345] imple-
mented a rapid and cost-effective 3D printed smartphone-based platform (SBP) for a point-of-need 
food safety inspection, which employs aptamer-conjugated AuNPs as the colourimetric indicator, and 
a battery-powered optosensing accessory attached to the camera of a smartphone for transmission 
images capture.

These emerging technologies offer great potential to meet ASSURED criteria recommended by 
World Health Organization (WHO), which are affordable, sensitive, specific, user-friendly, rapid, 
robust, equipment-free and deliverable to end-users. Moreover, they can facilitate the active screening 
of food contaminants and toxicants, constituting powerful alternatives to conventional benchtop 
detection technologies [346] and thus significantly improving the current worldwide food safety control 
system.

Perspectives and future directions

The food industry had experienced radical changes over the past century and more so over the last six 
years due to the arrival of Industry 4.0 technologies that have transformed almost every food industry 
sector, including the muscle food industry. While the first industrial revolution was defined by the 
mechanization of production, the second industrial revolution enabled mass production and the third 
one allowed automated production. Concerning the ongoing Industry 4.0, it has highlighted the need 
for multidisciplinary approaches and connectivity between various domains, particularly, physical, 
biological, and digital fields.

In this work, the recent applications of Industry 4.0 technologies in muscle food processing/ 
preservation and analysis are enlightened, confirming the potential of emerging technologies (e.g., 
ohmic and radiofrequency heating, pulsed electric field, cold plasma, high-pressure processing, 
emerging freezing-based techniques, ultrasound, spectroscopic sensors, advanced mass spectrometry, 
etc.) as drivers toward more sustainable and healthier food production and consumption. Innovations 
in different domains of muscle food preservation and processing have led to better sensory and 
nutritional (especially digestibility) quality of treated products with a longer shelf life compared to 
those treated with traditional preservation techniques. In addition, energy use and production costs 
can be reduced and greater production capacity can be achieved with novel techniques, providing 
environmental and economic sustainability. Moreover, these emerging techniques can be used to 
extract bioactive compounds from food waste and by-products, thus bringing substantial added value 
for both the consumer and the producer.[37,137,175,347]

The incorporation of robotics in the muscle food sector (such as performing manual operations in 
meat processing plants) offers countless possibilities that could be enhanced by the current rapid 
development of smart sensors. Such sensors enable real-time remote monitoring of quality, safety, 
authenticity and other relevant parameters directly inline of production. The assessment of muscle 
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food quality and other related parameters have traditionally been determined using physico-chemical 
destructive and time-consuming techniques, while the advent of emerging analytical methods (e.g., 
hyperspectral imaging sensors, portable and smartphone-based techniques) has revolutionized the 
methods of analysing food products.

Despite the accelerated development in many muscle food processing/preservation and analysis 
areas, new requirements have been introduced by the disruptive technologies of Industry 4.0 and some 
challenges are still to be addressed. Overall, the muscle food industry is complex and challenging as it 
is influenced by multiple elements. For example, the heterogeneity of muscle food products in terms of 
shape and size makes it difficult to handle (during processing/preservation, analysis) and even much 
more difficult to automate using robots. Although the investigation of the potential of nonthermal 
treatments is among the most focused research areas, more research is still needed to understand the 
exact mechanism of action of these techniques, and their impact on treated food, and especially to 
demonstrate the safety of processed products. It should be highlighted that most emerging technol-
ogies have not yet crossed the barriers of the laboratory scale because of the high cost and lack of 
adaptability to an industrial environment. Another factor that hinders the wider acceptance of 
Industry 4.0 technologies is the technical and technological skill gap, which is one of the key barriers 
to the adoption of new technologies. Chapman et al.[6] pointed out the necessity of training courses to 
face disruptions due to Industry 4.0 technologies.

Overall, the adoption of new technologies can seem like a daunting task, and the uptake of these 
technologies is still slow in the food industry compared to other sectors, which might be due to the silo 
mentality that still exists among the researchers in the food industry.[348,349] Finally, various public and 
private policies in different countries are one of the main obstacles to the implementation of emerging 
technologies. Therefore, discussion and close collaboration between government agencies to establish 
common standards are indispensable to take full profit from the current Industry 4.0 technologies, 
ushering in the next wave of technological advances and innovations that will move the world towards 
Industry 5.0.

Final remarks

This review provided a comprehensive overview of recent applications of Industry 4.0 technologies in 
the muscle food sector, with a special focus on processing/preservation methods and analytical 
techniques. Most of the topics discussed in this review paper were previously reviewed in more detail 
in other publications. However, to the best of our knowledge, this work is the first to raise awareness of 
the importance of simultaneously considering a wide range of emerging technologies that address the 
key principle of Industry 4.0, namely the convergence between various areas of science, especially 
physical, biological, and digital disciplines.

This review showed that emerging technologies, such as novel thermal and nonthermal processing, 
smart spectroscopic sensors, and other high throughput analysis (e.g., advanced spectrometry) have 
significant potential for applications to muscle food products despite the very different characteristics 
(such as shapes and sizes) of these food products. However, additional research and extensive 
collaboration between different players in the food supply chain as well as close policy coordination 
among countries are still needed to overcome various barriers that are currently hindering the wider 
implementation of emerging technology breakthroughs in the food industry. While the capture of the 
full potential of Industry 4.0 technologies and innovations is probably still a distant future in the 
muscle food industry, automation and digitalization are likely to only grow in prominence in the 
coming years.
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