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A B S T R A C T   

Binary segmentation of volumetric images of porous media is a crucial step towards gaining a deeper under-
standing of the factors governing biogeochemical processes at minute scales. Contemporary work primarily re-
volves around primitive techniques based on global or local adaptive thresholding that have known common 
drawbacks in image segmentation. Moreover, the absence of a unified benchmark prohibits quantitative eval-
uation, which further undermines the impact of existing methodologies. In this study, we tackle the issue on both 
fronts. First, by drawing parallels with natural image segmentation, we propose a novel, and automatic seg-
mentation technique, 3D Quantum Cuts (QCuts-3D) grounded on a state-of-the-art spectral clustering technique. 
Secondly, we curate and present a publicly available dataset of 68 multiphase volumetric images of porous media 
with diverse solid geometries, along with voxel-wise ground truth annotations for each constituting phase. We 
provide comparative evaluations between QCuts-3D and the current state-of-the-art over this dataset across a 
variety of evaluation metrics. The proposed systematic approach achieves a 26% increase in AUROC (Area Under 
Receiver Operating Characteristics) while achieving a substantial reduction of the computational complexity 
over state-of-the-art competitors. Moreover, statistical analysis reveals that the proposed method exhibits sig-
nificant robustness against the compositional variations of porous media.   

1. Introduction 

Rapid advances in micro-CT technology and easier access to scanning 
hardware have made X-ray computed tomography imaging quite pop-
ular among soil scientists (Al-Raoush, 2012; Baveye et al., 2018; Kemgue 
et al., 2019; Pot et al., 2015). This technology facilitates the visualiza-
tion and quantitative analysis of the characteristics of porous media in a 
non-invasive manner at micrometric scales. Data are acquired from to-
mography generally as grayscale 3D volumetric images where the in-
tensity at each spatial location is proportional to the X-ray attenuation 
properties of the material present at the corresponding location in the 
scanned sample. These high-resolution volumetric images enable re-
searchers to model, predict and better understand the biogeochemical 

processes occurring within the porous media at fine scales (Baveye et al., 
2018; Dullien, 1992; Kravchenko et al., 2011). An essential step in this 
quest is segmentation - identifying populations of voxels, associated 
with distinct phases or constituents. The most common approach in this 
regard is binarization (or binary segmentation), which consists of dis-
tinguishing two phases corresponding to pore space (void) and solids. 

Over the years, a substantial amount of research has been conducted 
towards testing existing image processing methods as well as devising 
novel schemes to tackle the segmentation problem (Iassonov et al., 
2009; Tuller et al., 2013; Wang et al., 2011). Prevalent methods essen-
tially employ a thresholding operation and are commonly categorized as 
either global, when they employ a single threshold value to categorize 
voxels, or local, when they aim to label individual voxels based on the 

* Corresponding author. 
E-mail address: junaid.malik@tuni.fi (J. Malik).  

Contents lists available at ScienceDirect 

Computers and Geosciences 

journal homepage: www.elsevier.com/locate/cageo 

https://doi.org/10.1016/j.cageo.2021.105017 
Received 10 September 2020; Received in revised form 22 October 2021; Accepted 29 November 2021   

mailto:junaid.malik@tuni.fi
www.sciencedirect.com/science/journal/00983004
https://www.elsevier.com/locate/cageo
https://doi.org/10.1016/j.cageo.2021.105017
https://doi.org/10.1016/j.cageo.2021.105017
https://doi.org/10.1016/j.cageo.2021.105017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2021.105017&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers and Geosciences 159 (2022) 105017

2

intensity information in their local neighborhood. Thorough visual and 
quantitative comparisons (Iassonov et al., 2009) have proven global 
methods (Otsu, 1979; Ridler and Calvard, 1978) to be less robust toward 
global intensity variation, which arises due to poor contrast and partial 
volume effect. Local methods remedy this by accounting for the local 
spatial image information (Oh et al., 1999). However, the 
best-performing methods among them generally require a skilled oper-
ator’s intervention. While valiant efforts have been made to address 
some of the shortcomings (Schlüter et al., 2010), the efficacy of these 
methods still depends on key factors such as choice of pre-filtering and 
design parameters, which inevitably lead to subjectivity in their use 
(Hapca et al., 2013). Furthermore, collectively, most of the aforemen-
tioned techniques rely on a distinctive behavior of the histogram, either 
globally or within local windows, which makes them prone to inade-
quate results when dealing with complex distributions. This is echoed by 
the findings of numerous studies that report a lack of efficient, unsu-
pervised segmentation regimes tailored specifically for volumetric im-
ages of porous media (Baveye et al., 2010; Iassonov et al., 2009; Tuller 
et al., 2013; Wang et al., 2011). Despite the popularity of 
thresholding-based methods for the segmentation of porous media im-
ages, it is worth noting that such techniques are rarely used for relevant 
tasks in natural images (Fig. 1). 

Salient-object detection is a major area of interest in computer vision 
research that deals with identifying visually unique and prominent re-
gions in natural images (Borji, 2015). The task is similar to the binary 
segmentation of porous media representations in the key sense that both 
are concerned with identifying a single texturally homogenous and 
unique region of interest (salient-object/solids) from the backdrop 
(background/pore-space) in a one-vs-rest fashion. Based on this, salient 
object detection methods are more suitable for application to porous 
media images as opposed to classical thresholding techniques. However, 

the field of salient object detection is ripe with numerous novel contri-
butions and the choice of a suitable method for application to porous 
media images is critical. In an extensive exploratory work (Borji et al., 
2015), Quantum Cuts (QCuts) (Aytekin et al., 2016), a segmentation 
technique based on Quantum Mechanical principles, stood out as the 
best performing unsupervised method. QCuts is an automatic, unsu-
pervised, and class-independent salient object detection method that 
operates on graph-based data representations. Based on these key fea-
tures, it lends itself to an application for the segmentation of porous 
media images. 

Another critical factor hindering progress regarding the segmenta-
tion of porous media images is the absence of an annotated benchmark 
dataset that can be used to qualitatively and quantitatively evaluate 
segmentation methods. Curation of such datasets is not trivial for the 
case of naturally occurring porous media such as real soils, because 
obtaining a voxel-wise ground truth is not possible (Hapca et al., 2013; 
Wang et al., 2011). Morphological characteristics such as porosity 
comparisons are often used to gauge the segmentation accuracy. How-
ever, such measures may not be adequate as the total porosity of a soil 
sample is often affected by pores that might not be visible at the studied 
X-ray resolution (Al-Raoush, 2012; Wang et al., 2011). As a workaround, 
researchers have resorted either to generating synthetic soil images of 
known porosity by working backward from binary images (Wang et al., 
2011), or to using artificial systems whose porosities can be manually 
controlled (Iassonov et al., 2009). Moreover, the porosity measure itself 
is not descriptive enough as it only takes into account the global per-
centage of pores, not their local spatial distribution. This absence of 
benchmark datasets renders the quantifiable comparison among the 
segmentation results difficult. 

Collectively, the evidence presented above highlights key issues 
concerning both the obsolescence of segmentation techniques and the 

Fig. 1. 3D visualization (left) and 2D slice (right) of a test volumetric image (top) and its segmented output (bottom).  
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uncertainity regarding their performance owing to the absence of an-
notated benchmark datasets. In this study we address these two issues 
and make the following novel contributions:  

i) QCuts-3D: an extension by 3D reformulation of the state-of-the-art 
2D salient object detection method of QCuts, tailored exclusively 
for segmenting volumetric tomography images of porous media, 

ii) SIMUPOR benchmark dataset: a collection of high-resolution multi-
phase volumetric images along with expert annotated voxel-wise 
ground truth for each phase. 

We test our method against the current state-of-the-art method of 
(Hapca et al., 2013) on this new dataset and calculate a variety of per-
formance metrics that are commonly used in segmentation problems. 

2. Prior work 

As identified by several exploratory studies, very few of the proposed 
methods have been designed specifically for the segmentation of volu-
metric representations of porous materials. Some methods employ a 2D 
"slice-by-slice" approach, which has several drawbacks (Elliot and Heck, 
2007; Tuller et al., 2013) and is prone to directional bias (Iassonov and 
Tuller, 2010). Therefore, for the sake of brevity, in this section, we 
restrict our discussion to methods that operate in a three-dimensional 
manner and have been proposed exclusively for the task of porous 
media segmentation. For a detailed account of other methods, the reader 
is referred to (Iassonov et al., 2009; Tuller et al., 2013; Wang et al., 
2011). 

In one of the earliest efforts (Vogel and Kretzschmar, 1996), pro-
posed a global histogram-based approach. Initially, two threshold 
values; Tmin and Tmax, are calculated from the histogram and used to 
obtain a tri-partitioning of the voxels. The identified pore voxels then act 
as an initial seed for growing the pore space region. As an improvement 
(Schlüter et al., 2010), proposed to pre-process with pseudomedian filter 
and then calculating binary edge maps using Sobel- (SobelFeldman, 
1973) and Laplace-based edge-detection. The two initial thresholds are 
then calculated from the histograms of each of the two edge masks. 
Later, Sheppard et al. (2004) proposed a multi-stage pipeline. The pre-
processing step involves anisotropic filtering for denoising and unsharp 
masking for edge enhancement. Subsequently, a combination of 
watershed transform (Vincent and Soille, 1991) and a modified active 
contours-based seeded region growing (Kass et al., 1988) is employed. 
The fast marching algorithm (Forcadel et al., 2008) is used for tracking 
the evolution of the segmentation boundary. 

Houston et al. (2013) proposed a variation on top of the widely used 
method of Oh et al. (1999). Instead of applying indicator kriging using a 
constant radius window, the authors proposed to adapt the radius based 
on local image conditions. After a partial prepartitioning using the 
method of, the spatial variance is modeled by obtaining an empirical 
semivariogram and fitting a theoretical model to it. The unclassified 
voxels are then labeled by calculating class probabilities using the 
kriging system. The window size is adapted progressively until a satis-
factory labeling for unclassified voxels is obtained. The method was 
tested on 5 soil images and was shown to achieve similar results to those 
obtained with the method of (Oh et al., 1999) with significantly less 
computational cost. 

In Hapca et al. (2013), a localized application of (Otsu, 1979) 
method is proposed. The given volume is first decomposed into 
non-overlapping cubes of fixed sizes. For each cube, a threshold value 
Tsolid is calculated based on the profiles of the intra-class variance and 
phase variance functions. Afterward, an interpolation operation is 
applied to smooth the thresholding surface, which is finally used to 
obtain the desired binary segmentation. To make the critical choice of 
window size operator independent, the authors propose an automatic 
approach where a number of window sizes are tried and an optimal 
choice is made based on the proposed selection criterion. In the 

evaluation performed over a variety of synthetic soil images, the pro-
posed method is shown to achieve a more accurate estimate of the 
porosity values and a lower misclassification error, compared to 
competing methods. Moreover, it is also completely automatic and does 
not require any operator intervention. 

From the above overview, an obvious need for more robust and 
efficient unsupervised segmentation regimes arises. The performance of 
indicator-kriging-based methods (Houston et al., 2013; Oh et al., 1999) 
relies entirely on the pre-selected pair of thresholds. Despite efforts 
made to automate this step, as noted by (Houston et al., 2013), expert 
intervention is still required to get reasonable and stable outcomes. For 
methods involving preprocessing (Schlüter et al., 2010; Sheppard et al., 
2004; Vogel and Kretzschmar, 1996), there is a significant degree of 
operator subjectivity related to the choice of filtering operation and 
tuning of the parameters involved. Furthermore, region growing-based 
methods (Sheppard et al., 2004), are inherently sensitive to the choice 
of initialization. The method of (Hapca et al., 2013) is the only fully 
automatic solution that does not involve manual decisions regarding the 
tuning of the parameters. However, this is achieved by exhaustively 
searching the parameter space for optimum window size. T, which in-
volves multiple passes over the image, which is undesirable. Addition-
ally, the shape of the window is also quite critical as cubic or spherical 
windows used in (Houston et al., 2013) and (Hapca et al., 2013) cannot 
guarantee that the contours of the solid grains will be preserved. Finally, 
the most crucial drawback is that all the threshold-based methods as-
sume distinctive peaks in the gray-scale distribution. For complex im-
ages where the solid intensity varies and/or the pores are filled with 
different media (gas, saline water, or oil), this dependence on histograms 
leads to unsatisfactory results. 

One of the most widely studied natural image segmentation prob-
lems is salient object detection, which, like the binarization of porous 
media images, aims at a one-vs-rest categorization of the image elements 
into the foreground (region-of-interest) and the background. In a thor-
ough quantitive evaluation of 29 salient object detection methods over 7 
different datasets (Borji et al., 2015), the method of (Aytekin et al., 
2015) came out as the best among unsupervised methods. The method 
employs QCuts (Aytekin et al., 2014), a spectral clustering-based object 
segmentation technique that hinges on Quantum Mechanical principles. 
QCuts is uniquely distinct from the other methods in the sense that it is 
based on a specialized graph-cut operation and lends itself to an appli-
cation on any graph-based data representation. Also, it is fully automatic 
and does not rely on labeled training examples for parameter selection 
or tuning. These two key factors make the native QCuts the most 
promising candidate for an extension to 3D pore segmentation. There-
fore, the primary objective of this study was the development of a novel, 
highly accurate, and fast extension, QCuts-3D, orchestrated exclusively 
for the segmentation of digital porous media representations. The pro-
posed method involves a single volume-to-volume mapping operation 
that is devoid of any parameter tuning, or redundant multiple-passes 
over the image. 

3. Proposed methodology - QCuts-3D 

In the proposed method, the contrast of the volumetric image is first 
adjusted as shown in Fig. 2. Then QCuts-3D proceeds as follows: a 
supervoxel-based representation of the volumetric image is obtained at 
multiple scales (Section 3.2). Then, for each scale, a graph is constructed 
where the nodes of the graph represent the supervoxels (Section 3.3). 
Using the graph cut technique of (Aytekin et al., 2016), binary labeling 
of the nodes is then obtained, identifying them as either solid or pore 
(Section 3.5). Results from each scale are finally combined in a 
voxel-wise majority voting scheme to obtain the desired segmentation. 
In Section 3.1, we shall briefly introduce the traditional QCuts method 
for salient-object segmentation. 

J. Malik et al.                                                                                                                                                                                                                                    
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3.1. Quantum Cuts 

Image segmentation tasks are often posed as energy minimization 
problems where the aim is to find a labeling y that minimizes an energy 
function of the form: 

E(y)=Esmooth(y) + Edata(y) (1) 

In (1), the data term Edata(y) encourages the labeling to be consistent 
with the given image information while the term Esmooth(y) ensures that 
the labeling is smooth over neighboring image elements (Boykov et al., 
2001). In the widely used framework of active contours (Kass et al., 
1988), the energy is a summation of an internal energy term (smooth-
ness term), which controls the bending of the segmentation contour, and 
an external energy term (data term) based on local image features such 
as edges, which pushes the contour towards object boundaries. Despite 
their popularity, active contour-based methods are quite sensitive to 
weights in the energy function and the choice of initialization. More-
over, they do not guarantee a globally optimum solution and can only 
find the local minima closest to the initialized contour (Xu et al., 2007). 

Graph cut-based techniques provide a globally optimum solution to 
many energy minimization problems related to image segmentation 
(Kim and Hong, 2009; Zhou et al., 2013). The energy function to be 
minimized takes the following general form, (Lucchi et al., 2012): 

E(y)=Eunary(y) + λEbinary(y) (2)  

Eunary(y) =
∑

i
φ(yi) (3)  

Ebinary(y) =
∑

p,q
ψ
(
yp, yq

)
(4) 

The unary (data) term Eunary(y) measures how appropriate label yi is 
for the ith node given the image information. The binary (smoothness) 
term Ebinary(y) measures the cost of assigning disparate labels to con-
nected neighboring nodes p and q, while λ controls the weight of these 
terms. It can be noted that a binary term consisting of the summation of 
edges to be cut is not appropriate as it favors cutting short boundaries, 
resulting in small isolated regions. To alleviate this, several domain- 
specific modifications to the energy function of (2) are generally made 
(Jianbo Shi et al., 1997; Wang et al., 2003). 

QCuts (Aytekin et al., 2014, 2015) is specifically tailored for 
one-vs-rest labeling problems and produces state-of-the-art results for 
the task of salient-object. In QCuts, the modified energy function takes 
the form: 

Em =
Eunary(y) + Ebinary(y)

∑
i

(
yi
) (5) 

In (5), the denominator term, 
∑

i
yi, is introduced to maximize the 

area of the foreground/salient region. This is a key aspect of QCuts that 
makes it different from other graph-cut based segmentation techniques 
such as (Jianbo Shi and Malik, 2000) and (Wang et al., 2003). While 
these methods aim at partitioning the graph into two or more homog-
enous regions, QCuts’ optimization criterion is more inclined towards 
separating nodes belonging to a single region of interest (foreground) 
from the rest (Aytekin et al., 2016) which makes it more suitable for 
one-vs-rest categorization problems such as binarization of porous 
media images. 

Fig. 2. 2D slice of a test original volume (top) and its contrast adjusted output (bottom) with the corresponding histograms (right).  
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Given a graph-based representation of the image where the edge 
weight connecting node i and j is denoted as wij, the segmentation 
problem can be expressed, using the modified energy function, as fol-
lows: 

argmin
y

∑
iφ(yi) +

∑
i,jψ

(
yi,yj

)

∑
i

(
yi
) (6)  

where the binary potential ψ(yi, yj) is defined as: 

ψ
(
yi, yj

)
=wi,j

(
yj − yiyj

)
(7)  

And φ(yi) in (6) corresponds to the unary term which is explained in 
Section 3.4. In order to facilitate the minimization, the labeling vector y 
is replaced by another vector z = y∘y which can take values in [ −
1,0, 1]. Furthermore, an additional phase term is introduced to penalize 
sign changes of z. Hence, the problem now becomes the following 
minimization: 

argmin
z

∑
iφ
(
z2

i

)
+
∑

i,jwi,j

(
z2

j − z2
i z2

j

)
+
∑

i,jwi,j

(
z2

i z2
j − zizj

)

∑
i(z2

i )
(8)  

= argmin
z

∑
iφ
(
z2

i

)
+
∑

i,jwi,j

(
z2

j − zizj

)

∑
i(z2

i )
(9)  

= argmin
z

zT(Hm)z
zT z

(10) 

In (10), the matrix Hm is expressed as follows: 

Hm =

⎧
⎪⎨

⎪⎩

φ(i) +
∑

k∈Ni

wik, if i = j − wij, if i ∈ Ni0, otherwise (11)  

where Ni denotes the nodes in the neighborhood of node i. For any 
nonzero φ(i), Hm is a positive definite matrix. Therefore, if the solution 
set of the above problem is relaxed such that z ∈ R, the minimization can 
be treated as a Rayleigh quotient problem. The solution z∗ can then be 
obtained by solving the eigenvalue problem of (11). Specifically, it is the 
eigenvector corresponding to the smallest eigenvalue of Hm. Finally, the 
optimal labeling vector y∗, which minimizes the energy function given in 
(6), can be calculated as shown in (12) and (13). 

Hmz∗ =Emz∗ (12)  

y∗ = z∗∘z∗ (13)  

where ∘ refers to the element-wise multiplication operation, also known 
as the Hadamard product. The obtained solution using QCuts has a 
theoretical correspondence with a quantum mechanical particle’s loca-
tion in space (Aytekin et al., 2016, 2018), hence the name “Quantum 
Cuts”. Fig. 3 provides a visual explanation of the various steps 
comprising the QCuts operation. 

3.2. Supervoxel-based representation in QCuts-3D 

Obtaining a labeling for each voxel in a given volumetric image is 
computationally infeasible and it is essential to optimally reduce the 
processing load associated with generating individual voxel-wise labels. 
We propose to use a supervoxel-based representation of the volumetric 
image to be segmented. Supervoxels (like their 2D counterparts; 
superpixels) (Achanta et al., 2011) are groups of image elements 

(voxels) clustered together based on their distances in a 
high-dimensional feature space that encapsulates low-level image 
properties such as intensity cues and spatial information. 

Consider the case of two voxels i and j, residing in a 4-dimensional 
space where the additional dimension corresponds to their grayscale 
intensities Ij and Ik. A distance between them can be calculated as fol-
lows: 

D=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
Ij − Ik

)2

m2 +

(
xi − xj

)2
+

(
yi − yj

)2
+
(
zi − zj

)2

S2

√

(14)  

where (xi, yi, zi) and (xj, yj, zj) are spatial coordinates of voxels i and j 
respectively. For a given number of supervoxels K (resolution), and the 
total number of voxels in the image N, we generate supervoxels using the 
Simple Linear Iterative Clustering (SLIC) algorithm as proposed in 
(Achanta et al., 2011). Specifically, cluster centers are initialized at 
regular intervals S =

̅̅̅
N

√

K in the grid. Voxels are then iteratively assigned 
to the closest center based on (14), while cluster centers are simulta-
neously updated. The term m2 in (14) is the so-called compactness factor, 
which controls the degree to which supervoxels adhere to the image 
gradients (edges). This formulation enables supervoxels to be compact 
and of nearly uniform size while also preserving regional boundaries 
(Stutz et al., 2018). Supervoxel generation is inherently 
three-dimensional in nature as D takes into account all three spatial 
dimensions, not just a single slice. Therefore using supervoxel-based 
generation makes QCuts-3D starkly different from the slice-by-slice 
approach used by other methods to reduce the computational 
complexity. By using a local representative statistic, such as the average 
grayscale intensity of the constituting voxels, supervoxels are treated as 
single entities to be labeled, thus alleviating the need for separately la-
beling individual voxels (Kitrungrotsakul et al., 2015; Lucchi et al., 
2012; Mahapatra, 2013; Takaoka et al., 2017). 

In the proposed approach, we obtain supervoxel-based over-
segmentations at resolutions of 2000,4000,6000 and 8000 supervoxels 
per volumetric image, in order to account for the varying scale at which 
particles can be found in the studied porous media sample. This step is 
followed by constructing a graph where nodes represent supervoxels. 

3.3. Graph construction in QCuts-3D 

In the QCuts implementation for natural images, each node is con-
nected to up to its fifth set of neighbors in the spatial domain, which 
helps in encoding contrast and textural information. Such an approach, 
while applicable to natural images where the object of interest is 
geometrically compact and texturally unique, are unsuitable for volu-
metric images of porous media. This is because the supervoxels 
belonging to the region of interest (solid) do not generally exhibit 
unique textural characteristics and are not situated close to each other. 
This is illustrated in Fig. 4 by comparing the region of interest for a 
natural image against a slice of a porous medium image. In the case of 
the natural image, the area of interest comprises a large connected patch 
at the center of the image having unique textural characteristics, how-
ever, in the case of a slice of a 3D volume of porous media, the area of 
interest is scattered across the slice and is not that well-connected. 

Based on this observation, QCuts-3D uses a fully connected graph 
where each node is connected to every other node in the graph. For each 
supervoxel, the average gray-scale intensity of all the constituting voxels 
is taken as its representative. For defining the edge weights, we use the 
Gaussian weighted disparity in gray-scale intensities as the similarity 
metric (Cheung et al., 2018; Kitrungrotsakul et al., 2015). The final edge 

Fig. 3. Flow diagram for the Quantum Cuts-based binary segmentation.  
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weight assignment is mathematically expressed as follows: 

wij = exp
(

−

⃒
⃒
⃒
⃒Si − Sj

⃒
⃒
⃒
⃒

2
2σ2

)

(15)  

where Si is calculated as, 

Si =

∑
δikIk

∑
δik

(16) 

In (16), δik indicates whether kth voxel belongs to ith supervoxel 

δik =

{
1, if kth voxel ∈ Si.

0, otherwise. (17)  

3.4. Unary potentials in QCuts-3D 

In (6) and (11), the unary term φ(i) encodes prior information about 
the labeling of nodes and is related to the potential of a node to belong to 
the background. In native QCuts, superpixels occupying the boundaries 
of the 2D image are assumed to belong to the background, φ(i) is set to a 
very high value for these nodes and zero for all the others. However, 

Fig. 4. Comparison of the region of interest (highlighted in red) in a natural image (left) and a 2D slice from a test volumetric image of porous media. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Mean ground truth annotations for (Cheng et al., 2015),(Li et al., 2014),(Borji et al., 2012) (reprinted from (Borji et al., 2015)) and SIMUPOR dataset.  
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such a location-based prior is not suitable for the case of images of 
porous media. This is demonstrated in Fig. 5 which compares a pixel- 
wise dataset-wide average of ground truth annotations of 3 popular 
salient object detection datasets and 2D slices of the SIMUPOR dataset. 
One can clearly observe that the salient object has a noticeable location 
bias as it tends to reside more towards the center and rarely at the 
borders of the image. However, for our task, the region-of-interest 
(solids) is spread across the entire frame and shows no bias for any 
particular spatial location. 

Earlier, for such volumetric images (Kulkarni et al., 2012), proposed 
to use a manual selection of seeds for each phase by a skilled operator. 
However, the authors themselves identified a need for an automated 
process, as manual selection makes the overall process expensive in 
terms of processing time and also introduces the operator’s subjectivity. 
Moreover, owing to limitations in visualization, manual selection of 
seeds is not practical in the case of 3D images (Boykov et al., 2001). 

In light of the aforementioned facts, in QCuts-3D, the only assump-
tion we make about the pore space is that it occupies the lower end of the 
grayscale intensity distribution. Exploiting this, we slice the volumetric 
image along the longitudinal axis and for each slice, we perform a row- 
wise selection of the supervoxel with the lowest mean intensity. This set 
of supervoxels is denoted as Spore This slice-wise approach provides a 
computationally economical and parameter-independent way to make 
sure that the initial seed selection is not affected by the global intensity 
variations in the given tomography data. Mathematically, the unary 
potential φ(i) takes the form of a binary indicator function as follows: 

φ(i)=
{

1, if Si ∈ Spore.

0, otherwise. (18)  

3.5. Binarization in QCuts-3D 

For each supervoxel resolution, we construct the graph, identify pore 
seeds, and then perform QCuts-3D. The initial output is a real-valued 
labeling vector y* as in (13), which assigns a probability to each 
supervoxel corresponding to its likelihood of belonging to solid space. 
Finally, the output of QCuts-3D is formed by labeling the supervoxels 
corresponding to nodes having a high value of y* as “solid” while the rest 
are labeled as “pores”. Fig. 6 illustrates the proposed end-to-end 
pipeline. 

4. Experimental results 

4.1. The benchmark dataset: SIMUPOR 

In this study, a benchmark dataset (aka SIMUPOR) of 68 3D volu-
metric images of porous media with varying grain geometry and 
composition is composed*. 3D volumetric images were obtained from 
the experiments conducted by Al-Raoush (2014) to study the effect of 
grain geometry on the morphology of non-aqueous phase liquids in 
porous media. While the contrasts between the phases in such images 
are good, the need to obtain an accurate and unsupervised segmentation 
is still present. This is extremely critical when the problem at hand in-
volves computations of interfaces between different phases in the im-
ages such as interfacial areas and mass transfer computations. Moreover, 
experiments that deal with dynamic systems generate very large data 
that requires an unsupervised segmentation algorithm for efficient 
processing. 

The volumes in the SIMUPOR dataset correspond to samples from 34 
different experiments, each corresponding to a specific constitution of 
the porous medium. Among the 68 volumetric images used, 40 belong to 
the experiments that employ silica sand to model the porous media 
whereas the remaining 28 used quartz crystals. In addition to this 
variation in the shape of grains, there is also a variety in the size, with 
the median grain diameter ranging from 0.179 to 0.433 mm. This pro-
vides a comprehensive benchmark to check for the robustness of any 
segmentation algorithms to changes in porous media composition. 

A multi-phase ground truth segmentation for the volumetric images 
was obtained by applying a manual skilled operator-guided process 
based on the indicator kriging approach (Oh et al., 1999). For each 
phase, images obtained from the samples scanned at different energy 
levels were aligned and subtracted in order to emphasize that particular 
phase. Afterward, segmentation for that phase was obtained by using the 
method of (Oh et al., 1999). Furthermore, the segmentation was verified 
using a variety of metrics measured independently from physical ex-
periments of such systems. A visual example showing a slice of a test 
image along with its annotated ground truth is presented in Fig. 7. For 
more details about the image acquisition and annotation process, the 
reader is referred to (Al-Raoush, 2014). 

4.2. Evaluation metrics 

To perform the quantitative evaluation, we calculate a variety of 

Fig. 6. The illustration of the QCuts-3D for segmentation of volumetric images of porous media. After the initial pre-processing step, a multi-resolution supervoxel- 
based representation of the preprocessed volume is obtained as explained in Section Supervoxel-based representation in QCuts-3D. For each supervoxel resolution, 
segmentation is obtained using the proposed QCuts-3D operation. Finally, outputs from all resolutions are amalgamated in a majority voting scheme to obtain the 
final segmented output. 
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evaluation metrics to precisely measure the performance of each 
method. We intentionally omit evaluation criteria such as porosity, 
which only account for the global percentage, and fail to penalize based 
on localization of pore voxels within the lattice. We aim at utilizing more 
descriptive evaluation metrics which can efficiently penalize individual 
falsely labeled voxels. A brief description of each metric used and their 
mathematical formulations are presented as follows: 

4.2.1. Jaccard Index 
As originally proposed in (Jaccard, 1901), the Jaccard Index is often 

used to evaluate segmentation results (Everingham et al., 2010; Feng Ge 
et al., 2006). Also referred to as “Intersection over Union” (IoU), it is 
mathematically formulated as follows: 

J(ŷ, y)=
|ŷ ∩ y|
|ŷ ∪ y|

(19) 

In (19), ŷ is the output of segmentation, y refers to the ground truth 
mask, and |.| is the cardinality operator. 

4.2.2. Receiver operating characteristics (ROC) 
ROC curves provide a two-dimensional plot with the true-positive 

rate (TPR) plotted on the Y-axis and the false positive rate (FPR) 
plotted on the x-axis. An interesting property of the ROC curve is the 
area under it (AUROC), which corresponds to the probability of 
assigning a higher score to a randomly chosen positive instance as 
compared to a randomly chosen negative instance (Feng Ge et al., 2006). 
Being a scalar, the AUROC provides a convenient way to compare 
classifier performance. 

4.2.3. Misclassification error (ME) 
Misclassification error is a simple measure and is given as the frac-

tion of voxels that are classified incorrectly. The mathematical expres-
sion is as follows: 

ME =
False Positives + False Negatives

Total number of voxels
(20)  

4.3. Performance evaluations 

Table 1 and Table 2 chronicle the results of our experiments over the 
SIMUPOR dataset by using the aforementioned evaluation metrics. 
Table 2 presents the performance of the state-of-the-art automatic seg-
mentation method of (Hapca et al., 2013) and QCuts-3D on images 
categorized with respect to different grain shapes. On average, QCuts-3D 
achieves a boost of 26% in AUROC, 23.5% in IoU, and 68.9% in ME. 
Similarly, Table 2 shows the same performance criteria evaluated across 
a variety of grain sizes. The proposed method achieves a boost of 27% in 
AUROC, 23% in IoU, and a 70% decrease in ME, on average. In order to 
evaluate the robustness of the proposed method to variations in grain 
geometry, we calculate the standard deviations of performances for each 
method across varying grain sizes and grain shapes. From our experi-
ments, we observe that the proposed approach achieves a decrease of 
28.2%, 16.1%, and 28.9% in the standard deviation of AUROC, IoU, and 
ME, respectively across 6 different grain sizes. Similarly, when the grain 
shapes are varied instead of the sizes, a performance deviation decrease 
of 80.8%, 45.5%, and 75.2% was observed for the three evaluation 

Fig. 7. 3D rendering of a sample volumetric image from SIMUPOR dataset and its manually annotated multi-phase ground truth. Solids are color-labeled as cyan 
while the other porous phases (water, oil, and gas) are labeled in blue, yellow, and transparent color respectively. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Table 1 
Performance of QCuts-3D and the competing method [13] across different grain sizes.   

d1 d2 d3 d4 d5 d6  

Hapca et al. 
(2013) 

QCuts- 
3D 

Hapca et al. 
(2013) 

QCuts- 
3D 

Hapca et al. 
(2013) 

QCuts- 
3D 

Hapca et al. 
(2013) 

QCuts- 
3D 

Hapca et al. 
(2013) 

QCuts- 
3D 

Hapca et al. 
(2013) 

QCuts- 
3D 

AUROC 0.733 0.943 0.722 0.914 0.710 0.928 0.754 0.940 0.723 0.938 0.743 0.920 
IoU 0.731 0.915 0.710 0.878 0.731 0.901 0.757 0.990 0.758 0.921 0.7000 0.872 
ME 0.218 0.053 0.236 0.078 0.227 0.065 0.194 0.058 0.206 0.053 0.232 0.077  

Table 2 
Performance of QCuts-3D and the competing method (Hapca et al., 2013) across 
different grain shapes.   

Sands Quartz Average  

Hapca 
et al. 
(2013) 

QCuts- 
3D 

Hapca 
et al. 
(2013) 

QCuts- 
3D 

Hapca 
et al. 
(2013) 

QCuts- 
3D 

AUROC 0.718 0.921 0.740 0.925 0.729 0.923 
IoU 0.725 0.892 0.713 0.885 0.719 0.888 
ME 0.227 0.070 0.227 0.0710 0.227 0.070  
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metrics, implying high robustness as compared to the competing 
method. This provides evidence that the QCuts-3D is more robust to 
variations in the grain size, compared to (Hapca et al., 2013), at least for 
the images included in the SIMUPOR dataset. 

In terms of qualitative comparison, Fig. 8 presents the results of 
(Hapca et al., 2013) and QCuts-3D on the images from the SIMUPOR 
dataset. One can clearly observe that owing to the presence of multiple 
phases in the images, the adaptive thresholding technique of (Hapca 
et al., 2013) does not to provide adequate results. This is not surprising 
since the method was designed for images where it is reasonable to as-
sume a priori the existence of only two very distinct populations of 
voxels. The method fares well in identifying the gas as the pore phase but 
falls short when it comes to liquid or oil phases, which have intensities 

closer to the solid phase. 
Furthermore, the grain boundaries are also not delineated clearly as 

compared to the QCuts-3D. This can be attributed to the fact that local 
thresholding within cubical windows does not take into account 
regional characteristics whereas the proposed supervoxel-based repre-
sentation already incorporates edge preservation and thus ensures that 
the regional intricacies are respected in the final segmentation outcome. 

4.4. Computational complexity analysis 

MATLAB implementation of QCuts-3D and (Hapca et al., 2013) were 
tested in MATLAB R2018a on an Intel Xeon CPU E5-2690 processor 
running at 2.60 GHz with 64 GB of memory. Computational efficiency 

Fig. 8. Compilation of 2D slices of test images (rows) from the SIMUPOR dataset, ground truth, segmentation output of (Hapca et al., 2013) and that of QCuts-3D 
(from left to right). The slices correspond to columns 4,19,22,28,37 and 44 (from top to bottom), of SIMUPOR dataset. 
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for both methods was measured by applying them over the entire 
SIMUPOR dataset and averaging the run-times. On average, the 
competing method (Hapca et al., 2013) took 937.85 min on a single 
volumetric image of size 256 × 256 × 256 whereas the proposed 
multi-resolution scheme took only 100.96 s. This presents around 
500-times less computational time due to the fact that the proposed 
method does not involve multiple passes over the image, and therefore is 
kept free from any need to repeatedly revisit the image space for 
parameter optimization. 

5. Conclusions and future work 

Local window-based segmentation methods have become the default 
choice for the segmentation of porous media imagery. Despite their wide 
usage, such methods suffer from acute reliance on manual tuning of 
hyperparameters. Furthermore, the shapes of local windows generally 
do not respect grain boundaries, resulting in segmentation artifacts. 
Another important hindrance towards progress in the field is the absence 
of annotated benchmark datasets for the evaluation of segmentation 
methods. In this work, we proposed a novel, automatic, and unsuper-
vised 3D segmentation technique for porous media images. We also 
presented a benchmark dataset consisting of 68 multiphase volumetric 
images with corresponding voxel-wise segmentation ground. Further-
more, we performed an extensive comparative evaluation over this 
dataset, between the proposed QCuts-3D and the state-of-the-art auto-
matic segmentation method (Hapca et al., 2013). Both quantitative and 
qualitative results revealed that QCuts-3D achieves a significant 
improvement in segmentation accuracy and computational efficiency. 
Moreover, it is more robust to variations in compositional elements of 
the pores and the geometry of the grains. Visual comparisons show that 
the regional boundaries are better preserved using the proposed 
supervoxel-based approach, as compared to localized thresholding in 
cubical windows employed by the competing method. 

Future work involves investigating ways of improving the compu-
tational efficiency of the proposed method and extending it towards 
application in multiphase segmentation. We can harness the power of 
GPUs to expedite and parallelize the supervoxel generation step. 
Moreover, the introduction of the first benchmark (SIMUPOR) dataset 
can potentially usher in an era of a rapid influx of modern segmentation 
techniques such as Deep Learning-based supervised approaches, that can 
learn more efficient graphical representations (Aytekin et al., 2017) to 
segment the images using the provided ground truth annotations. 
Finally, we will also explore the possibility of devising multiphase seg-
mentation approaches by utilizing the multiphase annotations of the 
SIMUPOR dataset. 

6. Computer code availability 

The code for the proposed method is written in MATLAB and named 
“qcuts3d 1.0”. It has been made publicly available with an open-source 
GPL 3.0 license at https://www.github.com/junaidmalik09/qcuts3d. 
The code is accompanied by a small subset of the SIMUPOR dataset to be 
used for testing and demo purposes. The full dataset can be obtained 
from https://data.mendeley.com/datasets/mx4hkgsnfn/1. Instructions 
for reproducing the results presented in this paper are provided in a 
README file. 
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