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Abstract: We hypothesized that the nitrogen-fixing tree Acacia mangium could improve the growth and
nitrogen nutrition of non-fixing tree species such as Eucalyptus. We measured the N-mineralization
and respiration rates of soils sampled from plots covered with Acacia, Eucalyptus or native vegetation
at two tropical sites (Itatinga in Brazil and Kissoko in the Congo) in the laboratory. We used a bioassay
to assess N bioavailability to eucalypt seedlings grown with and without chemical fertilization for
at least 6 months. At each site, Eucalyptus seedling growth and N bioavailability followed the same
trends as the N-mineralization rates in soil samples. However, despite lower soil N-mineralization
rates under Acacia in the Congo than in Brazil, Eucalyptus seedling growth and N bioavailability were
much greater in the Congo, indicating that bioassays in pots are more accurate than N-mineralization
rates when predicting the growth of eucalypt seedlings. Hence, in the Congo, planting Acacia
mangium could be an attractive option to maintain the growth and N bioavailability of the non-fixing
species Eucalyptus while decreasing chemical fertilization. Plant bioassays could help determine if
the introduction of N2-fixing trees will improve the growth and mineral nutrition of non-fixing tree
species in tropical planted forests.

Keywords: soil N-mineralization rate; soil respiration rate; N2-fixing tree species; plant N accumulation

1. Introduction

Forest plantations are rapidly expanding to meet the increased demand for wood
products and contribute to limit the deforestation of primary forests [1,2]. Among the
most cultivated forest species, eucalypt trees, which cover about 20 million hectares [3],
are mainly established in highly weathered tropical soils, generally poor in nutrients (in
particular N and P). As rotations progress, eucalypt plantations can drastically reduce soil
N, P, and K levels [4]. Although plants have adapted to overcome nutritional limitations,
with mechanisms for reabsorption, biological recycling and allocation, and the utilization
of N, P, and K, this is not always sufficient for high productivity [5]. In recent decades,
two main methods have been used to overcome the lack of nutrients: minimum tillage [4]
and the addition of mineral fertilizers [5,6]. The main problems with fertilizers are the
high rates required by plants and their increasing cost. As an alternative to fertilizer
use, a third option has emerged through the association of eucalypts with nitrogen-fixing
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species (NFS) [7,8]. Indeed, if high enough, soil N inputs from N2 fixation could reduce
the environmental cost of producing and applying mineral N fertilizer in the field. The
contribution of mineral fertilization in eucalypt forest to global warming has been estimated
to be about 20% of total emissions, from forest planting to log exporting [9]. Nitrogen
fixation has also been proposed as a way to reduce greenhouse gas (GHG) emissions
related to fertilizer manufacturing (1.6 to 6.4 kg of CO2 equivalent per kg of nitrogen
manufactured by chemical reaction [10]), in addition to avoiding the release of nitrous
oxide (N2O) resulting from the application of fertilizers that are not synchronized with
plant requirements [11]. Taken together, these data suggest that introducing NFS species
could enhance N availability for eucalypt plantations without increasing the environmental
cost or pollution of plantations.

Today, the success of forest plantations still depends on the application of mineral
fertilizers [12]. Adequate fertilization is necessary for the long-term production of eucalypt
plantations [13]. Several studies have shown that N fertilization can increase growth in early
Eucalyptus plantations [13,14]. However, in some cases, this response is not maintained
until the end of the rotation due to other limiting factors, such as soil water availability
in Brazil [7]. Eucalypt trees require a large amount of nutrients in their initial growth
phase [15] due to large investment in leaf biomass and root development during this
period [6,16]. This high initial growth is possible due to the ability of young trees to take
up large amounts of nutrients released from the mineralization of organic matter residues
left over from the previous rotation [16]. In the second part of the eucalypt plantation cycle
(after the third year), the growth rate of trees decreases, mainly because leaf production
reaches a plateau, thus decreasing N demand [17]. During this period, the nutrient demand
is largely met by the biogeochemical cycling of elements in the soil and mineralization
processes of organic matter on the one hand, and by the biochemical cycling and internal
retranslocation of nutrients within the tree on the other. Eucalypt trees rapidly explore
the soil layers [18–20], resulting in low nutrient leaching from forest plantations [16,21].
When studying the rates of fertilizer application in eucalypt plantations, da Silva et al. [13]
found that trees responded positively to increasing doses of fertilizers, resulting in higher
productivity; however, the effects of these increasing doses decreased in the second year
after planting. The split application of fertilizers in the first two years after planting did not
increase plantation productivity compared with a single application at planting.

The association of NFS and non-NFS can be a form of ecological intensification, a
process that aims to increase sustainable forest plantation production and soil nutrient
availability [7,22–24]. The intercropping of NFS in eucalypt plantations, e.g., by planting
one tree of each species alternately in the same row to obtain a plantation with 50% of
each species, can increase biomass production, soil mineral status, and soil carbon, while
reducing fertilizer costs [25–27]. For example, the association of these species with eu-
calypts has been shown to result in increased N availability through N2 fixation [28], as
well as increased litter production [27], increased leaf decomposition, and increased cy-
cling [23], resulting in increased soil N mineralization [26,29].The goal of mixed-species
plantings is therefore to combine certain species, locations and attributes (temperature,
precipitation, and soil) to maximize the balance between positive and negative interspecific
interactions to increase individual tree growth and stand production, as well as reducing
insect impacts or illnesses, and thus increasing the chances of plantation success [24,27].
However, despite their effectiveness, less than 0.1% of forest plantations in the world are
mixed plantations [30,31].

As already mentioned, growing Acacia trees over 10 years after several decades of
eucalypt plantations greatly influenced soil N [32,33] and organic P [34,35] statuses in two
experiments in Brazil and the Congo. A possible option for improving N availability for
eucalypt in plantations could be to insert an Acacia rotation (lasting 5–8 years) between suc-
cessive eucalypt rotations. However, it is necessary to demonstrate that N bioavailability to
eucalypt trees is actually improved by Acacia rotation compared with fertilization practices
commonly used by forest managers. An effective way of measuring actual N bioavailability
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is to grow the target species on soil samples of interest and measure N accumulation in the
plants [36–40].

We put forward the hypothesis that planting Acacia trees after several decades of
eucalypt cultivation increases soil N bioavailability to eucalypt trees. To check this hy-
pothesis, we first measured soil N-mineralization rates under laboratory conditions in soil
samples collected from plots covered with Acacia, Eucalyptus, or native vegetation for at
least 10 years. We also measured soil respiration as an indicator of microbial activity. Then,
we assessed the actual N bioavailability of these soils for eucalypt seedlings grown in pots
for at least 6 months and compared the results with those obtained with nonlimiting N
fertilization to assess how soil N supply limited Eucalyptus growth in these soils.

2. Results
2.1. Soil N Mineralization Rates and Soil Respiration Rates

Total N (NH4
+ + NO3

−)-mineralization rates (Figure 1A) did not vary by vegetation
type in Brazil and were significantly higher than those measured in the Congo in Acacia (Ac)
and Eucalyptus (Euc) soils. Under native (Nat) vegetation, average total N-mineralization
rates were twice as high in Brazil as the Congo. However, due the high variability of
values measured in soil collected in Itatinga, no significant difference was found between
the two sites. In contrast to Itatinga, total N-mineralization rates at Kissoko depended
upon the vegetation type in the order Ac > Euc > Nat. As with total N, NH4

+ release
rates (Figure 1B) did not vary by vegetation at Itatinga, accounting for 16% (Ac soil) and
32–35% (Euc and Nat soils) of total N, indicating that nitrification was dominant in these
soils. At Kissoko, NH4

+ release rates varied significantly by vegetation type. The rates in
Euc and Ac soil were the highest and the lowest, respectively, and those in Nat soil did not
differ significantly from Ac and Euc soils. Regarding the proportions of NH4

+ to total N
release, they ranged from 20% in Ac soils to 66% in Euc soils, increasing up to 80% in Nat
soils. This indicates that nitrification was not significant in Nat soils in the Congo.
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Figure 1. Rates of total nitrogen mineralization (N-NH4
+ + N-NO3

−) (A), N-NH4
+ production (B),

and respiration (C) measured in soil samples taken from topsoil (0–20 cm) under different vegetation
of origin: Acacia (Ac), Eucalyptus (Euc), and native vegetation (Nat) in Brazil (Itatinga, white bars)
and Congo (Kissoko, dark grey bars). Each bar represents mean (n = 9) with a confidence interval
(p = 0.05). Different letters on bars (lowercase for Brazil and uppercase for Congo) indicate significant
differences among original vegetation (one-way ANOVA and Tukey’s HSD post hoc test at p ≤ 0.05).
Asterisks indicate site effects (Student’s t-test): NS (p > 0.05), * (p < 0.05), ** (p < 0.01), *** (p < 0.001).

Soil respiration rates were consistently higher in Itatinga soils than in Kissoko soils
(Figure 1C), with values increasing 2-fold in Ac and Euc soils and 3.2-fold in Nat soils. At
Itatinga, respiration rates increased significantly in the order Nat > Euc > Ac. At Kissoko,
no significant difference was observed based on soil vegetation.
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2.2. Eucalyptus Growth

When eucalypt seedlings were grown in soil samples, the original vegetation and
fertilization providing nonlimiting amounts of N induced contrasting effects on total plant
biomass at each site (Figure 2A,B). At Itatinga, total plant dry weight was not significantly
influenced by the original vegetation of the soil samples (Euc, Ac, or Nat), with or without
fertilization. In contrast, total plant biomass was increased by a factor of four in Euc soil,
three in Ac soil, and two in Nat soil compared with unfertilized plants (Figure 2A). The
same trends were observed for individual organs, with no significant effect of the original
vegetation and a highly significant effect of fertilization (Table 1). The largest fertilization
effect was observed on the stem biomass of plants grown in Ac and Euc soils, with a 5.7-fold
increase compared with unfertilized conditions. Leaf biomass was also greatly increased
by fertilization (×4 and ×3.5 in Ac and Euc soils, respectively). Plants grown in Nat soil
had the same leaf biomass regardless of the fertilization regime. In the roots, fertilization
had a more modest effect, increasing values by a factor of two, on average, compared with
unfertilized conditions.
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Figure 2. Total dry weight (dwt) (A,B) and N (C,D) accumulation in 6-month-old eucalypt seedlings
grown in pots containing soils collected from the topsoil (0–20 cm) under different original vegetation
(Veg), which were Acacia (Ac), Eucalyptus (Euc), and native vegetation (Nat) in Brazil (Itatinga) (A,C)
and in the Congo (Kissoko) (B,D). Plants received no fertilization (−Fert, light green) or chemical N
fertilization (+Fert, intense green) that was provided (nonlimiting) in the irrigation solution. Each
bar represents the mean (n = 6 in Brazil, n = 10 in the Congo) with standard deviation. Results of
plant biomass without fertilization are extracted from [34]. For each variable within a site, effects of
original vegetation (Veg), fertilization (Fert), and their interaction (Veg x Fert) were analyzed with a
two-way ANOVA: NS (p > 0.05), *** (p < 0.001). Within each site, different letters indicate significant
differences in means based on original vegetation and fertilization (comparison of means and Tukey’s
HSD post hoc test, p < 0.05).
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Table 1. Dry weight (dwt) and N concentrations (N conc.) measured in roots, stems, and leaves of
7-month-old eucalypt grown in pots containing soils collected from 0–20 cm under different original
vegetation (Veg), which were Acacia (Ac), Eucalyptus (Euc), and native vegetation (Nat) in Brazil
(Itatinga). Plants received no fertilization (−Fert) or fertilization (+Fert) consisting of N ((NH4)2SO4)
and K (KCl) supplied in irrigation solution with unrestricted availability. Results of plant biomass
without fertilization are extracted from [34]. Each value is the mean (n = 6) with standard deviation
between brackets. For each organ and parameter, the effects of original vegetation (Veg), fertilization
(Fert) and their interaction (Veg × Fert) were analyzed with a two-way ANOVA, with the following
levels of significance: NS (p > 0.05), * (p < 0.05), *** (p < 0.001). Means were compared using a Tukey’s
HSD post hoc test and different lowercase letters accompanying the means indicate significant
differences at p < 0.05.

Fertilization and Original Vegetation

−Fert +Fert Two-Way ANOVA

Variable Organ Ac Euc Nat Ac Euc Nat Veg Fert Veg × Fert

dwt
(g/plant) Roots 1.05 b

(0.16)
0.56 b
(0.14)

1.14 b
(0.34)

2.17 a
(0.32)

2.60 a
(0.87)

2.57 a
(0.79) NS *** NS

Stem 0.18 b
(0.04)

0.16 b
(0.05)

0.35 b
(0.20)

1.04 a
(0.27)

0.93 a
(0.10)

0.87 a
(0.35) NS *** NS

Leaves 0.41 c
(0.03)

0.39 c
(0.11)

0.66 bc
(0.24)

1.63 a
(0.33)

1.36 a
(0.38)

1.16 ab
(0.47) NS *** *

N conc.
(mg/g dwt) Roots 6.25 b

(1.60)
6.69 b
(2.07)

6.67 b
(1.84)

9.37 ab
(0.78)

8.79 ab
(1.30)

12.70 a
(5.04) NS *** NS

Stem 4.42 cd
(0.69)

4.51 cd
(0.52)

3.43 d
(1.42)

8.40 bc
(2.31)

11.38 b
(3.21)

17.61 a
(8.78) *** *** ***

Leaves 9.83 b
(2.80)

8.56 b
(2.19)

9.60 b
(4.20)

14.15 ab
(4.86)

22.21 a
(4.37)

22.60 a
(7.40) NS *** NS

In contrast to Itatinga, the original vegetation had a significantly high effect on the
total biomass of eucalypt plants grown in soil samples from Kissoko (Figure 2B). The lowest
biomass was observed in plants grown in Nat soil, and those measured for Euc and Ac
soils were 1.7 and 3.4 times higher than in Nat soil, respectively. Fertilization providing
N supply at high concentrations significantly increased plant growth. Increment factors
ranged from 1.3 in Ac soil up to 3.2 in Nat soil, with the highest biomass measured in
plants grown in Ac soil (Figure 2B). The biomass of individual organs was also significantly
modified by the original vegetation and fertilization (Table 2). Biomass of roots, stems and
leaves of unfertilized plants varied in the order of original vegetation: Ac > Euc > Nat.
With fertilization, root and leaf biomass of plants grown in Ac soil was always higher than
that in Euc and Nat soils. Conversely, stem biomass of plants grown in Ac and Euc soils
was similar and significantly higher than stem biomass in Nat soil.

2.3. N Accumulation in Eucalypt Plants

The effects of the original vegetation and fertilization rates on total plant N accumula-
tion were the same as those observed for total biomass (Figure 2C,D). At Itatinga, without
fertilization, the highest amounts of N were measured in eucalypt seedlings grown in
Nat soil and the lowest amounts were measured in Euc soil, whereas plants grown in Ac
soil constituted an intermediate between these extreme values (Figure 2C). As expected,
chemical fertilization strongly increased N accumulation in the plants by a factor of about
4.5 in Ac and Nat soils, and by a factor of 7.7 in Euc soils. N concentrations were affected
by fertilization only in roots and leaves, and by both treatments (Veg and Fert) in stems
(Table 1). Without fertilization, N concentrations varied in the order leaves > roots > stem,
regardless of the original vegetation. Fertilization significantly increased N concentrations
in all organs of plants grown in Nat soil, but only in the leaves and stems of plants grown
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in Euc soil. However, fertilization did not significantly alter N concentrations measured in
individual organs from plants grown in Ac soil.

Table 2. Dry weight (dwt) and N concentrations (N conc.) measured in roots, stems, and leaves of
6-month-old eucalypt grown in pots containing soils collected from 0 to 20 cm under different original
vegetation (Veg), which were Acacia (Ac), Eucalyptus (Euc), and native vegetation (Nat) in the Congo
(Kissoko). Plants received no fertilization (−Fert) or fertilization (+Fert) consisting of N (NH4NO3)
and K (KCl) supplied in irrigation solution with unrestricted availability. Results of plant biomass
without fertilization are extracted from [34]. Each value is the mean (n = 10) with standard deviation
between brackets. For each organ and parameter, effects of original vegetation (Veg), fertilization
(Fert), and their interaction (Veg × Fert) were analyzed with a two-way ANOVA, with the following
levels of significance: NS (p > 0.05), * (p < 0.05), ** (p < 0.01), *** (p < 0.001). Means were compared
using a Tukey’s HSD post hoc test and different lowercase letters accompanying the means indicate
significant differences at p < 0.05.

Fertilization and Original Vegetation

−Fert +Fert Two-Way ANOVA

Variable Organ Ac Euc Nat Ac Euc Nat Veg Fert Veg × Fert

dwt
(g/plant) Roots 0.73 ab

(0.12)
0.45 c
(0.08)

0.27 d
(0.06)

0.79 a
(0.13)

0.60 bc
(0.14)

0.57 bc
(0.25) *** *** *

Stem 1.2 b
(0.13)

0.54 c
(0.06)

0.31 d
(0.04)

1.77 a
(0.26)

1.54 a
(0.20)

1.15 b
(0.29) *** *** **

Leaves 2.27 b
(0.16)

1.10 c
(0.16)

0.65 d
(0.05)

3.00 a
(0.48)

2.28 b
(0.60)

2.15 b
(0.37) *** *** **

N conc.
(mg/g dwt) Roots 6.82 c

(1.09)
7.48 c
(1.75)

6.92 c
(1.96)

13.71 a
(1.68)

12.97 a
(2.58)

10.03 b
(2.66) * *** **

Stem 2.44 c
(0.68)

2.76 c
(0.98)

3.03 bc
(1.07)

4.90 ab
(2.76)

5.09 ab
(1.42)

5.86 a
(2.20) NS *** NS

Leaves 9.83 b
(1.54)

9.76 b
(1.56)

9.60 b
(1.32)

22.60 a
(3.75)

22.21 a
(4.60)

14.14 ab
(3.53) NS *** NS

At Kissoko, the amounts of total N measured in eucalypt seedlings grown without
fertilization varied in the same order as total biomass depending on the original vegetation:
Ac > Euc > Nat (Figure 2D). Chemical fertilization significantly increased total N accu-
mulation by a factor of 3.4 (Ac soil), 4.5 (Euc soil), and 7.2 (Nat soil). However, for both
fertilization regimes, the highest amount of N was always measured in plants grown in the
Ac soil. N concentrations were only affected by fertilization only in stems and leaves, and
by both treatments (Veg and Fert) in roots (Table 2). Without fertilization, N concentrations
varied in the same order as at Itatinga (leaves > roots > stem), regardless of the original
vegetation. Fertilization significantly increased N concentrations in all organs, regardless
of the original vegetation, except in leaves from plants grown in Nat soil.

3. Discussion

The introduction of N2-fixing trees (NFT) in forest plantations is intended to improve
wood production by supplying N from biological N2 fixation [41,42]. This practice is an
attractive option in tropical forest plantations where N fertilizers are becoming expensive
for foresters [41], as well as for promoting nature-based solutions in silviculture. N-rich
litter increases decomposition rates by reducing the C:N ratio, as has been reported in
litter from N2-fixing trees and mixed plantations [23,43–46]. In our study, we hypothesized
that planting Acacia trees after several decades of eucalypt cultivation can increase soil N
bioavailability for eucalypt trees. We assessed the effect of Acacia on the N nutrition of a
non-N2-fixing species at two tropical sites by quantifying the N-mineralization rates of
different soils under controlled conditions, as well as the actual N bioavailability to plants
using a bioassay.
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3.1. Effect of Acacia Trees on N-Mineralization Rates

At both sites, N mineralization rates ranged from 0.18 to 0.4 mg mineralized N per kg
of soil per day. Measured under laboratory conditions, the average N mineralization rates
in soil samples collected worldwide and from different biomes ranged from 0.2 to 0.4 mg
N mineralized per kg of soil per day, with no significant differences between vegetation
type divided into four categories: coniferous trees, deciduous and deciduous broadleaf
trees, grasses, and shrubs [47]. Thus, although the temperature during incubation was
lower than that used in our study (20 ◦C in [47] and 28 ◦C in our conditions), the rates
measured in our soil samples were within the range of the values reported by Colman
and Schimmel [47] for deciduous/broadleaf trees. Net N-mineralization rates were also
measured in situ at both sites in pure Acacia and Eucalyptus plantations [29,32]. At both sites,
the average net N mineralization in Acacia soil was about twice as high as in eucalypt soils.
Moreover, while the laboratory-measured N-mineralization rates are in good agreement
for the Congo site, those for the Brazilian soils gave nonsignificantly different average
N-mineralization rates in the two soil types. This discrepancy between the two methods is
difficult to explain. However, it could be due to the use of only mineral soil in the laboratory
measurements. In contrast to Brazil, soil collected in Acacia plots in the Congo displayed
higher N-mineralization rates than soil collected from eucalypt and native vegetation plots.
This could be due to the high rate of N2 fixation by A. mangium measured at this site,
which was estimated at 276 kg ha−1 [48]. Remarkably, N mineralization in soil collected
under native vegetation at Kissoko was dominated by NH4

+ production, in agreement
with in situ N-mineralization measurements [21]. This could be due to the inhibition
of nitrification induced by perennial grass species present in these savannas, as already
reported by different authors [49–52]. Conversely, nitrate was the main form of mineralized
N in soils sampled from Acacia plots at both sites, suggesting that Acacia trees are capable of
shifting microbial populations toward nitrifying microbes. This hypothesis is supported by
the increase in the ammonia-oxidizing archaea (AOA) communities involved in nitrification
in Acacia soils compared with eucalypt soils in the Congo (Robin et al., unpublished) and at
our Brazilian site [53].

3.2. Effect of Acacia Trees on N Bioavailability for Eucalyptus Cultivation

Considering N-mineralization rates, one would expect higher N bioavailability in
Acacia soils at the Brazilian site than the Congolese site. However, this is not what we
observed, as eucalypt seedlings cultivated in Acacia soils at Itatinga accumulated half as
much N as at Kissoko. This lower N bioavailability at Itatinga could be due to competition
between N immobilization in the microbial biomass promoted by root exudates and root
uptake, which is in line with results previously reported by Waithaisong et al. [34]. This
hypothesis is supported by soil respiration rates that are twice as high at Itatinga as at
Kissoko in Acacia soil. Furthermore, we cannot exclude an interaction between N and P
because P bioavailability was much lower at Itatinga than at Kissoko [34]. Therefore, our
results demonstrate that measuring N-mineralization rates alone in the laboratory is not
sufficient to predict the actual bioavailability of N to a plant, which may depend primarily
upon microbial physiology determining when N will be mineralized or immobilized in the
microbial biomass [54]. Compared with the native vegetation soil, the positive effect of the
Acacia soil on growth and mineral nutrition of eucalypts was very strong at Kissoko. These
results therefore show the value of using NFT species capable of fixing large amounts of N,
not only in mixed-species plantations but also between two non-NFT rotations, the latter
system being easier to manage for foresters.

The effects of N fertilization on eucalypt growth were very different among sites. In
Brazil, we measured a very large increase in plant biomass in response to N fertilization
regardless of previous vegetation, indicating that soil nitrogen is limited in all three soil
types: after an Acacia or eucalypt crop, as well as in soil collected under native vegetation.
In contrast, in the Congo, N fertilization only moderately increased the biomass of eucalypts
grown in Acacia soil. This may indicate that under these soil conditions characterized by
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high P availability [34,35], N input originating from N2 fixation is almost equivalent to that
provided by N fertilization. In contrast, N fertilization increased the allocation of biomass
and N to aboveground plant parts, regardless of soil and site. In particular, the biomass of
the stem was markedly increased (×5.8) when eucalypts were grown in Ac or Euc soils at
Itatinga, highlighting the importance of managing soil N availability for timber production.

4. Materials and Methods
4.1. Site Description

We used two sites previously described in Waithaisong et al. [35]: one located in
Brazil, in São Paulo state (Itatinga site), and the other in the Congo, on the Atlantic coast of
Pointe-Noire (Kissoko site). Annual rainfall was comparable at the two sites (1370 mm at
Itatinga and 1430 mm at Kissoko) with a mean annual temperature of 20 ◦C at Itatinga and
25 ◦C at Kissoko. Both sites were first afforested with Eucalyptus in 1940 at Itatinga, with E.
grandis W. Hill ex Maiden, and since 1984 at Kissoko, with a hybrid between E. grandis and
E. urophylla S.T. Blake (E. urophylla × grandis). Subsequently, plots were planted with Acacia
mangium (Willd.) in May 2003 at Itatinga and in May 2004 at Kissoko, to quantify the effects
of different silvicultural practices on stemwood production [7]. The native ecosystems prior
to afforestation were tropical savannas. In Itatinga, the native savanna (called Cerrado) is
an open grassland with a wide range of native woody Angiosperm species [55] with trees
3–5 m tall providing 15–40% cover [56]. The herbaceous layer was dominated by species
belonging to the family Poaceae [56]. At Kissoko, the savanna was dominated by grass
species of the family Poaceae, which were Loudetia arundinacea (Hochst.) [57], L. simplex, and
Hyparrhenia diplandra [58].

The soils were ferralsols at Itatinga and ferralic arenosols at Kissoko [59]. Both soils
were acidic and sandy, with low content of exchangeable elements and a low cation
exchange capacity (1.76 and 0.82 cmolc.kg−1 in plantation soils at Itatinga and Kissoko,
respectively). Despite the total P content being the same order of magnitude at both sites
(0.21 and 0.28 g P kg−1 at Itatinga and Kissoko, respectively), the soil was dominated by
organic P (Po) at Itatinga and by mineral P (Pi) at Kissoko [34,35]. Total N content was
higher at Itatinga (0.7 g kg−1 dry soil) than at Kissoko (0.54 g kg−1 dry soil).

We used field trials set up in May 2003 at Itatinga [27,28] and in May 2004 at Kissoko [54],
consisting of pure stands of eucalypts or acacias, planted at densities of 1111 and 800 trees
per hectare at Itatinga and Kissoko, respectively. At planting, starter fertilization was
applied to eucalypt and Acacia trees within a radius of 50 cm around each tree [7]. Starter
fertilization varied by site, with P (40 kg ha−1 as superphosphate), K (75 kg ha−1 as KCl)
and N (120 kg ha−1 as ammonium nitrate) applied at Itatinga [7], and only N as ammonium
nitrate (43 kg ha−1) at Kissoko [57]. The N2 fixation in Acacia plots was higher at Kissoko
than at Itatinga [32,33,60].

4.2. Soil Sampling

At each site, there were three treatments, consisting of monospecific Acacia (Ac),
monospecific eucalypt (Euc), and nearby native vegetation on the same soil type (Nat),
with three blocks for each treatment. The soils used for N-mineralization and respiration
measurements were mineral topsoil (0–10 cm, without organic layer nor leaves) and of the
same provenance as those used in Waithaisong et al. [34,35]. They were collected at the end
of the rainy season at both sites. At Itatinga, the soil was collected in February 2012 at the
end of two rotations lasting 8 years each. At Kissoko, the soil was collected in May 2011 at
the end of one rotation lasting 7 years. Soils were air-dried, sieved to 2 mm and stored at
room temperature pending analysis.

Soils for the pot experiment were collected in November 2013 at both sites. Cores (5 cm
in diameter, 20 cm in height, and corresponding to approximately 300 g of soil) were used
to collect the topsoil from plots of pure Acacia, eucalypt, or native vegetation identical to
those used for respiration and N-mineralization measurements. In the planted forest plots
(Euc or Ac), three soil cores were taken around one tree, whereas in the native vegetation
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plots, the soil cores were taken along a 10 m transect. After the removal of the organic
horizon and leaves, a composite sample was then formed from all soil cores from a given
treatment before filling each pot with 300 g of wet soil.

4.3. Measurement of Soil Respiration

Basal soil C respiration was measured using the procedure described by Hamdi
et al. [61]. Subsamples of 25 g of most soils were placed in sealed jars after adjusting their
water potential (pF) to 2.5. The jars (n = 9 per soil) were incubated twice at 28 ◦C for 28 days.
The first period was for preincubation and the second was for respiration measurements.
Soils were incubated with an alkaline trap (15 mL 0.5 M NaOH). Traps were changed at 3,
7, 14 and 28 days and analyzed within the day. The rate of basal respiration was estimated
by titrating unreacted NaOH with 1 M HCl to determine the CO2 released.

4.4. Bioassay

Bioassay experiments were carried out in Brazil at the nursery of the Itatinga Station
nursery and in the Congo at the Experimental Station of Pointe-Noire (CRDPI). Seedlings
were obtained from seeds of E. grandis at Itatinga (supplied by the company Suzano,
Brazil “https://www.suzano.com.br/en/ (accessed on 7 February 2023)” and from E. uro-
phylla × grandis cuttings (clone 18-147) at Kissoko. One 1–2 cm-tall seedling was transferred
to a pot containing the topsoil collected from the Euc, Ac or Nat plots to start the exper-
iment. Two fertilization regimes were applied to the seedlings by irrigation. The first
consisted of demineralized water alone (no fertilization, −Fert). The second (fertilization,
+Fert) followed the NK fertilization regime classically used by foresters to manage eucalypt
plantations [58] with mineral N (4 mM), combined with K (5 mM) on both sites. For the N
source, we used (NH4)2SO4 at Itatinga and NH4NO3 at Kissoko to follow each country’s
commercial nursery protocols, as well as using KCl at both sites. K was applied in addition
to N because soil K availability can be low in tropical soils and K deficiency greatly reduces
the growth of unfertilized eucalypt trees at Itatinga [62,63]. Even though the main reason
for adding fertilizer in our study was to assess how N addition (through biological fixation
or fertilization) affected eucalypt growth, we decided to include K in the fertilization treat-
ment to avoid any confounding effects limiting the growth and nutrient uptake of eucalypt
seedlings resulting from K deficiency. The number of plants per soil origin and treatment
(+Fert or −Fert) was 6 at Itatinga and 10 at Kissoko. Plants were harvested 7 (Itatinga)
and 6 (Kissoko) months after planting. They were separated into roots, stems and leaves
before drying (60 ◦C) and weighing. The plant material was stored in plastic bags at room
temperature pending N measurements carried out in France.

4.5. Chemical Assays

To measure mineralized N during the C respiration experiment, we used soil to fill
the jars, and after 28 days of incubation we extracted mineral N with 1 M KCl (1/10, w/v).
Mineral N (ammonium and nitrate) was then assayed with a continuous flow analyzer (CFA,
SKALAR) “https://fr.skalar.com (accessed on 7 February 2023)”. The total N content of the
roots, stems, and leaves was measured in finely ground material and redried overnight at
50 ◦C. Mineralization was carried out on approximately 10 mg of dry material using acid
digestion with 36 N H2SO4 and salicylic acid (5%, w/v), as described in [34]. After heating
at 330 ◦C and inducing the volatilization of organic C with ultrapure H2O2 (110 volumes,
not stabilized with phosphate), the transparent solution of H2SO4 (36 N) was diluted to
0.1 N with ultrapure water and ammonium was quantified with a continuous flow analyzer,
as above.

4.6. Data Analysis

All data analyses were performed with R stat (R 3.6.2 version). The effect of treatments
on N-mineralization and soil respiration rates were analyzed with a one-way ANOVA
and plant biomass and N accumulation were analyzed with a two-way ANOVA. The

https://www.suzano.com.br/en/
https://fr.skalar.com
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homogeneity of variances and the normality of the ANOVA residuals were verified using
the Levene and Shapiro–White tests, respectively. If these tests were significant (p < 0.05),
the data were log-transformed before analysis. The differences between means were
analyzed using Tukey’s HSD post hoc test and the “predictmeans” package (version 1.0.4).

5. Conclusions

Our study shows that bioassays conducted by growing a non-N2-fixing target tree
species on soils sampled under N2-fixing trees can be an effective tool for evaluating the
potential benefit of rotations alternating N2-fixing and non-N2-fixing stands. Bioassays take
into account the complex interactions between roots and soil biogeochemical properties,
allowing for quantification of actual soil N bioavailability for non-N2-fixing tree species in
a more reliable manner than simple measurements of soil N mineralization. We also show
that the positive effect of N2-fixing tree species on N bioavailability for non-N2-fixing trees
is site-dependent. This work highlights the great complexity of biogeochemical interactions
and the need for multisite studies to determine the effects of introducing N2-fixing species
for forest management. The bioassay technique could be used to establish a first screening
on many sites of the effects of the introduction of N2-fixing species on the growth and
mineral nutrition of non-nitrogen-fixing species grown in successive rotations.
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