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Abstract

Ensuring the perpetuity and improvement of REDD+ initiatives requires rigorous impact
evaluation of their effectiveness in curbing deforestation. Today, a number of global and regional
remote sensing (RS) products that detect changes in forest cover are publicly available. In this
study, we assess the suitability of using these datasets to evaluate the impact of local REDD+
projects targeting smallholders in the Brazilian Amazon. Firstly, we reconstruct the forest loss
of 21,492 farms located in the Transamazonian region for the period 2008 to 2018, using data
from two RS products: Global Forest Change (GFC) and the Amazon Deforestation Monitoring
Project (PRODES). Secondly, we evaluate the consistency between these two data sources and
find that the deforestation estimates at the farm level vary considerably between datasets.
Despite this difference, using microeconometric techniques that use pre-treatment outcomes to
construct counter-factual patterns of REDD+ program participants, we estimate that about
two hectares, or about four percent of the forest area, were saved on average on each of the 350
participating farms during the first years of the program, regardless of the data-source used.
Moreover, we find that deforestation decreased on plots surrounding participating farms during
the very first years of the program, suggesting that the program may have had a positive effect on
neighboring farms as well. Finally, we show that participants returned to their business-as-usual
pattern of clearing one to three hectares per year at the end of the program. The environmental
gain generated by the program, however, was not offset by any catch-up behavior, as the two
hectares saved on each farm before 2017 were not cleared in 2018. By calculating the monetary
gain of the delayed carbon dioxide emissions, we find that the program’s benefits were ultimately
greater than its costs.
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1 Introduction

Forest cover change is a leading cause of Brazil’s greenhouse gas emissions (INPE, 2019). Al-

though the annual deforestation rate in Brazil fell by 70 percent between 2005 and 2013 (Nepstad

et al., 2014), more than 9,700 square kilometers of the Brazilian Amazon were cleared between 2018

and 2019, representing an increase of 30 percent in the annual deforestation rate and the highest

deforestation rate since 2008 (INPE, 2019). The reasons for this recent development have been

widely documented in the literature (Harding et al., 2021; Moffette et al., 2021; Mullan et al., 2021;

dos Reis et al., 2021; Pailler, 2018; BenYishay et al., 2017; Bowman, 2016; de Sá et al., 2013). As

a result, there has been a proliferation of sub-national initiatives financed by the REDD+ (Re-

ducing Emissions from Deforestation and Forest Degradation) mechanism in the Brazilian Amazon

in recent years (Sills et al., 2014). Brazil currently hosts about 50 REDD+ projects targeting

smallholder farmers and financed by REDD+ funds or carbon markets (Simonet et al., 2015).

The perpetuity and improvement of REDD+ projects require rigorous impact evaluation (Ollivier,

2012). Yet robust evidence on their effectiveness in reducing deforestation remains scarce (Jay-

achandran et al., 2017; Simonet et al., 2018b; Roopsind et al., 2019). One of the reasons for this

lack of evidence is the high cost of collecting the survey data needed for impact analysis (Ferraro

et al., 2012; Blackman, 2013; Pagiola et al., 2016).

Over the past 20 years, however, remotely sensed data for detecting changes in land cover

worldwide has evolved dramatically, which offers new opportunities for the evaluation of forest

conservation programs. In particular, a number of derived and modelled remote sensing (RS)

products that extract information from raw earth observation data have become publicly available

(Kugler et al., 2019). Though these RS products present a great opportunity to measure large scale

changes in forest cover, the suitability of these readily available datasets to perform proper impact

evaluations of sub-national REDD+ initiatives has rarely been questioned (Bos et al., 2019; Neeff

et al., 2020; Correa et al., 2020).

For the present study, we focus on two well-known datasets: the Global Forest Change (GFC)

dataset, provided by the University of Maryland, and the PRODES dataset, provided by Brazil’s

National Institute for Space Research (INPE). GFC provides free of charge global historical records

of annual tree-cover loss and has already been used to assess the effectiveness of forest conservation
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policies in Ecuador (Jones and Lewis, 2015; Jones et al., 2017) and French Guyana (Roopsind et al.,

2019). In the Brazilian context, however, the most often used deforestation dataset is PRODES, an

accessible and transparent RS product, also free of charge. PRODES has been used to assess the

impact of several forest conservation policies, including the effectiveness of protected areas (Nolte

et al., 2013; Herrera et al., 2019), supply chain policies (Villoria et al., 2022), and command-and-

control initiatives (Assunção et al., 2015; Assunção and Rocha, 2019).

In this study, we assess the applicability of these two RS datasets to evaluate, not the impact of

protected areas, but that of REDD+ local projects targeting smallholders in the Brazilian Amazon.

To do so, we concentrate on Brazil’s REDD+ flagship project for curbing deforestation, the Sustain-

able Settlements in the Amazon (SSA) program, which offered technical assistance and payments

for environmental services (PES) to 350 households for maintaining forest cover on at least half

of their land between 2012 and 2016 (see Section 3 for program details). Forest conservation PES

schemes are contracts between a landowner and the conservation buyer (typically the government

or an NGO) through which the landowner receives a payment conditional to conserving the forest

located on his land (Wunder et al., 2005; Engel et al., 2008).

This project was previously evaluated using survey data collected at the early stages of the

program (Simonet et al., 2018b; Carrilho et al., 2022). Simonet et al. (2018b) found that in 2014

an average of 4 hectares of forest were saved on each participating farm and that this conservation

came at the expense of pastures rather than croplands, which amounts to about a 50 percent

decrease in the deforestation rate. Carrilho et al. (2022) extended the analysis by supplementing

the panel survey data by an additional year and showed that forest loss had rebounded in 2019.

A potentially important caveat in these studies, however, is that the extent to which participants

might have under-declared their actual deforestation (compared to non-participants) is unknown.

Unlike survey data, RS data are not susceptible to such a problem. RS data also have at least three

additional advantages over survey data. First, using RS data generally makes it possible to run an

analysis from larger samples than those available from surveys, thus affording increased statistical

power at a much lower access cost. In the case of the SSA project, this means that we can estimate

the forest loss on the individual plots of the entire population of participants rather than on only

a sample of them. Second, using RS data allows us to estimate with more precision what the

forest loss on these farms would have been in the absence of any program (the so-called counter-
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factual situation). Indeed, to make valid inferences about participants, there must be a sufficient

number of non-participants with a high potential of being selected as counterfactuals. Using RS

data allows access to a larger pool of candidates for the selection procedure, which increases the

probability of finding good matches, that is, non-participants who will be paired with participants

to estimate the impact of the program by comparing the two groups. This is referred to as the

common support assumption. Those non-participants who display a pattern identical to that of

the participants during the period preceding the program typically have a high potential of being

selected as counterfactuals in the matching procedure. The larger the pool of non-participants, the

more likely that the common support hypothesis will hold (Hill and Su, 2013). Third, the use of RS

data allows us to study the effects of the program several years after its end. It is very expensive to

repeatedly collect information in the field over a long period and the analysis based on survey data

generally does not provide evidence of the permanence of the effects of conservation programs. In

contrast, RS data make it possible to study the long-term effects of conservation programs, from

the early stages of implementation to the most recent time period, by highlighting any effects of

attenuation, rebounds, or compensation that may arise after the program ends.

To date, a number of forest conservation and reforestation programs have been evaluated ap-

plying microeconometric methods to RS data (see (Pattanayak et al., 2010; Samii et al., 2014;

Alix-Garcia and Wolff, 2014; Börner et al., 2017) for reviews of this literature). Most studies have

been conducted in Costa Rica (Sanchez-Azofeifa et al., 2007; Arriagada et al., 2012; Garbach et al.,

2012; Robalino and Pfaff, 2013) and Mexico (Honey-Rosés et al., 2011; Scullion et al., 2011; Alix-

Garcia et al., 2012; Sims et al., 2014; Alix-Garcia et al., 2015; Costedoat et al., 2015; Sims and

Alix-Garcia, 2017). These programs typically offer participants conditional payments to reduce

deforestation on their farmland. Overall, the results of these studies suggest that the impact of

the programs on the average annual forest cover varies substantially across regions (Simonet et al.,

2018a). Recent REDD+ impact evaluations include a study in Uganda, using remote-sensed data

developed from QuickBird satellite images (Jayachandran et al., 2017), in Ecuador, using remote-

sensed data developed from Landsat TM images (Mohebalian and Aguilar, 2018), in Guyana, using

the GFC dataset (Roopsind et al., 2019), and in Brazil, using MapBiomas dataset (West et al.,

2020). Overall, the results of these studies suggest that the impact of REDD+ programs on forest

loss may be significant. Indeed, Jayachandran et al. (2017) find that tree cover in Uganda de-
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clined in the treatment villages by 4.2 percent during the two-year period under study, compared

to 9.1 percent in the control villages, thus indicating a 54 percent decrease in deforestation rates.

Likewise, Roopsind et al. (2019) estimate that the annual tree cover loss was 0.056 percent in

Guyana compared to 0.087 percent in the counterfactual estimate, thus indicating a 36 percent

decrease in annual deforestation rates as a result of the program.

Our study adds to the existing literature by providing new evidence on the effectiveness of

REDD+ programs, focusing on a region characterized by the highest annual loss of forest in the

world, while previous studies have focused on areas where deforestation may appear less pressing

(Cisneros et al., 2022) or have evaluated REDD+ initiatives at the project level (West et al., 2020;

Guizar-Coutiño et al., 2022). Two recent studies have assessed the effectiveness of REDD+ projects

in the Brazilian Amazon using RS data, but their conclusions diverge. West et al. (2020) assessed

the additionality of twelve REDD+ projects using PRODES data. They used rural properties

recorded in the Brazilian cadastral database to construct project polygons as the unit of analysis

and found mixed results on the additionality of REDD+ projects in the Brazilian Amazon. More

recently, Guizar-Coutiño et al. (2022) assessed the additionality of twelve REDD+ sites in Brazil

using the Tropical Moist Forests database derived from Landsat imagery. They used pixels as the

unit of analysis and found that most Brazilian REDD+ projects had a small but positive impact

on deforestation. We contribute to this burgeoning literature on the effectiveness of REDD+ in

Brazil, by evaluating one emblematic REDD+ program at the farm level, combining ready-to-use

RS products and property-level data. In particular, we provide evidence on three environmental

performance indicators: the additionality of the program, i.e. the number of additional hectares of

forest recorded on the participating farms compared to the counterfactual situation (the absence of

REDD+ program); the permanence of the program, i.e. the number of years during which addition-

ality is observed; and the spillovers, i.e. additionality on non-participating farms. We moreover use

these additionality estimates to calculate the cost-benefit ratio under various social cost of carbon

scenarios. Finally, this is the first study that assesses the effectiveness of a Brazilian local REDD+

project conservation program using two different sources of remotely-sensed deforestation data to

cross-validate impact assessment results.
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2 Remote-Sensing products used

The Amazon Deforestation Monitoring Project (PRODES)

PRODES was created in 1988 by Brazil’s National Institute for Space Research (INPE), with

the main objective to quantify and geolocalize deforestation in the Brazilian Legal Amazon and

help the Brazilian government to make informed decisions and establish environmental and devel-

opment public policies for the region (Câmara et al., 2006). Annual rates are estimated from the

deforestation increments identified in Landsat images. PRODES uses the seasonal year, starting on

August 1st, to calculate annual deforestation, so images are selected as near to this date as possible.

Next, the images are masked to exclude non-forest, previous deforestation, and water, using the

previous year’s analysis. Finally, the identification of deforestation is done by photo-interpretation,

where analysts delineate deforested polygons in the intact forest of the previous year. The patterns

of clear cutting rely on three main observable elements present in the images: tone, texture, and

context (see (INPE, 2019) for a more detailed description of PRODES methodology).

Like any RS product, PRODES has some technical limitations. Firstly, deforestation estimates

only consider primary forests and do not account for secondary or regenerating forests. Secondly,

since PRODES relies on optical imagery, constant cloud coverage prevents Landsat sensors from

capturing land cover imagery. Lastly, although PRODES, that uses 30m resolution Landsat data,

has the potential to map deforestation events at a scale inferior to one hectare, a threshold of 6.25

ha in deforestation patches detection is used in order to maintain consistency with long-term data.

This criteria results in less error, but also limits the detection of smaller patches (Kalamandeen

et al., 2018; Maurano et al., 2019)

The Global Forest Change dataset (GFC)

The most well-known global deforestation dataset currently available is the University of Mary-

land’s Global Forest Change dataset (GFC). This dataset’s objective is to produce annual globally

consistent characterizations of tree cover loss (Hansen et al., 2013). GFC maps annual forest loss

beginning in 2001. The maps produced by the GFC initiative are also based on Landsat satellite

images, but the classification process is 100% automated. The classification process of cloud-free
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Landsat image mosaics is carried out using decision tree algorithms. As the classification is carried

out pixel by pixel, the minimum area mapped by this product is 900 square meters (30 x 30 meters).

For this dataset, tree-cover is defined as all vegetation taller than 5 meters across a range

of canopy densities (from 0 percent to 100 percent) for an area of approximately 0.1 hectares

(equivalent to a Landsat pixel) in the year 2000 (baseline year). Therefore, this layer can represent

primary and secondary natural forests (existing prior to 2000) as well as tree plantations. In

addition, this dataset requires users to choose a percentage threshold value to determine whether a

pixel is considered forest or not. Forest loss is defined as the complete removal of tree cover canopy

at the Landsat pixel scale (see (Hansen et al., 2013) for a complete methodological explanation).

While GFC represents major progress in the understanding and quantification of global forest

change research and conservation planning, the dataset does have some limits. First, tree cover loss

can be the result of human activities (e. g., plantation harvesting, selective logging, and clear-cut)

as well as natural causes (e.g., disease, storm, and fire damage). Second, plantations, such as cocoa,

palm oil, and eucalyptus, are included as forests (Tropek et al., 2014), although the Brazilian Forest

Code does not classify them as such.

3 Description of the REDD+ Case Study

The SSA project is a sub-national REDD+ initiative implemented by the Amazon Environ-

mental Research Institute (IPAM in the Portuguese acronym), a Brazilian non-governmental or-

ganization involved in the design and implementation of several forest conservation programs in

Brazil (Cromberg et al., 2014). The SSA project started in 2012 and was financed by the Ama-

zon Fund until 2017. The Amazon Fund is a REDD+ instrument designed to raise donations for

non-reimbursable investments in efforts to curb deforestation as well as to promote sustainable use

of resources in the Brazilian Amazon. The program has offered a mix of interventions to reduce

deforestation rates to smallholders living in settlements located in the Transamazon highway (SI

Appendix, Figure S1). According to IPAM, about 2700 families have benefited from the program

through a series of interventions such as: i) Awareness-raising meetings on environmental legislation

and tenure regularization that were held between 2013 and 2017, benefiting an unknown number

of participants, since those were open to the local community; ii) Administrative support for reg-

istration under the Environmental Rural Registry (or CAR in the original Portuguese acronym)
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to 1300 smallholders between 2012 and 2014; iii) Development of low deforestation activities (e.g.,

intensive cattle ranching, agroforestry and horticulture) benefiting 650 families between 2014 to

2017; and iv) PES scheme to 350 smallholders. The components of the program are described in

more detail in Simonet et al. (2018b) and Carrilho et al. (2022).

Our analysis focuses on the 350 farm-holders that benefited from all the above-mentioned com-

ponents. The map with the localization of the farm-holds enrolled in SSA program is publicly

available at IPAM’s website (http://www.pas-simpas.org.br/). Therefore, we used this available

data to geolocalize the plots that belonged to the families who received payments conditional on for-

est conservation. These families had participated in a previous PES federal program (Proambiente)

from 2003 and 2006 (Simonet et al., 2018b). The small landowners live in land reform settlements

located in the state of Pará, in the municipalities of Anapu, Pacajá, and Senador José Porfírio.

These three municipalities, located close to the Transamazon highway, figure in the ranking of the

10 ten critical municipalities for their deforestation rates. The livelihoods of small landowners in

this area depend on slash-and-burn agriculture and extensive cattle ranching, which are the two

primary drivers of deforestation in the Brazilian Amazon (Smith et al., 1996; Soares-Filho et al.,

2006).

The value accessed by the 350 households in the PES scheme was 1680 Brazilian reais (BRL)

per year (about 626 USD using the average conversion rate of Brazilian Real to American dollars

in 2014) from January 2014 to February 2017 (Pinto de Paulo Pedro, 2016). The payments offered

to project participants were conditional on forest conservation and agricultural transition toward

a fire-free production system. Thirty percent of the payment was conditional on conserving forest

on at least 50 percent of the farm, another thirty percent of the payment was conditional on the

maintenance of 15-meter-wide forest riparian zones and the remaining 40 percent of the payment

relied on the adoption of fire-free practices. A minimum of 30 percent of forest cover was required

to be eligible for payments, but only participants with at least 50 percent of forest cover received

the full payments (see Simonet et al. (2018b) for a detailed description of the SSA program). The

payments were made every three months, according to the compliance to the established guidelines.

The monitoring of the compliance was made annually by IPAM, based on remote-sensing data and

field visits (Pinto de Paulo Pedro, 2016).
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As Simonet et al. (2018b) remind us, there are a variety of reasons why voluntary programs

like the SSA project may not be effective in curbing deforestation. Firstly, farmers who face

the lowest costs for decreasing deforestation are the most likely to enter such projects, which

increases the probability of paying some farmers for doing nothing differently from what they

would have done in the absence of any payment. Secondly, the impact of the project, if there is

any, may be offset by negative spillovers. The empirical literature demonstrates that, depending

on the context, conservation program spillovers may or may not occur. Furthermore, if they

exist, they can have either positive or negative effects. Negative spillovers occur when the project

increases deforestation among non-participants as a result of market equilibrium effects typically or

when a forest-owner shifts planned deforestation activities from a PES-enrolled plot to a non-PES-

enrolled plot (Dyer et al., 2012), for example. Positive spillovers occur when the project decreases

deforestation among non-participants. This positive impact may arise from multiple channels,

such as learning effects among non-participants upon contact with participants, social norms in

communities with participants or employment opportunities generated by participants in favor

of non-participants (Pfaff and Robalino, 2017). Moreover, even in cases where the additionality

of the program can be demonstrated, there is no guarantee that this effect will be permanent,

as shown by (Carrilho et al., 2022). Finally, it appears that the question of the effectiveness of

REDD+ programs, which simultaneously covers additionality, permanence and spillovers, is above

all empirical and must be dealt with using reliable data.

4 Material and Methods

Reconstructing forest loss on individual plots

We use farmholds’ boundaries from the CAR. We delineate a 80-kilometer buffer around the

Transamazonian highway for the Altamira, Senador Jose Porfirio, Anapu and Pacaja municipalities

in order to delimit the farmholds that would be included in our initial sample. Georeferenced

deforestation data and registered private rural properties are overlapped to enable identification

of patches cleared inside property boundaries. We use information from GFC and PRODES to

determine the location of forest clearings on an annual basis. All geographical datasets are re-

projected to a common spatial reference (SIRGAS 2000/UTM 22S). Our sample covers the 2008-
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2018 period. Since we did not have information about changes in property borders during our

sample period, we assume that they were constant throughout this period. For the GFC tree cover

layer, we use a threshold of 75 percent of vegetation cover as a definition of the forest, which is the

average threshold used in previous studies run in the Amazonian context (Baker and Spracklen,

2019; Gasparini et al., 2019).

Identification strategy for the impact assessment

To identify the causal effect of the SSA program on the participants, referred to as the Average

Treatment effect on the Treated (ATT), we use a matching approach that uses pre-treatment

outcomes to construct a valid control group from non-participating plots (Imbens and Wooldridge,

2009). The ATT measures the difference in mean (average) outcomes between farms assigned to the

treatment group (participants in our case) and farms assigned to the control group (matched non-

participants in our case). This econometric method, widely used in economics, allows to distinguish

the effects of enrolling some specific farms in a REDD+ program from the effects of the program

itself (Millimet and Alix-Garcia, 2021).

Estimating treatment effects using observational data indeed brings the problematic of selection

bias, since participants self-select into the program, the treated and untreated units may be different

for many reasons other than the treatment itself. This bias occurs because some of the factors

that influence the selection of participants also determine the outcomes of interest (forest loss

in our case study). Observations of pre-treatment outcomes might help to correct for selection

bias because they contain information on these confounding factors. Thus, matching treated and

untreated groups on pre-treatment deforestation outcomes allows us to correct for selection bias

(Abadie et al., 2010). Note that matching on the pre-treatment outcomes amounts to performing

a difference-in-difference matching, bringing the pre-treatment difference to zero.

In addition to pre-treatment outcomes, we select a number of covariates likely to drive both

the participation in the SSA project and decisions regarding deforestation, in order to improve the

matching procedure. These covariates include farm size, distance to the main road (Transamazon

highway), distance from the main navigable river (the Xingu river), distance from the main market

(Altamira city), and distance from the nearest small village (local market).
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We perform an estimation for the ATT using two nearest neighbor matching estimators: the

Mahalanobis distance matching and the propensity score matching estimators. The outcome vari-

ables (forest loss) and covariates used in this analysis are measured at the farm level; the unit

of observation is therefore the farm. In practice, we first run balancing tests to determine if the

matching procedure was successful in achieving balance on the observed covariates. We then com-

pare the average level of outcomes in the two matched groups. The analysis concerns the years

2008 to 2018, where 2008-2012 corresponds to the pre-treatment period and 2013-2018 to the post-

treatment period. The SSA program was implemented between 2013 and 2017. The data used

therefore allows us to assess the impact of the program up to one year after its official closure.

The stable unit of treatment value assumption

A key assumption for the validity of the identification strategy is that the treatment received

by one farmer must not affect the outcome of another farmer. This assumption is referred to as the

Stable-Unit-Treatment-Value-Assumption or SUTVA (Rubin, 1978). SUTVA could be violated if

some individuals were influenced by the exposure assignment of other individuals. For example, in

the present case, one may fear that the beneficiaries of PES have organized certain arrangements

with their direct neighbors, so as to be able to extend the pastures while respecting the terms of their

PES contract. If so, these neighboring untreated plots would not be valid matched counterparts for

the impact evaluation. For SUTVA to hold, we thus exclude from the untreated group those plots

that are less than three kilometers distant from a treated plot, thus creating a buffer zone between

treated farmholds and potential control ones (Figure 3). By doing so, we end up with 11,897

observations. Each of the 350 treated polygons is clearly delimited in the cadastral database. It

may have happened that some of the 350 plots overlapped neighboring plots, but in all cases,

none of the neighboring plots were eligible for the control group. Therefore the overlaps had no

consequences in our analysis and did not require any particular procedure.

Strategy for addressing potential spillovers

In any conservation program targeting individuals, the possible presence of spillover effects, i.e.,

an impact of the program on individuals who were not initially targeted by the program but were

exposed to it, must be considered. To test for the presence of such effects in the present case, we
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focus on farms not participating in the PES program but located within a radius of one kilometer

from a participating farm. However, in the present case, it should be specified that if it were possible

to detect any change in the deforestation of the plots surrounding the participating farms, it would

not be possible to say whether these are indirect effects of the project – what are usually called

spillovers – or rather direct effects of the project, which offered ranchers the possibility of training

in new types of agricultural activities, even if they did not wish to enter into a PES contract, since

these individuals have not been registered in any database.

Since we have to deal with SUTVA in this case too, we again create a buffer zone between the

spillover zone and potential control farms, by excluding from the sample of untreated plots those

farm-holds located between one and three kilometers from an enrolled plot. This identification

strategy is illustrated in Figure 3.

Estimate of program cost-effectiveness

Following Jayachandran et al. (2017) and Simonet et al. (2018b), we calculate the value of the

carbon benefit over the 2013 to 2018 period, using the social cost of carbon (SSC), and compare this

value to the program’s costs. The SCC is a metric that helps quantify the costs of climate change

related to carbon emissions in terms of dollars per metric ton of carbon dioxide (CO2) emitted. It

can also be used to quantify the benefits of reducing CO2 emissions. Policy recommendations for

the SCC ranged from 11 to 116 USD/ton of CO2 over the 2013 to 2018 period (IWG, 2016). The

benefits of the SSA project are computed using the estimates of the total number of hectares of

forest saved as a result of the program.

5 Results

Statistical and spatial consistency

The purposes and methodologies of PRODES and GFC are quite divergent (Table 1). Firstly,

GFC records forest changes in every type of vegetation greater than 5 m in height (including primary

and secondary forests), while PRODES only captures primary forest loss. Secondly, GFC is a global

dataset, while PRODES only focuses on the Brazilian Amazon. Finally, PRODES’s methodology

is based on contextual classification (i. e., image segmentation and analyst interpretation), while
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GFC’s methodology is grounded on pixel-based classifications (i. e., automated decision tree). As

such, there is no a priori reason for forest-loss-related information provided by the two products to

coincide. To check this assumption, we run a paired t-test of annual differences in deforestation as

measured in the two datasets. The results reveal significant differences between the PRODES and

GFC data for the years 2008 to 2018 (SI Appendix, Table S1). Furthermore, GFC detected higher

rates of deforestation than PRODES in all years except 2010 and 2011.

Also, several spatial differences emerge when comparing the GFC and PRODES data. To

highlight these differences, we aggregate deforestation pixels for the 2008-2018 period into binary

raster layers. To measure the spatial consistency between the two RS products, we overlap both

layers and perform validation samples of the areas of consistency and inconsistency (SI Appendix,

Figure S2). We find that the datasets have a 39 percent concordance at the municipality scale, a

36 percent concordance at the settlement scale and a 27 percent concordance at the SSA plot scale.

Annual additionality of the REDD+ initiative

The low spatial agreement between the two products suggests that one or both may not be

suitable for monitoring individual-level deforestation under REDD+ programs. However, this does

not necessarily call into question the interest of these products for evaluating the effectiveness of

REDD+ programs in curbing deforestation. Indeed, it is possible that the precision level of forest

loss measurement is sufficient to detect any significant differences between the participating and

control plots. In other words, it is possible to detect a statistically significant difference in forest

loss between participating farms and control farms, even though the level of forest loss itself is

imprecisely measured on each farm.

The results of the balancing tests are presented in Table 2. They show that, before matching,

the participant group is significantly different from the non-participants for most covariates and

that after matching, these differences drop below 0.25 standard deviations, suggesting that the

matching procedure performed well. This result is also illustrated with Figure 4. The results of

the ATT estimates for each year between 2013 and 2018 are displayed in Table 3. Looking at the

first years of the program and using GFC data, the ATT ranges between -0.40 (SE=0.14) and -0.60

(SE=0.20) hectares for the year 2013, between -0.84 (SE=0.33) and -1.06 (SE=0.32) hectares for the

year 2014, and between -0.31 (SE=0.18) and -0.63 (SE=0.22) hectares for the year 2015. Similarly,
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we find significant negative point estimates using PRODES data: the ATT ranges between -0.33

(SE=0.11) and -0.61 (SE=0.24) hectares for the year 2014, between -0.64 (SE=0.25) and -1.13

(SE=0.26) hectares for the year 2015, and between -0.43 (SE=0.17) and -0.72 (SE=0.23) hectares

for the year 2016.

These results are also shown graphically on Figure 1. Regardless of the data source used, we

can visually confirm that participants and matched individuals have nearly identical pre-treatment

deforestation rates (i.e., the parallel trend assumption holds) while unmatched individuals have

not. Then, according to the GFC dataset, the participant group deviates significantly from the

trajectory of the control group from 2012 until 2015. The same phenomenon is demonstrated with

the PRODES data, with a one-year lag, due to the difference in the observation period (Table 1).

Under the hypotheses that we made when constructing the control groups, this clear break in

the deforestation trend among participants can be attributed to the SSA program. To test the

robustness of this result, we rerun the estimations using an alternative set of covariates in the

matching procedure model. We include two additional pre-treatment covariates (pasture and forest

area as measured in 2012) to the set of matching covariates. Pasture and forest area are obtained

from the MapBiomas project (https://mapbiomas.org). Same results hold. The balancing tests

and ATT estimates are displayed in Tables S2 and S3 in the SI Appendix. In addition, following

Ferraro and Miranda (2017) we run a fixed effect model regression using the matched dataset and

main results hold as well. These results are provided in Table S4 in the SI Appendix.

Permanence of the effects of the REDD+ initiative

The lowest part of Table 3 gives the estimates of the impact during the last years of the

program. We fail to detect a significant impact of the program for the years 2016, 2017 and 2018,

using GFC data, and for the years of 2017 and 2018, using PRODES data. The fact that the ATT

becomes non-significant as the program ends indicates that the treated group, whose trajectory

had diverged from that of the control group during three years, goes back to its business-as-usual

behavior thereafter, i.e. the same deforestation rate as controls. In Figure 1, the disappearance of

the effect of the program is illustrated by the overlap of the deforestation curves of the two groups,

from 2015 according to GFC data and 2016 according to PRODES data. Taking for example GFC

data provided in Table 2, this means that participants and matched controls both recorded the same
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forest loss before the program starts (1.55 hectares in 2008, 2.22 hectares in 2019, 0.91 hectares in

2010, 0.71 hectares in 2011, and 1.49 in 2012). Thereafter, from 2013 to 2015, the treated group

cuts significantly less forest than the control group. The participants cut 1.01 hectares in 2013,

2.22 hectares in 2014, and 0.75 hectares in 2015, while the control group cuts 1.41 hectares in 2013,

3.05 hectares in 2014, and 1.06 hectares in 2015 (taking the smallest ATT estimates provided in

Table 3). Finally, the two groups display again the same deforestation pattern from 2016 to 2018

(2.49 hectares in 2016, 3.39 in 2017, and 1.74 in 2018).

These results suggest that the gains achieved by the program until 2018 represent a three-year

delay in the deforestation that would have occurred in the absence of the program. This means that

the program participants consented to modifying their behavior for the duration of the program,

only to return to their business-as-usual behavior after the end of the program, suggesting that the

intervention was not sufficient to trigger long-lasting changes in farmers’ behavior. Nevertheless, it

is important to mention that we do not detect a higher rate of deforestation by the participating

group than by the control group after the end of the program, meaning that participants did not

catch up on their postponed deforestation. Thus, the environmental gain generated during the first

three years of the program is not subsequently lost, but lasts at least until 2018 (when our analysis

ends).

Total effect of the REDD+ initiative

In order to obtain a single point estimate of the impact of the program over the whole period

(rather than by year), we look at the impact on total forest loss during the post-treatment period,

using the same identification strategy as before. Results are displayed in Table 4. They are

consistent with annual additionality estimates, since we obtain a total number of hectares saved

over the period which roughly corresponds to the sum of the hectares saved each year. Column 1

gives the ATT expressed in hectares. It ranges between -1.71 (SE=0.57) and -2.66 (SE=0.74) using

PRODES data and -2.21 (SE=0.92) and -3.47 (SE=0.74) using GFC data. Note that the estimates

obtained for the two datasets do not differ statistically, as shown by the confidence intervals which

overlap very widely (Column 2). We can therefore conclude that the smallest estimates both

converge on a total effect of about two hectares saved on average on each farm. To get a sense

of the magnitude of this impact, we then report the ATT to the mean forest area of participants
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provided by MapBiomas for the year 2012, i.e. 48.5 hectares (SE=52.73). The smallest impact

estimate using PRODES data would therefore represent 3.5 percent of the initial forest area, while

that using GFC data would represent 4.5 percent.

When it comes to expressing impact as a proportion of forest loss, the story is of course different.

As shown previously, forest loss estimates produced by PRODES and GFC differ greatly. Proof

of this is the considerable difference between the total number of hectares cut on average by the

participants over the period according to PRODES (3.5 hectares) and GFC (12.9 hectares). The

ratio of the ATT and the counterfactual forest loss (the average loss among the participants plus

the estimated value of the ATT) now ranges between -32.8 and -43.2 percent using PRODES data

and -14.6 and -21.2 percent using GFC data. Here the confidence intervals do not overlap at all and

it can therefore be concluded that the estimates diverge. Without being able to say which dataset

is more relevant than the other, one can only conclude that the program would have reduced

deforestation by at least 15 percent on average, possibly up to 43 percent. These estimates are

significantly lower than those reported by the project implementer, which are based on a before

and after comparison. This is consistent with the findings of West et al. (2020), which demonstrate

that REDD+ projects have exaggerated baselines, which can result in hot air being traded in offset

markets. However, this is not the case in the present study, as the SSA project was fully funded

by the Amazon Fund and did not sell carbon credits in voluntary carbon markets.

Impact of the REDD+ project on neighboring farmholds

We then applied our identification strategy to farmholds likely to have been impacted indirectly

by the PES program, focusing on any deforestation that may have occurred in the plots surrounding

participating farms. The results are displayed in Table 5, while balancing tests can be found in the

SI (Table S5). We find that tree cover loss on plots surrounding participating farms was lower than

forest loss on control plots, suggesting that the program indeed had a positive effect on neighboring

farmholds, at least during the first years of the program. Note that this result is not robust across

the datasets, since using PRODES data leads to a 2-year impact while using GFC data rather

suggests a one-year impact. In all cases however, the effect disappears after 2015. Therefore, the

total impact on neighboring farmholds is significantly less than that on participants, which spans

several years.
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Cost effectiveness of the REDD+ initiative

We scale up yearly point estimates to the 350 farmholds enrolled in the project, by multiplying

the estimated ATT (Table 3) by the total number of participants. We obtain a total number of

hectares of forest, saved thanks to the program, ranging from 490 to 861 hectares using PRODES

data, and from 543 to 802 hectares using GFC data (See Table 6, Column 1). Next, we compute

the average stock of carbon in the study area, using the estimates of biomass provided by the

World Resources Institute, i.e., 116 tons of carbon (C) above-ground per hectare of forest with at

least 50 percent tree cover (Simonet et al., 2018a). We then calculate the impact of the forestland

conserved in tons of CO2. Since one CO2 molecule weighs 3.67 times as much as a carbon atom,

this means that 426 metric tons of CO2 are stored in one hectare of land covered by the PES

contracts. Therefore, we find that the program avoided between 208,603 and 366,545 tons of CO2

emissions using PRODES data, and from 230,953 to 341,215 tons of CO2 using GFC data (See

Table 6, Column 2).

The costs of the SSA project’s PES component are computed using the amount disbursed to

participants from 2014 to 2017 (i.e. 626 USD per participant), which came to 838,849 USD of

discounted costs (using a 3 percent discount rate). By relating this expenditure to the emissions

avoided, we find that the cost of the project was between 2.29 and 4.02 USD per ton of CO2

emissions avoided using PRODES data, and from 2.46 to 3.63 using GFC data. We then calculate

the value of the carbon benefits using three SSC rates of return (5%, 3%, and 2.5%) and find

that the discounted benefit of avoided emissions ranges between 408,159 and 1,905,362 USD using

PRODES data, and between 588,385 and 2,245,703 USD using GFC data (See Table 6, Columns 4,

6 and 8). This gives us a benefit/cost ratio that ranges between 0.5 and 2.3, using PRODES data,

and between 0.7 and 2.7, using GFC data (See Table 6, Columns 5 and 9). Focusing on the 3%

discount rate (Columns 7), which is most often used (IWG, 2016), we find that the ratio is almost

always greater than one, regardless of the data and ATT estimate used.
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6 Discussion

Remote-Sensing products

The divergence that we find between the two RS datasets can be partially explained by method-

ological differences in the construction of the products. First, small levels of deforestation are not

incorporated within PRODES estimates (because deforestation activities are only reported if they

accumulate beyond the 6.25-hectare threshold), while these can be detected more easily with GFC.

Second, GFC quantifies global tree cover as any vegetation taller than 5 meters in the year 2000,

therefore it can detect secondary forest clearings while PRODES does not. Third, some of the cover

loss reported in the GFC dataset may be due to forest degradation (e.g., forest fires and selective

logging), something that is less likely to be captured with PRODES estimates. All this may explain

why GFC often detects higher rates of deforestation than PRODES.

This result calls for at least two comments. The first is that neither of the two products seems

to completely outperform the other. PRODES estimates are validated in the field but are not able

to account for small deforestation operations. GFC, on the other hand, can detect small patches

of deforestation, but sometimes does so when an area is not, in fact, strictly deforestation. This

should encourage REDD+ project evaluators to cross-validate their results using multiple datasets

when available. The second comment relates to the suitability of PRODES and GFC products

for the evaluation of REDD+ programs. A number of studies use RS data to evaluate farm-level

REDD+ interventions. Yet their suitability has often been questioned since they have limitations,

for instance in their spatial resolution or the definition of forest areas they use. Some studies

like Cunningham et al. (2019) or Kinnebrew et al. (2022) discussed those limitations and biases,

comparing the GFC product with their own land cover maps of the Amazon, and showed how

critical it is to take into account those biases when using RS-based deforestation products. Similar

observations were made by Sannier et al. (2016) regarding the use of GFC product for national

reporting of forest cover change in Gabon. Does this mean that these products are of no use in

properly estimating the impact of PES programs targeting smallholders? Although these products

do not seem suitable for the fine monitoring of this type of program, our analysis nevertheless

suggests that they make it possible to assess the effectiveness of a PES program. This can be

done provided that (i) the impact of the program is large enough to be detected despite the lack
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of precision of the RS products, and (ii) the noise caused by the imprecision of the RS product

estimates is distributed between the treated and control plots so that it is netted out through the

comparison between the two groups. There is no reason, a priori, for the second condition not to

be fulfilled, since inaccuracies can appear on a participating farm as well as on a farm in the control

group.

Local REDD+ effectiveness

We assess the impact of an SSA project over 2013-2018 and estimate that about 2 hectares of

forest, i.e. about 4 percent of the initial forest area, were saved on average on each participating

farm during the early years of the project, regardless of the source of deforestation data used. The

size of the estimated effect is smaller than that estimated using survey data by Simonet et al.

(2018a), which is consistent with the idea that survey data would overestimate the impact of the

program when participants tend to overestimate their effort to curb deforestation. On the contrary,

our estimate is quite similar in magnitude to those found for other PES-based forest conservation

programs run elsewhere in Latin America (Robalino and Pfaff, 2013; Alix-Garcia et al., 2012).

We fail to detect a positive impact of the program during its last year (the difference between

participants and the counter-factual group vanishes even before the end of the program), suggesting

that the program’s effects were primarily realized in its initial years. Evidence thus suggests that

the SSA project may have failed to prompt a transition to more sustainable agricultural practices

in the years following. Similarly, Giudice et al. (2019) and Fiorini et al. (2020) find that Peru’s

Natural Forest Conservation Program and Water and Forest Producers program succeeded in in-

creasing forest cover only in the program’s first years. One possible explanation for this is that the

opportunity costs of complying with the program requirements increased during the period when

the program was in place, leading farmers to return to their business-as-usual practices even before

the end of the program. As we can see in SI Appendix, Fig. S2, the price of cattle sharply increased

from 97 BRL per arroba (or 15 kilograms) in January 2013 to 144 BRL in January 2015. This

abrupt increase in cattle prices may have played a determining role on the decision to deforest, by

increasing the relative profitability of expanding pastures compared to that of complying with the

program requirements (Caviglia-Harris, 2018).
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We also find lower deforestation on farmholds surrounding treated plots, compared to the control

group, suggesting that the project had a positive effect on the farmholds located near the benefi-

ciaries of the PES program, at least in the early years of the program. One possible explanation for

this is that non-participants may have learned about environmental legislation or the profitability

of new practices promoted by the program. Furthermore, the new practices supported by the pro-

gram may have increased demand for labor from neighboring farmers, shifting deforestation efforts

to more sustainable activities. Also, the constant presence of the NGO in the communities may

have a discouraging effect on the strategic behavior of participants. It should also be stressed that

the SSA program had several components, other than the PES, which may have played a role in

the effects we estimated. Unfortunately, it is not possible to know precisely which farmholds are

likely to have benefited from the information campaigns and other sustainable activities (while the

farms having received a PES are clearly identified). We are therefore not able to disentangle the

roles of each of these components in the detected impact on deforestation and thus cannot exclude

that non-monetary components of the program were also at work.

7 Conclusion

To summarize, the four key messages one can take away from this analysis relate to (i) the

suitability of RS products for evaluating conservation program effectiveness, (ii) the likely short-

and long-term effectiveness of PES programs, (iii) the likely spillover effects of such programs and

ultimately (iv) their cost-effectiveness. Overall, our findings suggest that, despite the disagreement

between GFC and PRODES on forest cover loss estimates at the individual plot-level, such datasets

represent a valuable source of data to evaluate forest conservation projects.

We find evidence that the local REDD+ initiative was effective in reducing deforestation dur-

ing its early years of implementation in the Transamazon region, an area with historically high

deforestation rates. This suggests that PES programs targeting smallholders in the Brazilian Ama-

zon may well be effective, at least in the short-run. Moreover, we find evidence that non-enrolled

farm-holds located close to enrolled ones were somehow impacted by the program, as they also

decreased deforestation during the early years of program implementation. This suggests that PES

programs may change the behavior of farmers who are not the primary beneficiaries of the program

- although we are not able to determine through which channel.
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In addition, we find that the participants resumed their normal rate of deforestation even before

the end of the program. Our findings suggest that the SSA project failed to generate a permanent

effect on farmers’ decisions about deforestation or to induce more sustainable agricultural practices

in years subsequent to the program. Despite this, we value the three-year delayed CO2 emissions

highlighted by the impact assessment and find that the SSA program benefits were greater than

its costs.
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Figures

Figure 1: Deforestation on enrolled and non-enrolled farms for the 2008–2018 period

Note: (A) Nearest neighbor matching (NNM) estimates using PRODES dataset. (B) NNM esti-
mates using GFC dataset. The REDD+ project was implemented from 2013 to 2017 (grey panel).
The difference between treated and controls is significant for the early years of program implemen-
tation.
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Figure 2: Localization of treated and matched plots used for estimating counterfactual levels of
forest loss.

Note: We matched each treated household (red plots) to two of the most similar control households
(blue plots).

23



Figure 3: Study design to address the Stable Unit Treatment Value Assumption (SUTVA) and
spillovers

Note: To deal with SUTVA, we build a buffer zone around treated units (3 km) and excluded the
farmholds located in this zone from the donor pool. When testing for spillovers, we included the
farmholds that would be more likely to experience spillovers due to proximity (less than 1 km from
a treated unit).
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Figure 4: Standardized differences for baseline covariates comparing treated to untreated farms in
the original and the matched sample
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Tables

Table 1: Comparison between GFC and PRODES datasets

PRODES GFC
Data source Mainly Landsat Landsat
Resolution 30 meters 30 meters
Minimum patch size 6.25 hectares 0.09 hectares
Coverage Brazilian Amazon Global
Tree cover definition Primary forest Vegetation taller than 5 meters
Method Image segmentation and analyst interpretation Automated decision tree
Observation Period August 1 to July 31 January 1 to December 31
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Table 2: Summary statistics and balancing tests for participants and comparison groups

Pre-treatment variables
Non-participants Participants Standardized differences

(n=10,962) (n=350) GFC PRODES
Mean Std. Dev. Mean Std. Dev. Raw Matched Raw Matched

Plot area (ha) 97.38 77.81 77.21 37.00 -0.33 0.10 -0.33 0.07
Distance from nearest village 29.33 14.74 23.09 11.24 -0.48 -0.04 -0.48 -0.02
Distance from Altamira 164.57 98.20 122.60 56.75 -0.52 -0.04 -0.52 -0.01
Distance from Transamazon road 20.13 13.87 13.88 10.82 -0.50 -0.04 -0.50 -0.04
Distance from Xingu river 111.88 84.06 63.76 52.80 -0.69 -0.04 -0.69 -0.01
Forest loss GFC 2008 3.06 7.32 1.55 3.14 -0.27 0.11
Forest loss GFC 2009 2.08 5.16 2.22 3.27 0.03 0.11
Forest loss GFC 2010 1.42 4.18 0.91 2.62 -0.15 0.07
Forest loss GFC 2011 1.41 3.55 0.71 1.97 -0.24 0.06
Forest loss GFC 2012 2.43 5.72 1.49 3.68 -0.20 0.05
Forest loss PRODES 2008 1.94 7.05 0.55 2.30 -0.27 0.03
Forest loss PRODES 2009 0.97 4.16 0.27 1.48 -0.23 0.01
Forest loss PRODES 2010 1.97 6.08 0.93 3.15 -0.22 0.02
Forest loss PRODES 2011 2.37 6.05 3.36 6.60 0.16 0.05
Forest loss PRODES 2012 0.40 2.05 0.17 1.50 -0.13 0.01

Post-treatment variables
Forest loss GFC 2013 1.65 3.75 1.01 1.96
Forest loss GFC 2014 2.55 4.89 2.22 2.82
Forest loss GFC 2015 1.35 3.86 0.75 1.57
Forest loss GFC 2016 2.49 5.02 2.30 3.42
Forest loss GFC 2017 3.45 5.62 3.39 4.03
Forest loss GFC 2018 2.27 4.49 1.74 2.82
Forest loss PRODES 2013 0.46 2.17 0.18 1.19
Forest loss PRODES 2014 0.62 2.69 0.35 1.52
Forest loss PRODES 2015 1.31 4.07 0.86 3.00
Forest loss PRODES 2016 0.95 3.45 0.53 2.02
Forest loss PRODES 2017 1.01 3.38 0.83 2.70
Forest loss PRODES 2018 0.79 2.88 0.59 2.22
Note: This table presents descriptive statistics and balancing tests of the two groups before and after the matching
procedure. The output indicates that the covariates were not balanced in the raw data. After matching, however,
the standardized differences are all close to zero, which suggest that the matching procedure performed well.
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Table 3: Impact of the REDD+ project on participants (by year)

Year estimator ATT PRODES SE ATT GFC SE

2013

NNM (4X) -0.153 0.095 -0.553 *** 0.161
NNM (2X) -0.174 0.113 -0.603 *** 0.203
NNM (1X) -0.169 0.149 -0.474 ** 0.224
PSM (4N) -0.005 0.073 -0.399 *** 0.142
PSM (2N) 0.011 0.078 -0.488 *** 0.168
PSM (1N) 0.082 0.076 -0.528 *** 0.198

2014

NNM (4X) -0.401 *** 0.128 -1.044 *** 0.266
NNM (2X) -0.402 ** 0.157 -0.931 *** 0.306
NNM (1X) -0.613 ** 0.243 -0.835 ** 0.335
PSM (4N) -0.328 *** 0.113 -1.043 *** 0.235
PSM (2N) -0.471 *** 0.144 -1.046 *** 0.266
PSM (1N) -0.575 *** 0.192 -1.058 *** 0.324

2015

NNM (4X) -1.134 *** 0.260 -0.635 *** 0.224
NNM (2X) -1.061 *** 0.285 -0.307 * 0.180
NNM (1X) -1.043 *** 0.373 -0.402 * 0.240
PSM (4N) -0.760 *** 0.214 -0.557 *** 0.145
PSM (2N) -0.642 ** 0.251 -0.504 *** 0.184
PSM (1N) -0.338 0.267 -0.417 * 0.216

2016

NNM (4X) -0.430 ** 0.174 -0.521 * 0.287
NNM (2X) -0.491 ** 0.208 -0.405 0.325
NNM (1X) -0.458 * 0.264 -0.187 0.320
PSM (4N) -0.659 *** 0.166 -0.359 0.242
PSM (2N) -0.573 *** 0.180 -0.176 0.252
PSM (1N) -0.721 *** 0.231 -0.094 0.294

2017

NNM (4X) -0.328 0.212 -0.690 ** 0.324
NNM (2X) -0.240 0.223 -0.858 ** 0.387
NNM (1X) -0.332 0.270 -0.605 0.441
PSM (4N) -0.514 *** 0.188 -0.321 0.280
PSM (2N) -0.375 * 0.209 -0.307 0.307
PSM (1N) 0.016 0.208 -0.227 0.346

2018

NNM (4X) -0.033 0.152 -0.024 0.185
NNM (2X) -0.106 0.175 -0.142 0.203
NNM (1X) -0.044 0.217 -0.245 0.240
PSM (4N) -0.122 0.145 0.126 0.187
PSM (2N) -0.167 0.171 0.216 0.201
PSM (1N) -0.138 0.197 0.223 0.231

Note: The average treatment effect on the treated (ATT) is the
mean difference in forest loss (hectares) between participants and the
control group. ***, **, and * denote rejection of the null hypothesis
of no impact at the 1%, 5% and 10% level. NNM(4X) (resp. 2X and
1X) refers to the nearest neighbor estimator using 4 (resp. 2 and
1) matched observations as controls. PSM(4N) (resp. 2N and 1N)
refers to the propensity score matching estimator using 4 (resp. 2
and 1) matched observations as controls.
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Table 4: Impact of the REDD+ project on participants (whole period)

(1) (2) (3) (4)
Dataset Estimator ATT CI ATT (%) CI (%)

NNM (4X) -2.480*** -3.468 -1.492 -41.5 -49.8 -29.9
(0.504)

NNM (2X) -2.474*** -3.569 -1.380 -41.5 -50.5 -28.3
(0.558)

NNM (1X) -2.658*** -4.113 -1.203 -43.2 -54.1 -25.6
(0.743)

PRODES PSM (4N) -2.402*** -3.284 -1.519 -40.8 -48.5 -30.3
(0.450)

PSM (2N) -2.240*** -3.233 -1.246 -39.1 -48.1 -26.3
(0.507)

PSM (1N) -1.708*** -2.825 -0.591 -32.8 -44.7 -14.5
(0.570)

Mean in treated 3.492 hectares

NNM (4X) -3.467*** -4.926 -2.009 -21.2 -27.6 -13.5
(0.740)

NNM (2X) -3.245*** -4.922 -1.568 -20.1 -27.6 -10.8
(0.860)

NNM (1X) -2.748*** -4.617 -0.879 -17.6 -26.4 -6.4
(0.950)

GFC PSM (4N) -2.698*** -3.551 -1.846 -17.3 -21.6 -12.5
(0.430)

PSM (2N) -2.481*** -3.892 -1.069 -16.1 -23.2 -7.7
(0.720)

PSM (1N) -2.206** -4.014 -0.398 -14.6 -23.7 -3.0
(0.920)

Mean in treated 12.890 hectares
Note: The average treatment effect on the treated (ATT) is the mean difference in forest
loss (hectares) between participants and the control group between 2012 and 2018. ***,
**, and * denote rejection of the null hypothesis of no impact at the 1%, 5% and 10%
level. NNM(4X) (resp. 2X and 1X) refers to the nearest neighbor estimator using 4
(resp. 2 and 1) matched observations as controls. PSM(4N) (resp. 2N and 1N) refers to
the propensity score matching estimator using 4 (resp. 2 and 1) matched observations
as controls. Standard errors are given in parentheses.
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Table 5: Impact of the REDD+ project on non-participants (by year)

Year estimator ATT PRODES SE ATT GFC SE

2013

NNM (4X) -0.094 * 0.051 -0.312 *** 0.093
NNM (2X) -0.113 ** 0.057 -0.262 ** 0.103
NNM (1X) -0.150 ** 0.067 -0.293 ** 0.119
PSM (4N) -0.019 0.045 -0.184 ** 0.079
PSM (2N) 0.001 0.044 -0.207 ** 0.090
PSM (1N) 0.028 0.047 -0.145 0.110

2014

NNM (4X) -0.452 *** 0.095 -0.369 * 0.205
NNM (2X) -0.466 *** 0.104 -0.361 0.232
NNM (1X) -0.486 *** 0.122 -0.314 0.263
PSM (4N) -0.405 *** 0.089 -0.038 0.182
PSM (2N) -0.412 *** 0.105 -0.027 0.195
PSM (1N) -0.410 *** 0.121 -0.028 0.226

2015

NNM (4X) -0.673 *** 0.193 -0.253 0.181
NNM (2X) -0.653 *** 0.206 -0.167 0.205
NNM (1X) -0.732 *** 0.238 -0.234 0.233
PSM (4N) -0.300 ** 0.121 -0.157 0.113
PSM (2N) -0.358 ** 0.152 -0.153 0.127
PSM (1N) -0.414 ** 0.184 -0.133 0.147

2016

NNM (4X) -0.149 0.120 -0.145 0.206
NNM (2X) -0.139 0.141 -0.162 0.225
NNM (1X) -0.167 0.170 -0.078 0.241
PSM (4N) -0.102 0.106 -0.001 0.176
PSM (2N) -0.143 0.123 -0.129 0.202
PSM (1N) -0.113 0.069 0.063 0.220

2017

NNM (4X) -0.235 0.176 -0.357 0.220
NNM (2X) -0.240 0.184 -0.576 ** 0.253
NNM (1X) -0.306 0.199 -0.659 ** 0.296
PSM (4N) -0.077 0.115 -0.242 0.239
PSM (2N) -0.115 0.121 -0.276 0.225
PSM (1N) -0.089 0.139 -0.129 0.254

2018

NNM (4X) 0.060 0.080 -0.235 * 0.142
NNM (2X) 0.046 0.093 -0.334 * 0.174
NNM (1X) 0.025 0.109 -0.435 ** 0.203
PSM (4N) -0.057 0.064 -0.039 0.134
PSM (2N) -0.084 0.086 -0.158 0.146
PSM (1N) -0.086 0.100 -0.142 0.159

Note: The average treatment effect on the treated (ATT) is the mean
difference in forest loss (hectares) between neighboring farms and the
control group. ***, **, and * denote rejection of the null hypothesis
of no impact at the 1%, 5% and 10% level. ATT is the Average
Treatment effect on the Treated. NNM(4X) (resp. 2X and 1X) refers
to the nearest neighbor estimator using 4 (resp. 2 and 1) matched
observations as controls. PSM(4N) (resp. 2N and 1N) refers to the
propensity score matching estimator using 4 (resp. 2 and 1) matched
observations as controls.
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Table 6: Cost effectiveness of the REDD+ initiative for different discount rates

Dataset Number of Avoided Cost SCC 5% SCC 3% SCC 2.5%

hectares CO2 emissions PES Benefits (B/C) Benefits (B/C) Benefits (B/C)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

PRODES 490 208,603 838,849 408,159 0.49 830,981 0.99 1,076,923 1.28
861 366,545 838,849 722,241 0.86 1,470,127 1.75 1,905,362 2.27

GFC 543 230,953 838,849 588,385 0.70 1,185,874 1.41 1,542,051 1.84
802 341,215 838,849 856,594 1.02 1,727,281 2.06 2,245,703 2.68

Note: This table displays the costs of the PES component of the SSA program (Column 3) compared with the
benefit of delayed CO2 emissions under different SCC values (Columns 4, 6 and 8). The annual benefit of delayed
emissions equals r

r+1 .SCC, where r is 2.5, 3 and 5%
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