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Abstract 

Greenhouse gas (GHG) emissions have created a global climate crisis which requires 

immediate interventions to mitigate the negative effects on all aspects of life on this planet. 

As current agriculture and land use contributes to up to 25 % of total GHG emissions, 

plant scientists are at center stage to find possible solutions to a transition to sustainable 

agriculture and land use. In this article, the PlantACT! initiative of plant scientists lays out 

a road map in which areas and how plant scientists can contribute to find immediate, mid-

term and long-term solutions and what changes are necessary in the way to work out 

these solutions at the personal, institutional and funding level.  

I. The climate emergency 

Humanity is facing an unprecedented challenge from climate change [1]. The CO2 

concentration in the atmosphere has dramatically increased from 280 ppm (pre-industrial) 

to 420 ppm within 150 years. As a consequence, the global average temperature has 

increased by 1.5°C. This anthropogenic climate change is associated with altered rainfall 

patterns, extreme weather events and less predictable weather patterns. This presents a 

major challenge to crop production and food security and thus threatens the foundations 

of human civilization.  
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The International Panel on Climate Change (IPCC) had set the goal of limiting global 

warming to less than 1.5°C. [2] Although the goal of 1.5°C is probably not possible any 

more, achieving climate neutrality is more important than ever, by reducing net CO2 

emissions to zero through a 45% reduction in emissions within 10 years [1]. This 

represents a disruptive goal which demands new thinking, solutions and commitments.  

      

The atmospheric temperature increase caused by rising carbon dioxide concentrations 

will not decrease significantly even after zero carbon emissions (peak carbon) have been 

achieved [3]. The climate effects of atmospheric CO2 at peak carbon will remain 

irreversible for at least 1,000 years, if not counteracted by a net reduction in atmospheric 

CO2. In reality, anthropogenic climate change is irreversible over the next 10 generations 

at least, unless rapid measures are taken to sequester carbon dioxide from the 

atmosphere [3].  

      

The global carbon cycle describes the dynamic cycling of carbon between the 

atmosphere and marine as well as terrestrial ecosystems (Figure 1). Overall, terrestrial 

and aquatic net primary production is in the range of 130 Gt C per year. The vast majority 

of this assimilated carbon is returned to the atmospheric CO2 pool via respiration. Hence, 

the natural global carbon cycle (not considering anthropogenic emissions) is nearly 

balanced [4]. However, human activities perturb the global carbon cycle, leading to a 

continuous increase of atmospheric CO2 concentration. Net anthropogenic annual carbon 

emissions are leading to an estimated 5.2 Gt C increase in atmospheric CO2 in 2022 [4] 

[Figure 1). All paths towards the 1.5°C goal depend on a rapid reduction of the carbon 

footprint of agriculture, forestry and land use, combined with the use of bioenergy with 

carbon capture and storage [5-7].  

II. Agriculture as a Contributor to Climate Change 

Agriculture is both a victim and culprit of global climate change as 20-25% of GHGs are 

released through agricultural activities. Apart from CO2, significant amounts of methane 

and nitrous oxide are emitted from agriculture which represent more potent greenhouse 
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gases than CO2 (>30 and 300 times respectively). Methane is produced by rice paddy 

fields, livestock (via enteric fermentation and manure) and organic waste in landfills [8]. 

Nitrous oxide emissions are an indirect product of organic and mineral nitrogen fertilizer 

use. However, both gases have a shorter lifespan than CO2: methane and N2O remain in 

the atmosphere for 12 and 114 years compared to 300-1,000 years for CO2 [9]. Hence, 

unlike CO2, reductions in both of these other greenhouse gases would deliver rapid 

benefits (Box 1).  

The N fertilizer supply chain currently contributes >2% greenhouse gas (GHG) emissions 

[10]. Global use of synthetic N fertilizers is predicted to increase 50% by 2050 [11]. When 

N fertilizers are applied, significant amounts of N20 are generated through microbial 

conversion in the soil [10]. In the short term, the most effective strategy is reducing the 

amount of N applied [12] to avoid over-fertilization through improvements in agronomy, 

extension advice and management practices. In the short to medium term, a switch to 

agro-systems utilizing legume crops able to naturally fix nitrogen represents an urgent 

priority [13]. In the medium to longer term, improvements in nitrogen use efficiency in 

cereal crops (currently <50%) through breeding for key traits such as root architecture 

would also provide major gains but might also carry the danger of inducing rebound 

effects [14]. These plant-based solutions are not reliant on major scientific breakthroughs 

but exploit existing knowledge that collectively act to reduce fertilizer-related production, 

usage and emissions.  

The majority of CO2 generated by agriculture arises from changes in land use, particularly 

deforestation for fodder and grazing [15]. Livestock and fodder production each generate 

more than 3 billion tons of CO2 equivalent. Changes in food and dietary choice will help 

to reduce GHG emissions [16]. For example, currently 10-30 kg plant proteins are 

required to produce 1 kg of beef. Increasingly shifting away from animal to alternative 

protein sources would provide major benefits [17]. In the short term, reducing demand for 

soya-based animal feed would have major benefits through decreased land conversion 

[18]. In the mid to long term, adopting plant-based diets remains an efficient option. Plant 

scientists could contribute to the development of alternative plant-based protein sources 

by working with food and social scientists. 
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Given the central importance of food, a reduction of greenhouse-gas emissions from 

agriculture is a major challenge and will require the implementation of a range of 

techniques and tools, from capturing or reducing methane emissions at the source, more 

efficient use of fertilizers, and improved efficiency in meat, dairy and cereal production. 

Overall, these measures should be part of a circular agricultural system, integrating crop 

improvements, mixed crops, field rotations and social interactions with local farming 

communities. 

 

III. Challenges for Future Global Food Production 

Growing global populations, shifting dietary patterns towards greater meat consumption, 

and increased food waste at both the consumer and supply chain levels, are major factors 

impacting global food systems. It is unclear how an increase of 70-100% in food 

production to meet global demands can be achieved in either a sustainable or equitable 

manner. Given the widespread degradation of terrestrial systems, there is no major 

surplus of arable lands on which to cultivate new crops. Likewise, any further conversion 

of forests into agricultural land via deforestation threatens biodiversity, contributing a 

major source of CO2 emissions and further jeopardizes planetary health. To increase food 

production using current agricultural practices would require more chemical fertilizers and 

pesticides, with major negative environmental, climate and human health related impacts. 

With most of the land suitable for agriculture already in use, fertile agricultural land is 

increasingly becoming the preserve of wealthy nations and/or industry, heightening 

economic disparities between the global North and South.  

Plants require sunlight, nutrient rich soils and water for optimal growth. Although mildly 

higher temperatures can prolong the growing seasons in some regions, extreme 

temperatures inhibit crop growth and impact yields through decreased fertility. 

Furthermore, changing weather patterns alter the timing of rainfall as well as the 

distribution of pests and diseases. To cope with these challenges, short term agronomic 

solutions include changing farming practices, such as rotating crops to match water 
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availability and/or adjusting sowing dates to temperature and rainfall patterns (Table 1). 

Plant scientists can also contribute by identifying microbes and plant traits for generating 

(in the medium to longer term) crop varieties (Table 1) showing increased heat- and 

drought-resistance, enhanced water-use efficiency (Box 2) and, in general, improved 

resilience to the changes in environmental conditions.  

Tackling climate change requires the use of cropping systems, either already available 

but not broadly used or novel ones to be developed, as well as the development of crop 

varieties suitable for these new agrosystems. Introducing adaptable and new crop 

systems could lead to diversification of agricultural production, with positive effects on 

ecosystems and biodiversity. This strategy promises to enhance crop resilience to biotic 

and abiotic stresses, but can also improve carbon sequestration and storage. In addition, 

plant breeding can provide better climate change-adapted crops. The development of 

new plant species and varieties that are commercially sustainable and resistant to 

different risks involves the preservation of multiple varieties, landraces, rare breeds and 

closely related wild relatives of domesticated species. 

 

The current focus of crop adaptation is the expression of traits related to resistance to 

drought, heat, salinity and flooding. Different regions need crops adapted to different 

stressors: in some regions, crops that are resilient to drought and/or extreme 

temperatures are required, while in others, flooding or disease resistance is the priority. 

Moreover, breeding efforts should consider the need for more diverse and resilient 

agroecosystems and should benefit from local knowledge related to the adaptation and 

selection process. Crop varieties that meet these conditions could contribute to efficient 

adaptation strategies to cope with climate change. In this context, the  PlantACT! initiative 

(Plants for climate ACTion!) will alert, engage and work on solutions to reduce agriculture-

based GHG emissions and facilitate a more equitable and sustainable global food 

production system. 

IV. Plants, soil and microbes as actors for mitigation           
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Soil was long considered solely as an inert growth substrate. If the chemical and physical 

properties were not suitable, herbicides, fertilizers and pesticides had to be added to soil 

to provide stable yields. This notion has now changed following recognition that besides 

the physical and chemical structure of soils, a diverse living community of soil organisms 

is essential for crop production. Soil microorganisms form beneficial symbiotic 

associations with plants and help plant roots in nutrient uptake and control of diseases. 

Soil microorganisms also play a role in soil water and nutrient holding capacity and can 

contribute to mitigating climate change by maintaining or increasing soil carbon content. 

In the future, holistic approaches of the soil-plant-microbe ecosystem must be considered 

to achieve sustainable solutions related to climate change [19-20]. In this context, 

agriculture is not the only target of this approach, but landscaping and land restoration of 

unused land could provide novel solutions to climate change (Box3). PlantACT! supports 

the idea that soil restoration could play a key role in improving agriculture and carbon 

capture as well as long term carbon sequestration. 

V. Conclusions 

Given the complexity of the effects of climate change at all levels of planetary life, it is 

highly unlikely that exclusive disciplinary thinking will provide solutions that will hold up to 

their promises. Current thinking needs to be readjusted both at the institutional, funding, 

as well as subject levels to enable multidisciplinary scientific approaches. The present-

day scientific culture of exclusive scientific exchange in specific fields needs to be broken 

down and new forms of interdisciplinary conferences and communication need to be 

established (e.g. ideas labs, workshops, grass root level proposals that compete with 

each other for prizes). Information access to farmers, scientists and decision makers via 

open access platforms is needed to find and evaluate different approaches and solutions. 

Solutions must be fact-checked not only in terms of global carbon but also in terms of 

social and societal impact. The time constraints for proposed solutions (e.g. launching 

breeding programs for crop adaptations, introducing genes into elite crop varieties takes 

a decade) have to be considered and weighed against immediate solutions (e.g. changes 

in agricultural practices, ready microbe-induced crop resilience). Overall, one solution for 

all will not be possible. Solutions will need to be shaped and targeted differently to reflect 



 9 

geographical and local needs and contexts and will have to be continuously assessed for 

their impact. For example, solutions need to be targeted differently to the EU and US 

compared to Sub-Saharan Africa where population growth will be highest this century. 

Moreover, land in many countries is limited, but less in Africa, where agriculture suffers 

from low yield and hence supporting intensification in a sustainable manner could have 

an immediate impact. Overall, if we want to preserve a livable planet, we must leave our 

well-trodden disciplinary paths and search for novel inter-disciplinary solutions and 

approaches. Moreover, not only national but overarching transnational funding programs 

need to be implemented to develop or adapt solutions to local specificities. PlantACT! 

aims to urgently accelerate these new inter-disciplinary interactions and solutions by 

stimulating new forms of working and funding (Box 4). 
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Figures 

 

Figure 1. Schematic representation of the terrestrial carbon cycle. Annual growth rate of 
atmospheric carbon pool (blue arrow) is the differential of emissions from fossil fuels (9.6 
Gt C), land use change (1.2 Gt C) and uptake of carbon into terrestrial (3.1 Gt C) and  
oceanic (2.9 Gt C) carbon pools. Only land-based carbon fluxes are shown here. Data for 
carbon emissions from agriculture have been taken from FAO (Food and Agriculture 
Organization of the United Nations, https://www.fao.org/3/cb3808en/cb3808en.pdf). The 
FAO data includes greenhouse gases other than CO2, converted to CO2 equivalents. 
Adapted from [26] with data from [4] and [11] (created with BioRender.com). 
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Box 1. Reducing methane emissions from rice production. 

Methane is the second most important greenhouse gas after CO2 and is >20 times more 

potent than CO2. Rice paddy fields emit 10g CH4/m2 [21] and this forms 15-20% of 

anthropogenic methane emissions. Methane arises from the decomposition of organic 

matter in anoxic conditions by soil methanogenic archaea. Changes in agronomical 

practices are already available to significantly reduce methane production in rice agro-

systems (short term solution). This includes water management practices such as 

alternate wetting and drying or aerobic rice that act to conserve water. However, 

transitioning from irrigated rice systems often leads to a yield penalty and greater inter-

annual yield variability because of reduced access to water, weed competition and 

changes in nutrient availability [22]. To tackle this, plant scientists (working together with 

agronomist, hydrologist, microbial ecologist and agro-socio-economists) could contribute 

by developing (medium term) solutions that include new crop varieties for water-saving 

and low methane rice agrosystems. Traits include early vigor to deal with weed 

competition and root traits to improve water and nutrient acquisition in aerobic conditions 

[23] but also the use of perennial rice varieties. 

 

Box 2. Enhancing water use efficiency and carbon capture        

Carbon gain in photosynthesis is a water consuming process as fixing one molecule of 

CO2 requires hundreds of molecules of H2O lost by transpiration. However, there is 

substantial natural variation of water use efficiency (WUE) among plant species, and this 

holds great potential to improve this trait in crops. Improved WUE can be achieved by 

using microbes collected from plants able to cope with extremely low water availability 

and contributing to this phenotype (short-term solution) and by breeding water-saving 

crops (mid-term solution). Reducing water loss by narrowed stomatal aperture can lead 

to decreased CO2 concentration inside the leaves and hence increased photorespiration, 

in particular at higher temperatures. To avoid a possible penalty on growth in WUE crops, 

carbon capture efficiency could be improved. Potential advantages of C4 plants (and/or 

C3-C4 intermediates) can perform photosynthesis at lower stomatal aperture. Examples 
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from breeding for WUE has pointed to genes involved in stomatal patterning, abscisic 

acid homoeostasis and CO2 signaling [24]. 

 Box 3. Building up soil inorganic carbon (SIC) in arid regions  

Soil organic carbon (SOC) represents a major form of terrestrial C storage (Figure 1). The 

importance of SIC is less appreciated. Oxalogenic plants that secrete oxalate and 

associate with microbes in the soil show great promise for capturing CO2 in an inorganic 

form that is highly stable. Fungi and bacteria associated to these plants (called 

oxalotrophs) can use oxalate as their sole carbon and energy sources. In a soil that is 

rich in Ca2+ or Mg2+, these microbes can produce Ca2+- or Mg2+-carbonates which thereby 

increase the soil inorganic carbon (SIC) content [25]. These natural CO2 trapping systems 

that are primarily found in arid and hyper-arid regions could provide novel and important 

C sequestration alternatives. Such systems do not compete with agricultural land and can 

fix carbon in the soil for decades to centuries. 

Box 4. Re-designing the way plant-based climate solutions are funded 

 

The time required to develop plant-based climate solutions is rapidly running out. One 

major challenge is the research grant funding systems currently operating in many 

countries which impose delays of up to 12 months between submission of an idea to 

eventually starting a project. There is an urgent need to re-design and accelerate the way 

plant-based climate solutions are assessed, initially tested and then rolled out. New 

formats to catalyze trans-disciplinary research solutions are also urgently needed. The 

Belmont Forum (https://belmontforum.org) provides an example for how such a change 

can be designed, which involves funding organizations, international science councils, 

and regional consortia committed to International transdisciplinary research to provide 

knowledge for understanding, mitigating and adapting to global environmental change. 

PlantACT! aims to urgently accelerate new trans-disciplinary interactions and solutions 

by stimulating new forms of working and funding.  

 

  

https://belmontforum.org/
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Table 1. Strategies to avoid adverse impact of agriculture on climate change, adapt to 

the consequences of climate change, and to mitigate climate change.  

 

Colors indicate estimated timeframes to implementation: ■ short-term (within a decade), 

■ mid-term (one to several decades), ■ long-term (centennial).    


