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nutritional biomarkers measured in maternal blood collected at first trimester of
pregnancy and child anthropometric measurements at 7 years. Six organochlorine
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per-/polyfluoroalkyl substances (PFAS) were measured. Nutrients included vitamins (D,
B12 and folate), polyunsaturated fatty acids (PUFAs), and dietary carotenoids. Two
POPs-nutrients mixtures datasets were established: (i) OCs, PFAS, vitamins, and
carotenoids (n=660) and (ii) OCs, PUFAs, and vitamins (n=558). Cumulative effects of
mixtures on obesity were characterized using Bayesian Kernel Machine Regression
(BKMR). Relative importance of biomarkers and 2-way interactions were identified
using Gradient Boosting Machine, hierarchical group-lasso regularization, and BKMR.
Interactions were further characterized using multivariate regression models in the
multiplicative and additive scale.
Results  : Forty percent of children were overweight or obese. We observed a positive
overall cumulative effect of both POPs-nutrients mixtures on overweight/obesity risk,
being HCB and vitamin B12 the biomarkers contributing the most. Recurrent
interactions were found between HCB and vitamin B12 across screening models.
Relative risk and 95% confidence interval (95% CI) for a log increase of HCB was 1.31
(1.11-1.54,  p  interaction  =0.02) in the tertile 2 of vitamin B12 and in the additive scale
a Relative Excess Risk due to Interaction of 0.11 (95% CI, 0.02-0.20) was found.
Interaction between perfluorooctane sulfonate and b-cryptoxanthin suggested a
protective effect of the antioxidant on overweight/obesity risk.
Conclusion  : These results support that maternal nutritional status may modulate the
effect of prenatal exposure to POPs on childhood overweight/obesity. These findings
may help to develop biological hypothesis for future toxicological studies and to better
interpret inconsistent findings in epidemiological studies.
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Abstract 61 

Background: Prenatal exposure to persistent organic pollutants (POPs) may contribute to the 62 

development of childhood obesity and metabolic disorders. However, little is known about 63 

whether the maternal nutritional status during pregnancy can modulate these associations. 64 

Objectives: The main objective was to characterize the joint associations and interactions 65 

between prenatal levels of POPs and nutrients on childhood obesity.  66 

Methods: We used data from to the Spanish INMA birth cohort, on POPs and nutritional 67 

biomarkers measured in maternal blood collected at first trimester of pregnancy and child 68 

anthropometric measurements at 7 years. Six organochlorine compounds (OCs) 69 

(dichlorodiphenyldichloroethylene, hexachlorobenzene [HCB], β-hexachlorocyclohexane [β-70 

HCH] and polychlorinated biphenyls 138, 153, 180) and four per-/polyfluoroalkyl substances 71 

(PFAS) were measured. Nutrients included vitamins (D, B12 and folate), polyunsaturated fatty 72 

acids (PUFAs), and dietary carotenoids. Two POPs-nutrients mixtures datasets were 73 

established: (i) OCs, PFAS, vitamins, and carotenoids (n=660) and (ii) OCs, PUFAs, and 74 

vitamins (n=558). Cumulative effects of mixtures on obesity were characterized using 75 

Bayesian Kernel Machine Regression (BKMR). Relative importance of biomarkers and 2-way 76 

interactions were identified using Gradient Boosting Machine, hierarchical group-lasso 77 

regularization, and BKMR. Interactions were further characterized using multivariate 78 

regression models in the multiplicative and additive scale.  79 

Results: Forty percent of children were overweight or obese. We observed a positive overall 80 

cumulative effect of both POPs-nutrients mixtures on overweight/obesity risk, being HCB and 81 

vitamin B12 the biomarkers contributing the most. Recurrent interactions were found between 82 

HCB and vitamin B12 across screening models. Relative risk and 95% confidence interval 83 

(95% CI) for a log increase of HCB was 1.31 (1.11-1.54, pinteraction=0.02) in the tertile 2 of 84 

vitamin B12 and in the additive scale a Relative Excess Risk due to Interaction of 0.11 (95% 85 
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CI, 0.02-0.20) was found. Interaction between perfluorooctane sulfonate and -cryptoxanthin 86 

suggested a protective effect of the antioxidant on overweight/obesity risk.  87 

Conclusion: These results support that maternal nutritional status may modulate the effect of 88 

prenatal exposure to POPs on childhood overweight/obesity. These findings may help to 89 

develop biological hypothesis for future toxicological studies and to better interpret 90 

inconsistent findings in epidemiological studies. 91 

  92 
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1. Introduction 93 

Growing evidence supports that the environment and nutrition during the early stages of 94 

development may impact the subsequent health during childhood, including obesity and 95 

metabolic diseases (Gluckman and Hanson 2004; Inadera 2013). Childhood obesity remains a 96 

public health priority due to the high prevalence, associated risk of comorbidities and high 97 

societal costs (Lin and Li 2021; NCD-Risk 2017), which has been linked to a growing list of 98 

environmental factors including synthetic chemicals (Güil-Oumrait et al. 2021; Legler et al. 99 

2015). Persistent organic pollutants (POPs) represent a vast family of chemicals characterized 100 

by their hydrophobicity, stability, and capacity to bioaccumulate across the trophic chains and 101 

widespread in fatty tissues of populations from across the globe (Jones and De Voogt 1999; 102 

UNEP 2017; WHO 2010). Some POPs like the pesticide dichlorodiphenyltrichloroethane 103 

(p,p’-DDT), its main metabolite dichlorodiphenyldichloroethane (p,p’-DDE), or 104 

hexachlorobenzene (HCB) have been associated with obesity or metabolic disruption in human 105 

prospective studies and supported by several experimental studies (Iszatt et al. 2015; Nadal et 106 

al. 2017; Ren et al. 2020; Stratakis et al. 2021; Valvi et al. 2012).  107 

Such hydrophobic pollutants present physicochemical commonalities with some nutrients, 108 

sharing mechanisms of uptake, transport, and metabolism, and/or targeting similar molecular 109 

pathways, which results in a large potential to interact in multiple health outcomes (Cano-110 

Sancho and Casas 2021). Specific dietary patterns and nutritional status can modulate the effect 111 

of toxicants, and thus it can become a source of heterogeneity in environmental 112 

epidemiological research, if not properly addressed (Cano-Sancho and Casas 2021; Hennig et 113 

al. 2012). For instance, in a seminal study where nutritional confounding was first reported, the 114 

neurotoxic effects of prenatal methyl-mercury exposure were strengthened when 115 

polyunsaturated fatty acids (PUFA) were included in the regression models (Choi et al. 2008). 116 

The interactive effect of POPs and nutritional compounds in metabolic disorders has been 117 
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observed in experimental studies; for instance, counteracting the beneficial effects of PUFA -118 

3 on the prevention of insulin resistance and obesity (Ibrahim et al. 2011; Ruzzin et al. 2010).  119 

Previous studies within the Spanish longitudinal INMA (INfancia y Medio Ambiente – 120 

Environment and Childhood) birth cohort have reported positive associations between prenatal 121 

exposure to organochlorine compounds (OCs) with higher offspring obesity risk (Agay-Shay 122 

et al. 2015; Güil-Oumrait et al. 2021; Valvi et al. 2012; Valvi et al. 2014), but mild or null 123 

associations for per- and polyfluoroalkyl substances (PFAS) (Manzano-Salgado et al. 2017). 124 

To the best of our knowledge, no previous studies have been conducted to assess the joint effect 125 

of prenatal POPs and nutrients to date. Thus, built on the hypothesis that the health effects of 126 

toxicants may be modulated by the nutritional status (Cano-Sancho and Casas 2021), this study 127 

extends the previous INMA work to characterize joint effect of prenatal POPs and nutrients on 128 

childhood obesity risk. To this end, we conducted a comprehensive multi-step framework 129 

intended to answer major questions in epidemiological mixture analyses including (Barrera-130 

Gómez et al. 2017; Braun et al. 2016; Knol and VanderWeele 2012; Lazarevic et al. 2019): 1) 131 

what is the effect of individual POPs when other POPs are considered in the model?; 2) what 132 

is the cumulative effect of the mixture of POPs and nutrients on the specific outcome?; 3) are 133 

there interactions between POPs and nutrients within the mixture? and 4) if exist, how these 134 

interactions affect the POPs-obesity effect estimates?  135 

 136 

2. Methods 137 

2.1. Study Population  138 

Data from the Spanish INMA birth cohort were used for the present analysis, extensively 139 

described elsewhere (Guxens et al. 2012). Briefly, a total of 2,150 pregnant women from the 140 

regions of Gipuzkoa, Sabadell, and Valencia were recruited at first trimester of pregnancy 141 

(weeks 10-13 of gestation) from 2003 to 2008. To be eligible, women must be at least 16 years 142 
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old and present singleton pregnancy, no communication barrier, no reproductive assistance and 143 

giving birth in the reference hospital (Guxens et al. 2012). The study was approved by the 144 

ethical committees of the centers involved in the study. Written informed consent was obtained 145 

from the parents of all children. In the present analysis, we included mother-child pairs with 146 

information on blood biomarkers of POPs (OCs and PFAS) exposure and nutrient intake 147 

(vitamins, PUFAs, and carotenoids) during pregnancy and child anthropometric measurements 148 

at 7 years of age (Figure S1). A total of 1241 mothers had information on OCs and vitamins 149 

and child obesity outcomes (Figure S1). However, since not all women had available 150 

information of all POPs and nutrients, we generated two consolidated datasets for the mixture 151 

analysis: the ANTIOX dataset with OCs, PFAS, vitamins and carotenoids (n=660 with 30 152 

variables) and the PUFA dataset consisting of OCs, vitamins and PUFAs (n=558 with 14 153 

variables), see details in Table 1. Among both datasets there is an overlap of 241 mother-child 154 

pairs. The list of compounds included within each dataset is detailed in Table 1. 155 

2.2. Prenatal POPs determination 156 

Blood samples from mothers were collected at recruitment at the end of first trimester of 157 

gestation (weeks 10-13 of gestation), aliquoted in 1.5 mL cryotubes and stored at −80 °C until 158 

their analysis. Concentrations of HCB, β-hexachlorocyclohexane (β-HCH), p,p’-DDE, and 159 

polychlorinated biphenyl (PCB) congeners 138, 153, and 180 were determined in serum 160 

samples using gas chromatography equipped coupled to electron capture detector or mass 161 

spectrometer as previously described (Goñi et al. 2007; Grimalt et al. 2010; Mendez et al. 2011; 162 

Valvi et al. 2012). Concentrations of OCs were adjusted to total serum lipids calculated with 163 

the reduced equation using cholesterol and triglycerides determined enzymatically (Phillips et 164 

al. 1989). Concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), 165 

perfluorohexane sulfonate (PFHxS), and perfluorononanoate (PFNA) were determined in 166 

plasma samples by column-switching liquid chromatography coupled with tandem mass 167 
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spectrometry at the Institute for Occupational Medicine, RWTH Aachen University (Aachen, 168 

Germany), as described previously (Manzano-Salgado et al. 2015; Manzano-Salgado et al. 169 

2017). Limits of detection (LOD) ranged between 0.01 and 0.07 ng/ml for OCs and between 170 

0.05 and 0.20 ng/mL for PFAS.  171 

2.3. Nutritional biomarkers determination 172 

Biomarkers of vitamins, PUFAs, and carotenoids were determined in maternal blood using 173 

validated analytical methods described elsewhere (Montes et al. 2013; Morales et al. 2015; 174 

Vioque et al. 2013). Briefly, serum levels of vitamin B12 and folate were measured using a 175 

commercially available radioassay (Vioque et al. 2013). Levels of 25-hydroxyvitamin D3 were 176 

measured in plasma by high-performance liquid chromatography (HPLC) using a BIO-RAD 177 

kit (BIO-RAD Laboratories GmbH, Munchen, Germany) as measure of vitamin D status 178 

(Morales et al. 2015). Concentrations of long-chain PUFAs were determined in maternal 179 

plasma using fast-gas chromatography (Montes et al. 2013). The levels of carotenoids (α- and 180 

β-tocopherol, β-cryptoxanthin, α- and β-carotene, lutein, lycopene, zeaxanthin, and retinol) 181 

were measured in serum using HPLC with diode array detection and UV detection at 292 nm, 182 

in case of α-tocopherol (Vioque et al. 2013). All biomarkers showed coefficients of variation 183 

below 10% in inter-assays and 5% intra-assays.  184 

2.4. Childhood obesity outcomes  185 

Trained nurses measured weight and height from children at the follow-up visit at 7 years 186 

(mean: 7.7, standard deviation (SD): 0.23 - ANTIOX dataset), using standard protocols. Age- 187 

and sex-specific body mass index (BMI) z-scores (zBMI) were calculated based on the WHO 188 

standard reference curves (de Onis et al. 2007). Overweight and obesity were defined as the 189 

proportion of children with values zBMI over >1SDs and >2SDs, respectively (de Onis et al. 190 

2010; Vrijheid et al. 2020).  191 

2.5. Covariates 192 
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Information on socio-demographic (age, parity, education,) and lifestyle characteristics 193 

(smoking) of the mothers was collected by questionnaires administered to mothers during the 194 

first trimester of pregnancy. Measured maternal height and reported weight by the mother at 195 

the first trimester visit was used to calculate pre-pregnancy BMI (kg/m2). Data regarding the 196 

maternal health status during pregnancy was directly collected from clinical records. 197 

Confounding variables were selected on the basis of published literature on established 198 

determinants of maternal levels of POPs and childhood obesity risk (Ibarluzea et al. 2011; Llop 199 

et al. 2010). All models were thus adjusted for maternal pre-pregnancy BMI (kg/m2), age of 200 

the mother (years), education level (primary or without education, secondary, university), 201 

smoking during pregnancy (nonsmoking, any smoking during pregnancy), region of residence 202 

(Gipuzkoa, Sabadell, Valencia), and child’s sex (female, male). 203 

2.6. Data analysis 204 

The multi-step workflow for data-analysis is illustrated in Figure 1 covering major questions 205 

about the effect of mixtures: an exploratory analysis (step 1) to identify the correlations 206 

between POPs and nutrients; a preliminary characterization of associations between individual 207 

biomarkers and obesity outcomes without accounting for the rest of biomarkers (step 2); a 208 

ranking of biomarker importance accounting for the co-exposure in multipollutant models (step 209 

3); an estimation of the cumulative effect of the mixtures on obesity outcomes (step 4); a 210 

screening of 2-way interactions to select suspected pairs (step 5); and a refined characterization 211 

of those interactions using conventional regression methods to facilitate the interpretation in 212 

terms of risk estimation (step 6). To this end, we applied a battery of complementary algorithms 213 

developed to integrate multiple correlated exposure variables to identify joint-effects and 214 

interactions (Barrera-Gómez et al. 2017; Lazarevic et al. 2020). 215 

2.6.1. Data pre-processing and unsupervised exploratory analysis 216 

 217 



10 

 

The distribution profiles of POPs and nutrients were explored in order to characterize the 218 

skewness and identify extreme values, left-censored data, and missing data. Biomarkers with 219 

detection frequencies below 75% were removed from the analysis (p,p’-DDT and PCB118); 220 

only complete exposure data was used in the statistical analysis. Multiple multivariate 221 

imputation procedure was applied to covariate variables with some missing data following the 222 

workflow described elsewhere for data missing at random (van Buuren and Groothuis-223 

Oudshoorn 2011). Batches of 15 variables were considered in the multivariable imputation 224 

models using the R package mice, developed specifically for each dataset. Pre-processing of 225 

continuous data included log-transformation and scaling to the SD to improve model fit, if 226 

necessary. Exploratory analysis included Spearman’s rank correlation analysis to identify 227 

correlation patterns between pairs of biomarkers and support the biomarker grouping in the 228 

Bayesian kernel machine regression (BKMR) (see section 2.5.3.) and interpretation of results.  229 

2.5.2. Single-biomarker outcome associations  230 

Multivariate linear and Poisson regression (MLR) with robust variance were used to 231 

characterize the associations between individual biomarkers (POPs and nutrients) and 232 

continuous (zBMI) or binary outcomes (normal weight vs overweight and obese combined), 233 

respectively. Confounding variables were included in the model as covariates, allowing a 234 

flexible estimation of marginal effects. Modified Poisson regression with robust variance was 235 

computed using the “sandwich” approach, which is considered to provide unbiased estimates 236 

of risk ratios under potential model misspecification (Chen et al. 2018). The method was 237 

implemented in R software using the coeftest function with ‘sandwich’ and ‘lmtest’ packages.  238 

2.5.3. Biomarker importance from multipollutant models 239 

Three different statistical methods to examine multipollutant associations were selected based 240 

on their complementarity to characterize linear and non-linear associations, with the capacity 241 

to manage confounding data and identify potential interactions. These models also allow the 242 
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characterization of rankings of associations for individual exposures, thus providing a measure 243 

of their relative importance within each model, while accounting for the rest of biomarker 244 

effects and the identification of interactions (see next sub-section). A summary of main features 245 

from each model supporting the complementarity are displayed in Table S2.   246 

- Group Lasso Interaction Network (Glinternet) is a flexible regularization algorithm 247 

designed to identify pairwise interactions in regression models imposing the group-lasso (L1) 248 

penalties with strong hierarchy (Lim and Hastie 2015). Thus, if an interaction coefficient is 249 

estimated to be nonzero, then its two associated main associations also have nonzero estimated 250 

coefficients, controlled by the parameter . Optimal can be selected by cross validation in 251 

order to identify an adequate bias-variance trade-off. In the present study, 10-fold cross-252 

validation was used to identify the exhibiting the lowest mean squared error, computed with 253 

the R package “glinternet”. To increase the robustness of findings, the models were fitted to 254 

100 bootstrap samples, as described elsewhere (Havard et al. 2019). This feature allowed the 255 

measurement of coefficient variability and the frequency of interaction detection across 256 

bootstrap samples. Averaged model coefficients were used as variable importance scores 257 

considering all of them were at the same scale. The approach is intuitive, may handle a large 258 

number of independent variables (e.g., up to 105) and their interactions, computationally 259 

efficient and the results are straightforward to interpret. The method may be limited to 260 

characterize non-linear associations, and the built-in package does not allow forcing 261 

confounding variables out of model penalties.  262 

- Gradient boosting machine (GBM) is one of the first approaches proposed to evaluate 263 

the joint associations of environmental exposures and their interactions (Lampa et al. 2014). 264 

Boosting machines combines a large number of simple regression tree models throughout an 265 

iterative process of simpler models’ combination (boosting) to improve the overall model fit. 266 

We implemented the method using the R packages “gbm” and “dismo” (Elith et al. 2008). The 267 
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input settings used in the gbm.step function included a learning rate of 0.001, tree complexity 268 

of 4, bag fraction at 0.8, and 10‐fold cross‐validation. Learning rate is a weight applied to the 269 

parameter that minimizes the loss function; thus, slower learning rates (smaller values) require 270 

more iterations to achieve local minima. Tree complexity (interaction depth) is the number of 271 

nodes in a tree and should be sufficiently large to capture potential interactions (interactions 272 

between predictors are also evaluated after running a model). The bag fraction is the proportion 273 

of data randomly selected to propose the next expansion in a tree. In order to obtain robust 274 

estimates, we replicated the model 100 times and extracted the most frequently detected 275 

variables and their interactions across the replicates (>50 %). The relative contribution of 276 

biomarkers to the overall model fit were used as variable importance metric. Strengths of GBM 277 

includes the capacity to detect non-linear associations and high-order interactions, at a 278 

moderate computational cost, however the interpretability is often challenging, requiring a 279 

second modeling step. 280 

- Bayesian kernel machine regression (BKMR). The BKMR framework is a flexible non-281 

parametric approach that allows the estimation of the overall effect estimate of multiple 282 

correlated exposures accounting for confounding variables (Bobb et al. 2015). The method was 283 

implemented with the R package “bkmr” using 10,000 iterations (Bobb et al. 2018). All 284 

variables were included in the model using the variable selection mode which allows the 285 

computation of posterior inclusion probabilities (PIPs) to support the selection of most relevant 286 

variables and rank the variables according to their probability to be included in the model as 287 

approximate measure of variable importance. Important assets of BKMR compared to the 288 

previous methods include the unique capacity to measure the cumulative effect of the mixture 289 

and the model structure specifically accounting for confounding variables. Despite the method 290 

can efficiently account for complex interactions, the identification process involves graphical 291 

inspection that can become sometimes conflicting.  292 
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2.5.4. Cumulative effect of mixtures 293 

The joint effect of the mixture composed by those POPs and nutrients with higher PIPs was 294 

characterized using BKMR with hierarchical variable selection, as described above and using 295 

the OverallRiskSummaries function from the “bkmr” R package. The summary estimate 296 

displayed the overall effect of biomarkers as the comparison of the predicted outcome when all 297 

biomarkers are fixed at given percentiles with the predicted outcome when all biomarkers are 298 

fixed at the 10th percentile.  299 

2.5.5. Screening of 2-way interactions 300 

In this step the 2-way interactions included in the multipollutant models were identified. With 301 

Glinternet, two-way interactions were identified through the inherent strong hierarchical fitting 302 

process, together with those main-effects likely to be nonzero. In the case of GBM, as other 303 

tree-based models, interactions between predictors are inherently included, as some of the 304 

regression trees used are likely to be asymmetric (thus inducing interactions between 305 

variables), where the response of one variable depends on the others higher in the tree. The 306 

presence of interactions was assessed using the gbm.interactions routine from the “dismo” 307 

package. Briefly, the interactions were identified if departures of model predictions for linear 308 

combinations of pair of variables was elucidated (Elith et al. 2008). For BKMR, two-way 309 

interactions were graphically explored using the cross-section plots depicting the exposure-310 

response function for a given exposure when another other exposure was fixed at the 25th, 311 

50th, or 75th percentile fixing the rest of exposures to the median.  312 

In order to develop a priority list of interactions for refined analysis, we selected those 313 

chemicals pairs considering the criteria of being a pair of POPs and nutrients and either 314 

exhibiting: the most influential or largest strength estimates in at least one approach (e.g. 315 

contribution for GBM, coefficients for Glinternet, clear visual trends for BKMR) or 316 

weak/moderate strength estimates in at least two approaches or obesity outcomes (i.e. 317 



14 

 

continuous or binary). For those methods involving bootstrapping samples (GBM and 318 

Glinternet), a frequency detection threshold was defined based on the number of interactions 319 

identified (e.g. 50% large number of interactions or 25% low number of interactions).  320 

2.5.6. Characterization of interactions for selected pairs 321 

In the latter step, we aimed to characterize the joint effect of pairs biomarkers (i.e. POPs and 322 

nutrients) identified in the previous screening phase to facilitate interpretation. We first built 323 

the generalized additive models (GAM) including the interaction product term for the selected 324 

pairs of variables, considering the POPs in continuous scale and nutrients in categorical scale 325 

(tertiles), adjusted for the abovementioned covariates. Interaction plots were inspected in order 326 

to characterize the shape of the exposure-response functions and refine the regression models. 327 

Unlike distributions of nutrients broken in tertiles for a better interpretation of interactions, 328 

POPs were categorized in quartiles if departure from linearity was graphically visualized. Risk 329 

estimates of POPs were then evaluated across the different tertiles of nutrients using linear or 330 

robust Poisson regression models for zBMI or overweight/obesity risk, respectively, as detailed 331 

above. In order to formally evaluate the departures from additive joint effects we also estimated 332 

the relative excess risk of overweight/obesity due to interaction (RERI) with the regression 333 

models’ coefficients from Poisson regression (Knol et al. 2007; Knol and VanderWeele 2012). 334 

The additive interaction is present when the RERI (95% confidence interval) >0 if positive or 335 

<0 if negative.  336 

 337 

3. Results 338 

3.1. Unsupervised exploratory analysis 339 

The prevalence of overweight including obesity was 43% and 41% in the ANTIOX and PUFA 340 

datasets, respectively (Table S1). The respective mean age of children ranged was 7.7 and 7.3 341 

years old, having an equal proportion of girls and boys in both datasets (Table S1). Mothers 342 
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had a mean age of 30 years at recruitment with a presence of about 30% of smokers at some 343 

moment during pregnancy. Levels of OCs and vitamins were similar between datasets (Table 344 

1). The correlation analysis showed high positive correlations ( > 0.5) between POPs within 345 

families (Figure 2A and 2B), and mild or no correlation between families. In turn, p,p’-DDE 346 

was not correlated with PFAS and moderately correlated (: 0.3-0.2) with PCBs, HCB, and -347 

HCH. Regarding the fatty acids, arachidonic acid (AA) and docosahexaenoic acid (DHA), both 348 

showed positive correlations with PCBs and negative correlation with -HCH (: 0.3 and -0.1, 349 

respectively). Similar but weaker association profiles were shown for eicosapentaenoic acid 350 

(Figure 2B), and LA was negatively correlated with PCBs and the rest of PUFAs. Most OCs 351 

and PFAS congeners were not correlated with dietary carotenoids and vitamins with few 352 

exceptions. For instance PFHxS showed mild positive correlations with most nutrients (: 0.1-353 

0.2), whereas p,p’-DDE was negatively associated with retinol (: -0.3) (Figure 2B). 354 

3.2. Single-biomarkers outcome associations  355 

The contributions and associations of individual biomarkers with overweight/obesity risk are 356 

summarized in Figure 3 (ANTIOX dataset) and Figure S3 (PUFA dataset); whereas the 357 

estimates for zBMI scores can be found in Figures 2 (ANTIOX dataset) and 4 (PUFA dataset). 358 

Numeric results are reported in Tables S3 and S4. Single-pollutant models showed consistent 359 

statistically significant associations of prenatal exposure to HCB and -HCH with obesity 360 

outcomes in children (e.g. adjusted Relative Risk (RR): 1.18 [95% confidence interval (CI): 361 

1.07, 1.31] per 1-SD increase in log HCB ANTIOX dataset, Figure 3). PFNA was positively 362 

associated with overweight/obesity risk (e.g., RR 1.10 [95% CI: 1.01, 1.20] per 1-SD increase 363 

in log PFNA p=0.03, Figure 3) but not with zBMI (Figures S2 and S4). Null associations were 364 

found for the rest of POPs, nonetheless PCB153, PCB180 and PFOA were positively associated 365 

with overweight/obesity risk but at limit of conventional statistical significance (p=0.06-0.10, 366 

Table S3, S4). Estimates for most nutrients were also null with the exception of -367 
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cryptoxanthin, zeaxanthin or α-tocopherol, positively associated with zBMI, whereas 368 

docosahexaenoic acid (DHA) showed a negative association.  369 

3.3. Biomarker importance from multipollutant models 370 

Variable selection methods (Glinternet, GBM, BKMR) consistently indicated that HCB and 371 

vitamin B12 had a high relative importance in the multipollutant models of overweight/obesity 372 

risk (Figures 3 and Figure S3) and zBMI (Figures S2 and 4). In turn, -HCH, PFNA, PFOA 373 

and PFOS also scored high, but the ordering was less consistent across datasets, models, and 374 

obesity outcomes. Similarly, the ordering of PUFAs in the importance ranking was less 375 

consistent between obesity outcomes. For instance, AA was identified among most 376 

contributing variables on overweight/obesity risk (Figure S3), whereas DHA, LA and ALA 377 

appeared among the most important contributors on zBMI models (Figure S4). Among the 378 

carotenoids, -cryptoxanthin was the most important biomarker across models and outcomes, 379 

followed by -tocopherol and -tocopherol. In turn, folate showed one of the most inconsistent 380 

behaviors across datasets, models, and obesity outcomes, being among the top 5 PIPs from 381 

BKMR in one overweight/obesity model (ANTIOX dataset, Figure 3) but scoring low in the 382 

rest of the models. 383 

3.4. Cumulative effect of mixtures 384 

The profile of most relevant chemicals in the mixtures is depicted by the conditional PIPs 385 

discussed in the previous section. The hierarchical variable selection approach, built on groups 386 

of biomarker nature (i.e. OCs, PFAS, vitamin, PUFA, and antioxidant), resulted in a balanced 387 

composition of top ranked biomarkers with representatives from each family. The overall 388 

cumulative effect of the mixture was positive, mostly linear and significant, for 389 

overweight/obesity risk (Figure 4A) and zBMI (Figure 4B). Details of most relevant 390 

biomarkers in the mixtures can be found in Figures S9-12. 391 

3.5. Screening of 2-way interactions 392 
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The screening of interactions relied in three computational methods (Glinternet, GBM, and 393 

BKMR) with complementary features to fit the data and identify interactions. For that reason 394 

and in order to increase the robustness of findings, we selected interactions with the largest 395 

strength present in at least a single model or weaker strength but selected by multiple models. 396 

Results from each model and outcome are summarized in tables and interaction network plots 397 

depicting the bivariate interactions in the ANTIOX (Table S5 and Figures S5-6) and PUFA 398 

datasets (Table S5 and Figures S7-8). Specific interactions outputs from GBM (bootstrap 399 

interaction contributions) and Glinternet (bootstrap interaction coefficients) can be found in 400 

Figures S13-14 for overweight/obesity risk and Figures S15-16 for zBMI. The frequency of 401 

interactions and the variability of strength attributed to each interaction across bootstrap 402 

samples is depicted with the raw shaded points and summarized with the means depicted with 403 

the white dot.  404 

Overall, we observed larger uncertainty for interaction coefficients in Glinternet models than 405 

model contributions from GBM models. Detection frequency of interactions across bootstrap 406 

samples was higher among the findings from PUFA dataset (threshold set up 50%) than 407 

ANTIOX dataset (threshold set up 25%). Detailed graphical output of bivariate cross-section 408 

from BKMR can be found in Figures S9-12. For the present study we focused on interactions 409 

between POPs and nutrients; however, a list of POP-POP and nutrient-nutrient interactions 410 

were also automatically identified from GBM and Glinternet, and represented in the interaction 411 

network plots (Figures S5-8). In general, interactions between POPs and nutrients were weak 412 

and inconsistent across models, with presence of more but weaker interactions within the 413 

ANTIOX dataset, whereas in the PUFA dataset, we found less but stronger interactions.  414 

In order to conduct a more refined analysis, ten interactions were discerned due to their largest 415 

strength/contribution in models, or because they were frequently detected across models 416 

(highlighted in bold in Table S5), as detailed in the prioritization criteria. For instance, the 417 
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interaction between HCB and vitamin B12 showed the largest contribution in the GBM models 418 

for overweight/obesity risk but also graphically suggested in the BKMR model (Table S5). 419 

Similarly, but to lesser extent, the interaction between -HCH and vitamin B12 was found in 420 

the ANTIOX dataset (Table 2). The pesticide -HCH appeared to interact with folate, 421 

recurrently detected by GBM in the ANTIOX dataset and Glinternet in the PUFA dataset 422 

(Table S5). In turn, -HCH also showed frequently detected interactions with ALA and LA 423 

(Table S5). The interaction between PCB138 and LA also exhibited the highest coefficient and 424 

largest detection rates in the Glinternet model for overweight/obesity risk. The interactions 425 

between PFOA and vitamin B12, and between PFOS and tocopherol, cryptoxanthin, and 426 

retinol were also considered of priority interest based on detection frequency and/or strength 427 

(Table S5). 428 

3.6. Characterization of interactions for selected pairs of POPs and nutrients  429 

For the selected ten interactions, we further conducted a regression analysis using GAM models 430 

and supported by graphical summaries (interaction plots) in order to identify non-linearity and 431 

the direction of interactions. This visualization allowed for instance to identify the potential 432 

synergic effect of HCB and vitamin B12 (Figure 5A) and the potential protective effect of -433 

cryptoxanthin on PFOS (Figure 5B). To further characterize the impact of the identified 434 

interactions between OCs and vitamins, we used the dataset with complete data on OCs and 435 

vitamins (n=1,241) as depicted in Figure S1. 436 

The regression analysis confirmed those effects, being the associations between HCB and 437 

childhood overweight/obesity risk and zBMI strengthened at higher levels of vitamin B12 438 

(Table 3). For instance, the associations between HCB and overweight/obesity risk at tertile 2 439 

of vitamin B12 showed a RR 95%CI of 1.31 (1.11-1.54), whereas at tertile 1 were close to the 440 

null 0.99 (0.85-1.14) (pint =0.02). Those trends were also observed in the additive scale, with 441 

corresponding RERIs 95%CI of 0.11 (0.02-0.20) for tertile 2 and 0.12 (0.03-0.21) for tertile 3. 442 



19 

 

A similar but weaker trend was also observed for the interaction between -HCH and vitamin 443 

B12 (Table S6) and between -HCH and folate (Table 3). In the latter case, despite being 444 

statistically not significant at the multiplicative scale, a synergism was suggested in the additive 445 

scale between -HCH and tertile 2 folate with a RERI 95%CI of 0.11 (0.01-0.21).  446 

Synergistic interactions were also noticed between PFOS and retinol on the associations with 447 

overweight/risk and zBMI, yet at the limit of statistical significance (pint=0.069) at the 448 

multiplicative scale (Table 3). For example, at the highest concentration of retinol, the RR 449 

95%CI of overweight/obesity of PFOS was 1.42 (0.96-2.11) for quartile 3 vs 1. Likewise, in 450 

the additive scale the estimates supported the synergism with a RERI of 0.58 (0.11-1.05) for 451 

the same contrast. Similar associations were also observed between PFOS and γ-tocopherol, 452 

with a RERI of 0.60 (0.06-1.15) at highest levels of PFOS and γ-tocopherol.  453 

In the opposite direction, a negative interaction was observed between PFOS and -454 

cryptoxanthin. In this case, the associations between PFOS and overweight/obesity or zBMI, 455 

were substantially higher at the lowest tertile of -cryptoxanthin, reaching a RR 95%CI of 1.59 456 

(1.02-2.05) for quartile 4 vs 1 of PFOS. Whereas the interaction was not statistically significant 457 

in the multiplicative scale (pint>0.1), the RERIs supported antagonisms in the additive scale 458 

(Table 3).  459 

Finally, the synergistic interactions suggested between POPs and PUFAs appeared to be mostly 460 

weak and non-statistically significant in both scales (Table S6) with the exception of PCB138 461 

and linoleic acid (LA) that showed a RERI 95% of 0.18 (0.02-0.33) in the third tertile.  462 

4. Discussion  463 

In the present study we have attempted to develop and apply a comprehensive statistical 464 

framework to evaluate the mixture effect of prenatal exposure to POPs and nutrients on 465 

childhood overweight/obesity. This approach, applied to the population-based birth cohort 466 

study INMA, confirmed findings from previous studies in this cohort, highlighting the role of 467 



20 

 

prenatal exposure to HCB (Agay-Shay et al. 2015; Güil-Oumrait et al. 2021; Valvi et al. 2012) 468 

and -HCH (Agay-Shay et al. 2015) on childhood obesity risk and providing evidence of a 469 

positive cumulative effect of the mixture of POPs and nutrients. Screening for interactions 470 

using advanced approaches highlighted a number of potential combinations. Conventional 471 

regression models allowed to translate those interactions in more meaningful effect estimates 472 

in terms of inferential interpretation. Among the ten POPs-nutrient interactions retained in the 473 

screening step, HCB x vitamin B12 was the most consistent across models and outcomes, and 474 

the regression models suggested a potential synergistic effect. Interaction between PFOS and 475 

-cryptoxanthin suggested a protective effect of the antioxidant on overweight/obesity risk, 476 

with a higher risk associated with PFOS exposure only being observed at lower concentrations 477 

of -cryptoxanthin. 478 

Despite the raise of multipollutant modelling approaches, few studies have considered mixtures 479 

of biomarkers others than pollutants (Lazarevic et al. 2019). In fact, some dietary nutrients have 480 

the potential to counterbalance the effects of environmental pollutants, highlighting the interest 481 

of accounting them in the mixture model (Cano-Sancho et al. 2020; Cano-Sancho and Casas 482 

2021). The mixture analysis allowed the identification of an unexpected synergistic effect of 483 

vitamin B12, strengthening the associations of HCB. Vitamin B12 is an essential hydrophilic 484 

vitamin mainly found in animal food products, being dairy products and meat the major 485 

contributors exhibiting a short half-life in the body (Obeid et al. 2019). Despite the lack of 486 

international consensus on the optimal levels during pregnancy, there is some agreement that 487 

the range between 220 and 850 pmol/L would be adequate (Sukumar et al. 2016). Thus, 488 

considering that median levels of vitamin B12 within our population were 350 pmol/L 489 

(Interquartile range 279-435 pmol/L) most population would fall within that optimal range, 490 

with only 12 participants exceeding the upper threshold. Considering that sources of vitamin 491 

B12 in humans is exogenous, the blood levels may be determined either by the dietary intake 492 
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or as result of their metabolism. Thus, we draw different hypothesis that could help to explain 493 

the interaction with HCB on obesity risk. First, there is the possibility that vitamin B12 is 494 

confounding the true effect of some other concomitant nutrients of animal origin (e.g. total fat, 495 

saturated fat, branched amino acids), or specific food items contributing to poor diet quality 496 

(e.g. meat) associated with childhood obesity (Chen et al. 2021; Fernández-Barrés et al. 2016). 497 

In turn, some authors have suggested that meat could be a determinant of HCB intake (Gasull 498 

et al. 2011); however, our previous analysis rule out that hypothesis in the INMA population 499 

(Ibarluzea et al. 2011; Llop et al. 2010). The second hypothesis is the actual joint effects, 500 

considering that vitamin B12 intake during pregnancy could also be due to supplementation, 501 

often found in multivitamin complexes, as previously reported in the same cohort (Navarrete-502 

Muñoz et al. 2015). Despite the excessive use of supplements as upstream source of highest 503 

levels of vitamins remains to be explored, several mechanistic hypotheses can be developed to 504 

explain the synergistic effects with HCB on fetal metabolic programming and increasing the 505 

risk of obesity later in childhood. We observed a similar trend for folate on the associations 506 

between -HCH and higher overweight/obesity risk and zBMI, being the associations 507 

strengthened among women with higher levels of folate. Interestingly, studies in mice showed 508 

that supplementation with high doses of folate during pregnancy was associated with offspring 509 

metabolic disruption and obesity related phenotypes (Huang et al. 2014; Kintaka et al. 2020). 510 

Modes of action supporting the joint effect of OCs and vitamin B12 or folate on overweight 511 

risk can involve epigenetic programming (McKay et al. 2012; Ouidir et al. 2020). A maternal 512 

intake of methyl-group donors (e.g. folates, vitamin B12) could also alter the DNA methylation 513 

profiles of offspring’s metabolic genes (Pauwels et al. 2017). In turn, HCB and vitamin B12 514 

can both individually impact the metabolic programing of adipocytes during differentiation, or 515 

their DNA methylation profiles (Bastos Sales et al. 2013; Green et al. 2016). Indeed, vitamin 516 

B12 plays a crucial role in humans as a cofactor of methionine synthase, which is actively 517 
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involved in methionine biosynthesis via the re-methylation of total homocysteine. 518 

Interestingly, two enzymes involved on s-adenosyl methionine synthesis 519 

(phosphatidylethanolamine N-methyltransferase and glycine N-methyltransferase), are 520 

transcriptional target of the aryl hydrocarbon receptor (Kim et al. 2018), which is activated by 521 

HCB (Chiappini et al. 2022). Thus, we may hypothesize that a maternal intake of methyl-group 522 

donors (i.e. vitamin B12), together with a higher HCB exposure contribute to an increased 523 

lipogenesis. Considering the active research to establish more accurate recommendations and 524 

thresholds of vitamin supplementation during pregnancy (Maruvada et al. 2020), future studies 525 

should consider the concomitant presence of environmental pollutants. A third hypothesis 526 

could be developed around the fact that higher levels of vitamin B12 may also reflect a 527 

metabolic alteration of one-carbon metabolism, as shown in some hepatic disorders (Ermens 528 

et al. 2003). Under this scenario, our findings could reflect an effect of HCB on maternal 529 

mitochondrial dysfunction (Park et al. 2021), having a direct impact on one-carbon metabolism 530 

pathways due to their coupling to the respiratory chains (Bao et al. 2016). This can be 531 

manifested by an alteration of cell uptake and utilization of vitamins resulting in imbalanced 532 

blood levels of vitamin B12 (Lyon et al. 2020). High levels of vitamin B12 and folate among 533 

pregnant women have been associated with metabolic disruption and gestational diabetes 534 

probably due to a mild liver dysfunction (Chen et al. 2021).  535 

The protective effect of -cryptoxanthin on the association between PFOS and childhood 536 

obesity also deserve attention. β-cryptoxanthin is a naturally occurring carotenoid. It is found 537 

in many foods of plant and animal origin (e.g. oranges, apples, egg yolk). It is closely related 538 

to ß-carotene and has antioxidant properties. Conversely, PFOS is known for its prooxidative 539 

activity (Chen et al. 2014) and increase adipogenesis in vitro (Modaresi et al. 2022), but 540 

epidemiological studies are globally inconsistent. A study in the same INMA cohort showed 541 

mild or null associations (Manzano-Salgado et al. 2017); other previous studies have generally 542 
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shown inconsistent findings (Lee et al. 2021) and even proposed as anti-obesogens by some 543 

authors (Di Gregorio et al. 2019). For the first time, we were able to observe a higher risk of 544 

obesity among children exposed to higher levels of PFOS and lower levels of this antioxidant 545 

during gestation. Current evidence with adult women has shown that concentrations of 546 

carotenoids, including -cryptoxanthin, are inversely associated with BMI and waist 547 

circumference, with major effect modification by exposure to toxicants like smoking (Kabat et 548 

al. 2016). In experimental studies, -cryptoxanthin exerted and anti-obesogenic effect reducing 549 

the body fat of mice and increasing the expression of uncoupling protein 1 (UCP1) in adipose 550 

tissue via the retinoic acid receptor (RAR) (Hara et al. 2019). In turn, PFOA and PFOS has 551 

been shown also to activate UCP1 in brown adipose tissue, which can modulate the food intake 552 

and body weight (Di Gregorio et al. 2019), but our findings suggest the presence of other 553 

potential mechanisms to explain the obesogenic effects of PFOS. For instance, PFOS and 554 

PFOA are activators of the Peroxisome Proliferator-Activated Receptor-alpha (PPAR-α) in 555 

humans. PPAR-α and RAR share a common dimerization partner, the Retinoid X Receptor 556 

(RXR). The activation of both receptors (PPAR-α by PFOS) and (RAR by ß-cryptoxanthin) 557 

could lead to a competitive effect towards this partner (RXR).  558 

Biomonitoring studies during perinatal periods supports the fact that women are exposed to 559 

multiple environmental chemicals during pregnancy and lactation periods, as critical windows 560 

for offspring development (Cano-Sancho et al. 2020; Haug et al. 2018). This exposure 561 

paradigm has stimulated the increasing interest in characterizing the joint effect of 562 

environmental chemicals during pregnancy on offspring’s health outcomes, raising the 563 

development and implementation of statistical approaches to address mixture related questions 564 

(Lazarevic et al. 2019). Whereas the apparel of algorithms and statistical methods has been 565 

growing during the last few years, there is no specific method consistently outperforming the 566 

others as assessed in simulation studies (Agier et al. 2016; Barrera-Gómez et al. 2017; 567 
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Lazarevic et al. 2020). For this reason, we have conceived an approach combining multiple 568 

models in order to strengthen the robustness of our findings supported by the specific features 569 

from each algorithm. The method selection included Glinternet, GBM, and BKMR, based on 570 

previous literature supporting their relatively high statistical performance and capacity to 571 

characterize the joint associations of correlated variables accounting for their interactions 572 

(Barrera-Gómez et al. 2017; Lampa et al. 2014). A simulation study showed that BKMR in 573 

case of non-monotonic exposure-response relationships, may outperform penalized regression 574 

methods that assume linearity (Lazarevic et al. 2020), a group of methods that includes 575 

Glinternet. Identifying relevant components of the mixtures remains a major question in terms 576 

of public health but also regulatory decision-making. Statistically, this is commonly 577 

accomplished by using variable selection, a process that becomes specially challenging as 578 

correlation between variables increases (Lenters and Vermeulen 2018). Whereas data-driven 579 

approaches such as BKMR may improve the predictive performance of models, those may fail 580 

to attribute the true effect to right candidates within the correlated cluster (Braun et al. 2016). 581 

Probably, this fact together with the different nature of variable selection method (e.g. 582 

Glinternet and GBM), may help to explain some inconsistencies in the variable importance 583 

rankings between models. An alternative way to leverage this issue would be to benefit of a 584 

priori toxicological knowledge to inform the variable selection process, especially in 585 

exploratory contexts where improving predictive performance falls out of scope. Selection of 586 

relevant interactions follows a similar process than main effects, based on likelihood 587 

penalization in case of Glinternet or ‘spike-and-slab’ priors in case of BKMR (Bobb et al. 2015; 588 

Lim and Hastie 2015). We noticed that detection of interactions becomes specially challenging 589 

and inconsistent between models when the interaction is weak (Brookes et al. 2004), supported 590 

by the fact that low powered studies prone to false positive detection (Christley 2010). For that 591 

reason, the agreement criteria across screening methods could be a solution to attenuate the 592 
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false positive as observed in the case of the strongest interaction between HCB and vitamin 593 

B12. In order to increase the robustness of findings from Glinternet and GBM we applied a 594 

bootstrapping approach with 100 replicates, allowing the identification of interactions in terms 595 

of frequency of detection and relative contribution or strength. The findings also highlighted 596 

the presence of other interactions (i.e. pollutant:pollutant or nutrient:nutrient) not discussed in 597 

the present manuscript, which may help to illustrate the complex interplay of chemicals within 598 

the mixture.  599 

The present study should be considered with caution in the light of some study limitations. 600 

First, the sample size is relatively small (n=558-1241) for the exploration and characterization 601 

of interactions, which might have resulted in low power to detect interacting effects. Second, 602 

we applied a data-driven approach to explore potential interactions with biological meaning. 603 

The high correlation between some pollutants and our lack of congener-specific knowledge 604 

about their obesogenic potential, may increase the risk of exposure misclassification, thus 605 

attributing the interactive effect to the wrong chemical within the clusters of highly correlated 606 

variables. Current in vitro and in vivo studies about obesogenic effects of POPs are relatively 607 

limited to few congeners, which in turn, can be highly correlated in biological matrices. For 608 

simplicity and due to the limited sample size, we have focused the study to characterize 2-way 609 

interactions; however, higher order interactions cannot be neglected, either between pollutants 610 

and nutrients but also, with other individual characteristics like maternal smoking or child’s 611 

sex, as previously observed (Casas et al. 2015). We may have also failed to accurately measure 612 

vitamin levels representative of all pregnancy as these nutrient biomarkers are reflecting the 613 

current intakes or relatively short time-frames (Burri et al. 2001; Gregory et al. 1998). 614 

However, for POPs, a single spot blood measurement is considered to be indicative of long-615 

term exposure, due to their long elimination half-lives as proved also in the INMA cohort 616 

(Lopez-Espinosa et al. 2016; Manzano-Salgado et al. 2015). The exploration of interactions is 617 
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an emerging and active field of methodological research, and other novel approaches 618 

accommodating the complexities of pollutant datasets could be considered in future studies 619 

(Ferrari and Dunson 2020, 2021). Finally, the biological interpretation of statistical interactions 620 

should be considered with caution in part due to the different implication of interaction scales 621 

or the definitions used in different fields (Howard and Webster 2013). Following current 622 

recommendations, we reported the interactions in multiplicative and additive scale (Knol and 623 

VanderWeele 2012), and we believe that our findings may help to develop biological 624 

hypothesis for future toxicological studies and better interpret inconsistent findings in 625 

epidemiological studies.  626 

To sum up, the present study supports the hypothesis that nutritional status during pregnancy 627 

can modify the effect of environmental pollutants on child health. Specifically, we have found 628 

that high levels of vitamin B12 may strengthen the associations between prenatal exposure to 629 

HCB and childhood obesity. In the opposite direction, the dietary antioxidant -cryptoxanthin 630 

might have a protective effect against the obesogenic effects of PFOS. Our findings suggest 631 

that independent models may fail to identify weak interactions between pollutants and 632 

nutrients; thus combining complementary models may be a more powerful approach to 633 

consider. In the light of the public health implications of these findings, further observational 634 

and experimental research will be required for confirmation and gaining insight on the complex 635 

interplay between pollutants and nutrients during pregnancy on the metabolic programing of 636 

the offspring. As highlighted, these interactions may uncover sub-populations at risk for 637 

specific chemicals under regulatory policies; but also support more accurate nutritional 638 

guidelines during pregnancy.  639 
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Table 1. Distribution (median [25th – 75th percentile]) of persistent organic pollutants and 896 

nutrients in maternal blood for each dataset. 897 

Maternal Biomarkers (units) 
ANTIOX 

N=660 

PUFA 

N=558 

Organochlorine Compounds 

HCB (ng/g lipid) 55.2 [31.3 - 91.0] 39.0 [29.2 - 78.7] 

-HCH (ng/g lipid) 23.6 [6.71 - 35.1] 30.5 [15.3 - 38.4] 

p,p’-DDE (ng/g lipid) 134.0 [85.5 - 234] 122.0 [79.7 - 202] 

PCB138 (ng/g lipid) 33.5 [23.5 - 45.6] 25.5 [16.0 - 37.6] 

PCB153 (ng/g lipid) 52.5 [37.3 - 71.6] 42.9 [29.0 - 61.8] 

PCB180 (ng/g lipid) 39.2 [26.7 - 55.6] 30.2 [20.2 - 43.1] 

Per- and polyfluoroalkyl substances 

PFOA (ng/mL) 2.10 [1.47 - 2.91] - 

PFOS (ng/mL) 5.88 [4.49 - 7.66] - 

PFHxS (ng/mL) 0.483 [0.37 - 0.66] - 

PFNA (ng/mL) 0.582 [0.43 - 0.76] - 

Vitamins   

Vitamin B12 (pmol/L) 397 [310 - 519] 341 [271 - 428] 

Vitamin D (mmol/L) 30.3 [22.9 - 37.6] 29.7 [21.2 - 37.5] 

Folate (mmol/L) 17.9 [12.7 - 25.7] 14.2 [9.70 - 23.1] 

Poly-unsaturated fatty acids 

LA (% of fatty acids)  - 30.9 [25.2 - 34.2] 

ALA (% of fatty acids) - 0.3 [0.2 - 0.3] 

EPA (% of fatty acids) - 0.3 [0.2 - 0.5] 

DHA (% of fatty acids) - 2.9 [2.3 - 4.1] 

AA (% of fatty acids) - 8.0 [6.8 - 9.6] 

Carotenoids   

-tocopherol (mol/L) 1.49 [1.24 - 1.87] - 

-tocopherol (mol/L) 30.9 [26.1 - 35.6] - 

-cryptoxanthin (mol/L) 0.17 [0.111 - 0.25] - 

-carotene (mol/L) 0.11 [0.07 - 0.18] - 

-carotene (mol/L) 0.278 [0.17 - 0.43] - 

Lutein (mol/L) 0.22 [0.17 - 0.28] - 

Lycopene (mol/L) 0.408 [0.23 - 0.77] - 

Zeaxanthin (mol/L) 0.06 [0.05 - 0.08] - 

Retinol (mol/L) 1.95 [1.52 - 2.55] - 

 898 
Abbreviations: AA, arachidonic acid; ALA, alpha linolenic acid; -HCH, β-hexachlorocyclohexane; DHA, 899 
docosahexaenoic acid; EPA, eicosopentaenoic acid; Folate, Folic acid; HCB, hexachlorobenzene; LA, linoleic 900 
acid; PCB138, 2,2',3,4,4',5'-hexachlorobiphenyl; PCB153, 2,2',4,4',5,5'-hexachlorobiphenyl; PCB180, 901 
2,2',3,4,4',5,5'-Heptachlorobiphenyl; PFOA, perfluorooctanoate; PFOS, perfluorooctane sulfonate; PFNA, 902 
perfluorononanoate; PFHxS, perfluorohexane sulfonate; p,p’-DDE, dichlorodiphenyldichloroethylene.  903 

 904 
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Table 2. Summary estimates for the associations between selected POPs across tertiles of nutrients with obesity outcomes from Poisson/lineal 906 

regression models with a cross-product interaction term. Additive interactions on overweight/obesity risk are depicted by the relative excess risk 907 

due to interaction (RERI) and respective 95% confidence intervals (95%CI). All models were adjusted for maternal age, pre-pregnancy body mass 908 

index, smoking during pregnancy, education and region of residence, in addition models on overweight/obesity risk were further adjusted for child 909 

sex and age.  910 

  Overweight/obesity zBMI  

 POP Nutrient tertiles RR 95% CI pint RERI 95% CI  95% CI pint 

HCB (log) a Vitamin B12 (<302 pmol/L) 0.99 (0.85; 1.14) 0.022   -0.07 (-0.21; 0.07) 0.002 

 Vitamin B12 (302-339 pmol/L) 1.31 (1.11; 1.54)  0.11 (0.02; 0.20) 0.26 (0.12; 0.40)  

 Vitamin B12 (>339 pmol/L) 1.21 (1.06; 1.37)  0.12 (0.03; 0.21) 0.16 (0.05; 0.28)  

-HCH (log) a Folate (<11.4 mmol/dl) 1.00 (0.88; 1.15) 0.260   0.00 (-0.12; 0.12) 0.110 

 Folate (11.4-19.0 mmol/dl) 1.16 (1.02; 1.32)  0.11 (0.01; 0.21) 0.16 (0.06; 0.27)  

 Folate (>19.0 mmol/dl) 1.13 (1.02; 1.25)  0.09 (-0.02; 0.20) 0.12 (0.03; 0.21)  

PFOS Q2 b Retinol (<1.7 mol/L)  0.90 (0.59; 1.38) 0.069   -0.34 (-0.80; 0.13) 0.076 

            Q3   0.77 (0.48; 1.22)    -0.26 (-0.73; 0.20)  

            Q4   0.97 (0.63; 1.49)    -0.13 (-0.59; 0.33)  

PFOS  Q2 Retinol (1.7-2.3 mol/L)   1.20 (0.83; 1.74)  0.12 (-0.23; 0.81) 0.37 (-0.05; 0.78)  

            Q3   1.09 (0.74; 1.61)  0.32 (-0.19; 0.84) 0.26 (-0.17; 0.69)  

            Q4   1.16 (0.79; 1.69)  0.18 (-0.36; 0.72) 0.23 (-0.19; 0.64)  

PFOS  Q2 Retinol (>2.3 mol/L)   0.62 (0.35; 1.10)  0.12 (-0.80; 0.38) -0.30 (-0.72; 0.12)  

            Q3   1.42 (0.96; 2.11)  0.58 (0.11; 1.05) 0.35 (-0.06; 0.76)  

            Q4   1.10 (0.69; 1.74)  0.11 (-0.45; 0.67) 0.07 (-0.35; 0.49)  

PFOS  Q2 b -cryptoxanthin (<0.1 mol/L)   1.32 (0.82; 2.11) 0.244   0.11 (-0.30; 0.52) 0.367 

            Q3   1.34 (0.85; 2.13)    0.38 (-0.07; 0.82)  

            Q4   1.59 (1.02; 2.50)    0.26 (-0.17; 0.69)  

PFOS  Q2 -cryptoxanthin (0.1-0.2 mol/L) 0.79 (0.49; 1.28)  0.12 (-1.48; 0.30) -0.02 (-0.45; 0.41)  

            Q3   1.05 (0.70; 1.58)  -0.28 (-1.09; 0.54) 0.12 (-0.31; 0.55)  

            Q4   1.12 (0.74; 1.69)  -0.44 (-1.32; 0.45) 0.28 (-0.14; 0.70)  

PFOS  Q2 -cryptoxanthin (>0.2 mol/L) 0.75 (0.50; 1.11)  0.12 (-1.75; 0.20) -0.32 (-0.77; 0.12)  

            Q3   0.86 (0.60; 1.23)  -0.59 (-1.50; 0.32) -0.19 (-0.61; 0.24)  

            Q4   0.71 (0.47; 1.07)  -1.12 (-2.19; -0.05) -0.35 (-0.79; 0.09)  

PCB138 (log) c Linoleic acid (<27.6% fatty acids) 0.96 (0.75; 1.24) 0.297   -0.09 (-0.35; 0.16) 0.372 

 Linoleic acid (27.6-33.4% fatty acids) 1.10 (0.86; 1.41)  0.10 (-0.13; 0.33) 0.03 (-0.21; 0.27)  

 Linoleic acid (>33.4% fatty acids) 1.25 (0.99; 1.58)  0.18 (0.02; 0.33) 0.14 (-0.08; 0.36)  
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Abbreviations: pint, p-value from interaction testing; RERI, relative excess risk due to interaction; RR, adjusted relative risks; SD, Standard Deviation; zBMI, child body mass 911 
index z-score. Details of chemical abbreviations are provided in Table 1. 912 
a Population sample size n=1241 (see details in the study flowchart in Figure S1) 913 
b Population sample size n=660 (ANTIOX Dataset) 914 
c Population sample size n=558 (PUFA Dataset) 915 
 916 

 917 
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 918 

FIGURE LEGENDS 919 
 920 

Figure 1. Statistical Workflow. Abbreviations: BKMR; Bayesian Kernel Machine Regression; 921 

GAM, Generalized Additive Models; GBM, Gradient Boosting Machine; MLR, multivariate 922 

linear/Poisson regression analysis; relative excess risk due to interaction (RERI) 923 
 924 
Figure 2. Spearman’s correlation plots depicting the association strength between POPs and 925 

nutrients in the ANTIOX (Panel B, n=660) and PUFA (Panel A, n=558) datasets. Details of 926 

chemical abbreviations are provided in Table 1. 927 

 928 
Figure 3. Associations between persistent organic pollutants and nutrients with childhood 929 

overweight/obesity within the ANTIOX dataset (n=660). The forest plots depict the 930 

associations between individual prenatal exposures (log scaled) and risk of childhood 931 

overweight/obesity (dashed panel). Summary estimates from single-biomarker models based 932 

on multivariate robust Poisson regression are depicted by adjusted relative risk (RR) and 933 

respective 95% confidence intervals (95% CI). Variable importance plots (non-dashed panels) 934 

depict the rank of variables based on their relative importance in multipollutant models using 935 

the absolute coefficients for Glinternet; model contribution for gradient boosting machine 936 

regression (GBM); and posterior inclusion probabilities (PIPs) for Bayesian kernel machine 937 

regression (BKMR). All models were adjusted for maternal age, pre-pregnancy body mass 938 

index, smoking during pregnancy, region of residence, education, child sex, and age. Details 939 

of chemical abbreviations are provided in Table 1. 940 

 941 

 942 

Figure 4. Overall effect estimates from Bayesian kernel machine regression (BKMR) on the 943 

association between mixtures of POPs and nutrients and childhood overweight/obesity risk 944 

(Panel A) and body mass index z-score (zBMI) (panel B) for the mixtures of chemicals selected 945 

with the hierarchical procedure from ANTIOX dataset (gray) and PUFA dataset (black). 946 

Details of most relevant chemicals in the mixtures are depicted in Figures S9-S12. Graphs show 947 

the difference in the effect estimates when all exposures are at a particular quantile compared 948 

to when all are at the 10th quantile as reference. All models were adjusted for maternal age, 949 

pre-pregnancy body mass index, smoking during pregnancy, region of residence and education, 950 

child sex and age were also included in overweight/obesity models.   951 

 952 

Figure 5. Interaction plots on the associations between hexachlorobenzene (HCB, log increase) 953 

and tertiles of vitamin B12 (Panel A) and between perfluorooctane sulfonate (PFOS, log 954 

increase) and tertiles of -cryptoxanthin (Panel B) on overweight/obesity risk. All models were 955 

adjusted for maternal age, pre-pregnancy body mass index, smoking during pregnancy, region 956 

of residence, education, child sex and age. 957 

 958 
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