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Impacts of additive, dominance, 
and inbreeding depression effects on genomic 
evaluation by combining two SNP chips 
in Canadian Yorkshire pigs bred in China
Quanshun Mei1, Zulma G. Vitezica2, Jielin Li1, Shuhong Zhao1, Andres Legarra2 and Tao Xiang1* 

Abstract 

Background: At the beginning of genomic selection, some Chinese companies genotyped pigs with different 
single nucleotide polymorphism (SNP) arrays. The obtained genomic data are then combined and to do this, several 
imputation strategies have been developed. Usually, only additive genetic effects are considered in genetic evalu-
ations. However, dominance effects that may be important for some traits can be fitted in a mixed linear model as 
either ‘classical’ or ‘genotypic’ dominance effects. Their influence on genomic evaluation has rarely been studied. Thus, 
the objectives of this study were to use a dataset from Canadian Yorkshire pigs to (1) compare different strategies 
to combine data from two SNP arrays (Affymetrix 55K and Illumina 42K) and identify the most appropriate strategy 
for genomic evaluation and (2) evaluate the impact of dominance effects (classical’ and ‘genotypic’) and inbreeding 
depression effects on genomic predictive abilities for average daily gain (ADG), backfat thickness (BF), loin muscle 
depth (LMD), days to 100 kg (AGE100), and the total number of piglets born (TNB) at first parity.

Results: The reliabilities obtained with the additive genomic models showed that the strategy used to combine 
data from two SNP arrays had little impact on genomic evaluations. Models with classical or genotypic dominance 
effect showed similar predictive abilities for all traits. For ADG, BF, LMD, and AGE100, dominance effects accounted for 
a small proportion (2 to 11%) of the total genetic variance, whereas for TNB, dominance effects accounted for 11 to 
20%. For all traits, the predictive abilities of the models increased significantly when genomic inbreeding depression 
effects were included in the model. However, the inclusion of dominance effects did not change the predictive ability 
for any trait except for TNB.

Conclusions: Our study shows that it is feasible to combine data from different SNP arrays for genomic evaluation, 
and that all combination methods result in similar accuracies. Regardless of how dominance effects are fitted in the 
genomic model, there is no impact on genetic evaluation. Models including inbreeding depression effects outper-
form a model with only additive effects, even if the trait is not strongly affected by dominant genes.
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Background
Genomic selection (GS) [1, 2] has been intensively used 
in routine genomic evaluations of pigs, especially in 
developed agricultural countries [3]. In the Chinese 
pig industry, GS is a newly introduced technology, and 
a small number of pig companies have started apply-
ing GS as a routine genetic evaluation approach. Due to 
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the different types of single nucleotide polymorphism 
(SNP) arrays available on the fiercely competitive market 
and the limited knowledge of the performance of these 
SNP arrays, many pig companies tend to use different 
SNP arrays to genotype their pigs in the initial stage of 
implementing GS. Consequently, pigs within one popu-
lation can be genotyped with different SNP arrays. This 
has also been reported in a study on dairy cattle [4]. SNP 
arrays usually contain a large number of unique SNPs 
that are not shared with other chips. Thus, the integra-
tion of genomic information from different SNP arrays 
and the application of such information in pig genomic 
evaluation pose a challenge to these pig companies. The 
imputation of genotypes from a low-density to a high-
density SNP panel is routinely performed [5, 6], provid-
ing a strategy for combining data from different SNP 
arrays for genomic evaluation. However, an appropriate 
strategy for integrating genomic information from differ-
ent SNP arrays of medium density (i.e., 50K to 60K) for 
pig genomic evaluation has not yet been reported and 
deserves to be further investigated.

Although previous studies have demonstrated that 
dominance effects are not negligible [8], they are usu-
ally ignored in genetic evaluations because of the high 
computation requirements, and the large-scale datasets 
with high proportions of full sibs [7]. With the increases 
in computation ability and the availability of SNPs, it 
has become feasible to estimate dominance effects accu-
rately [8, 9]. In previous studies, dominance effects have 
been fitted as a ‘genotypic’ (biological) effect (d) in lin-
ear mixed models. For example, SNPs are coded as 0, 1, 
and 2 for genotypes AA, Aa, and aa, respectively, and 
the coding of dominance effects is equal to 0, 1, and 
0 for genotypes AA, Aa, and aa, respectively [8, 9]. In 
contrast, in traditional genetic evaluations, dominance 
effects are included in linear mixed models as dominant 
deviations. For instance, SNP dominance effects are 
coded as −2p2, 2pq, and −2q2 for genotypes AA, Aa, and 
aa, respectively [10]. Vitezica et  al. [10] referred to this 
parameterization as ‘classical’ (statistical). In our study, 
we used the terms ‘genotypic dominance effect’ and ‘clas-
sical dominance effect’ to refer to the dominance effects 
coded in either a genotypic manner or a dominant devia-
tion manner, respectively, to avoid potential confusion.

An increasing number of studies have investigated the 
influence of including dominance effects in prediction 
models on genomic evaluations of livestock [8, 11–18]. 
When compared with a prediction model based on addi-
tive effects only, the models that included both additive 
and dominance effects perform at least as well as the 
additive model in genomic prediction and genomic mat-
ing [8, 9, 11, 14, 19] but require more computational 
resources. Nevertheless, as Xiang et al. [18] pointed out, 

when dominance effects are explicitly considered in a 
genomic model, it is essential to also include inbreeding 
depression effects to correctly estimate dominance vari-
ance and predict breeding values. To our knowledge, only 
a few studies have included inbreeding depression effects 
in the estimation of genetic variances, and the contribu-
tions of inbreeding depression effects to the genetic vari-
ance have generally been ignored. In addition, differences 
in genomic prediction between models including geno-
typic dominance effects and models including classical 
dominance effects have rarely been studied and need fur-
ther investigation.

Thus, the objectives of our study were: (1) to explore 
an appropriate strategy and procedure for integrating 
genomic information from different SNP arrays (Affym-
etrix 55K and Illumina 42K) for further genomic evalu-
ation; (2), to evaluate the impact of dominance effects 
and inbreeding depression effects on the estimates of 
the genetic variance and the genomic prediction of four 
production traits and one reproduction trait in Canadian 
Yorkshire pigs raised in China; and (3) to compare the 
models including different dominance effects (genotypic 
and classical) in terms of the accuracy of the prediction of 
breeding values. The work was performed in two stages: 
first, we determined the optimal imputation strategy and 
chip, and then, after collecting more data, we addressed 
the models including dominance effects.

Methods
Data
All the data were obtained from a national pig nucleus 
herd in North China. The herd’s purebred Yorkshire 
pigs were originally imported from Canada in 2014, and 
since then, the Yorkshire population within this herd 
has been continuously selected based on selection indi-
ces for five traits: average daily gain (ADG) in the range 
of 30 to 100  kg, backfat thickness (BF) at 100  kg body 
weight, loin muscle depth (LMD) at 100 kg body weight, 
days to 100 kg (AGE100), and the total number of piglets 
born (TNB) at first parity; in this study, we used pheno-
typic records for these five traits collected from 2012 to 
2019 (those before 2014 were provided by the original 
Canadian breeding company (Genesus)): 38,785, 38,667, 
38,644, 38,785, and 10,504 records were available for 
ADG, BF, LMD, AGE100, and TNB, respectively. All 
the phenotypic records for the four production traits 
were obtained at the same time point, allowing a 10-kg 
deviation from the final bodyweight ( 100± 10  kg). The 
pedigree was traced back to 2012, and included 326,576 
pigs. Since the beginning of 2018, a limited number of 
DNA samples was collected from the tested pigs. As of 
May 2019, 2334 pigs have been genotyped. Each geno-
typed animal can be traced back at least four generations. 
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Among these genotyped pigs, 1208 were genotyped with 
an Affymetrix 55K commercial array, and 1106 with an 
Illumina 42K array. Call rates higher than 90% were 
obtained for all individuals included in this study. Fur-
ther quality control of each SNP array was performed 
as follows: SNPs with a call rate lower than 90% and 
SNPs with a minor allele frequency (MAF) lower than 
0.05 were filtered out, and SNPs that deviated strongly 
from the Hardy–Weinberg equilibrium (p <  10–7) were 
removed. After quality control, 31,654 and 35,710 SNPs 
were retained from the Affymetrix 55K and Illumina 42K 
arrays, respectively. To avoid possible confusion in the 
subsequent analyses, we refer to the remaining genotypic 
data as Affymetrix 31K SNPs and Illumina 35K SNPs. 
Among these remaining SNPs, 23,430 (23K common 
SNPs) were shared by the two SNP arrays. In other words, 
after quality control, for the 1208 pigs genotyped with the 
Affymetrix array there were 31K SNPs, i.e. 23,430 (23K) 
common SNPs and 7724 (8K) Affymetrix array-specific 
SNPs; and for the 1106 pigs genotyped with the Illumina 
array there were 35K SNPs, i.e. 23,430 (23K) common 
SNPs and 12,280 (12K) Illumina array-specific SNPs.

Imputation scenarios
To validate the imputation accuracy of the two SNP 
arrays, we tested two imputation scenarios. In Scenario 
1, the 1106 pigs genotyped with the Illumina array (35K 

SNPs retained after quality control) were used as the ref-
erence set, and the remaining 1208 pigs genotyped with 
the Affymetrix array (31K SNPs retained after quality 
control) were used as the imputation set (Fig. 1). In con-
trast to Scenario 1, in Scenario 2 the 1208 pigs genotyped 
with the Affymetrix 31K SNPs were used as the refer-
ence set and the remaining 1106 pigs genotyped with the 
Illumina 35K SNPs were used as the imputed set. All the 
imputations were performed with the Beagle version 4.0 
software [20], which can integrate genomic and pedigree 
information for imputation.

To use these genotypic data for genomic evaluation, 
four strategies to combine genomic information from 
the two chip arrays were investigated: Combination 1, 
included 2334 pigs and 23K SNPs, Combination 2, 2334 
pigs and 31K SNPs, Combination 3, 2334 pigs and 35K 
SNPs and Combination 4, 2334 pigs and 43K SNPs. These 
four combinations are presented at the bottom of Fig. 1.

As mentioned above, 23K common SNPs were 
obtained in this study. To evaluate the imputation accu-
racy in Scenarios 1 and 2, 10% of the 23K common SNPs 
were masked (setting them to an ungenotyped state), and 
the masked SNPs were then imputed. After imputation, 
imputation accuracy was estimated by the concordance 
rate (CR) and the squared Pearson correlation coefficient 
 (r2) between the genotyped and imputed SNPs. To reduce 
the systematic bias of evaluating imputation accuracy, 

Fig. 1 Two imputation scenarios and four combinations to integrate genomic information from the Illumina and Affymetrix arrays
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we repeated the above procedure three times with differ-
ent random seeds, leading to different subsets of the 10% 
masked SNPs. We obtained similar results across these 
repeats, and the average accuracies are presented in the 
“Results” section.

Model‑based reliability
To evaluate the effects of each strategy to combine the 
genomic information from two arrays on genomic evalu-
ation, we applied the abovementioned four combinations 
to univariate single-step genomic best linear unbiased 
prediction (SSGBLUP) models for the five traits recorded 
in Canadian Yorkshire pigs [21, 22] and then evaluated 
the model-based reliabilities of each combined dataset.

For the four production traits, the model included sex, 
herd-year-season, and final body weight as fixed effects 
and an additive genetic effect, a common litter effect and 
a residual as random effects. For the reproduction trait, 
the model included herd-year-season as a fixed effect 
and an additive genetic effect and a residual effect as ran-
dom effects. These analyses were carried out using the 
restricted maximum likelihood (REML) algorithm in the 
software DMU [23].

Individual model-based reliabilities were computed as 
follows [24]:

 where R2
i  is the reliability of individual i , σ 2

a  is the additive 
genetic variance, PEV i is the prediction error variance of 
the EBV of individual i , and is obtained by inverting the 
coefficient matrix of Henderson’s mixed model equations 
corresponding to the model used [24]. Note that this is 
an approximation because, strictly speaking, the denom-
inator should be Hiiσ

2
a  , where H is the combined pedi-

gree-based and marker-based relationship matrix [21, 
22]; in other words, genomic inbreeding is included [25]. 
Our approximation assumes Hii = 1 for all individuals to 
reduce the computational demand, which does not affect 
the comparison of the different strategies. The mean 
model reliability was calculated as the average R2 across 
all the pigs. Among the four strategies applied to com-
bine the genomic information from the two SNP arrays, 
we defined that the optimal strategy was the combination 
that achieved the highest mean R2 , and the subsequent 
analyses were based on this optimal combined dataset.

Prediction models
Our results indicated that Combination 3 was the opti-
mal strategy for combining the information from the two 
arrays; thus, we advised the pig company to use the Illu-
mina 42K SNP array for genotyping additional pigs so that 
we could estimate the dominance variance more accurately, 

R2
i = 1−

PEV i

σ 2
a

,

and 4300 additional pigs with phenotypic records obtained 
between 2019 and 2020 were genotyped. These pigs were 
selected based on the following criteria: (1) they had prog-
eny; (2) they were phenotyped for at least three of the tar-
get traits (ADG, BF, LMD, AGE100, and TNB); and (3) the 
total number of males or females within a litter was limited 
to four. Based on these criteria, we obtained 6614 geno-
typed pigs. The numbers of phenotypic records for ADG, 
BF, LMD, AGE100, and TNB were 41,367, 41,249, 41,224, 
41,367, and 10,811, respectively (Table  1). In total, there 
were 467,244 pigs in the pedigree. Descriptive statistical 
data of the phenotypes are in Table 1. The mean pedigree-
based inbreeding coefficient was 0.007 (ranging from 0 to 
0.267).

These genotypic data were included in the single-step 
additive genetic evaluation model and were used to calcu-
late the pre-corrected phenotypes of each trait. The pre-
corrected phenotype ( yc ) was calculated as yc = â + ê , 
where â and ê were the estimated additive genetic values 
and residuals for each tested pig. The pre-corrected phe-
notypes (yc) of the 6614 genotyped pigs were used for the 
subsequent genomic prediction analysis. To evaluate the 
impact of dominance effects and inbreeding depression 
effects on genomic prediction, six genomic models were 
used to estimate variance components and predict total 
genetic effects as follows:

where yc is the vector of pre-corrected phenotypes for 
each trait; µ is the overall mean; f  is the vector of genomic 
inbreeding coefficients, calculated as 1− h

m , where 1 is a 
vector in which all elements are 1, m is the number of 
SNPs, and h is a vector of the number of heterozygous 
loci for each individual [18]; η is the inbreeding 

MA : yc = 1µ+ Za + e,

MAD : yc = 1µ+ Za +Wv + e,

MAD
∗
: yc = 1µ+ Za +Wv∗ + e,

MAI : yc = 1µ+ fη + Za + e,

MAID : yc = 1µ+ fη + Za +Wv + e,

MAID
∗
: yc = 1µ+ fη + Za +Wv∗ + e,

Table 1 Descriptive statistics

ADG: average daily gain; BF: backfat thickness; LMD: loin muscle depth; AGE100: 
days to 100 kg; TNB: total number of piglets born at first parity

Trait Mean (SD) Min. Max. Animals with 
phenotype

ADG (g) 623.3 (76.6) 298.6 1068.9 41,367

BF (mm) 13.9 (3.4) 5.0 32.0 41,249

LMD (mm) 58.7 (5.7) 30.2 90.0 41,224

AGE100 (days) 162.2 (11.9) 120.4 244.8 41,367

TNB 14.1 (3.5) 0.0 34.0 10,811
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depression parameter; a is the vector of random additive 
genetic effects for each animal; v is the vector of random 
genotypic dominance effects for each individual; v∗ is the 
vector of random classical dominance deviation effects for 
each individual; Z and W are the corresponding incidence 
matrices; and e is the vector of residual effects. It was 
assumed that random effects followed normal distributions: 
a ∼ N (0,Gσ 2

a ) , v ∼ N (0,D σ 2

d
) , v∗ ∼ N (0,D∗σ 2

d∗), and 
e ∼ N

(
0, Iσ 2

e

)
 , where G is the additive genomic relation-

ship matrix, and σ 2
a  is the additive genetic variance; D is 

the genotypic dominance relationship matrix, and σ 2
d  is 

the genotypic dominance genetic variance; D∗ is the clas-
sical dominance relationship matrix, and σ 2

d∗ is the classi-
cal dominance genetic variance; I is the identity matrix, 
and σ 2

e  is the residual variance. Narrow-sense heritability 
was defined as the ratio between additive genetic vari-
ance and phenotypic variance ( h2a =

σ 2
a

σ 2
p
 ), and the propor-

tions of genotypic dominance variation and classical 
dominance variation to phenotypic variance were defined 

as h2d =
σ 2
d

σ 2
p
 and h2d∗ =

σ 2
d∗

σ 2
p

 , respectively.
The genomic relationship matrices for additive effects 

( G ), genotypic dominance effects ( D ), and classical domi-
nance effects ( D∗ ) were constructed as follows [8, 10, 26]:

where m is the number of SNPs; pj is the frequency of the 
reference allele at marker j ; qj = 1 − pj ; M is a matrix with 
dimensions equal to the number of individuals and the 
number of SNPs, and the entries in column j are 2–2pj , 
1–2pj , and 0–2pj , corresponding to the genotypes AA, 
Aa, and aa, respectively; K is a matrix with dimensions 
equal to the number of individuals and the number of 
SNPs, and the entries in column j are 0–2pjqj , 1–2pjqj , 
and 0–2pjqj , corresponding to the genotypes AA, Aa, 
and aa, respectively; and the entries of K∗ in column j are 
− 2qj2 , 2 pjqj , and −2pj2 , corresponding to the genotypes 
AA, Aa, and aa, respectively. Estimation of the variance 
components generated by REML and predictions were 
carried out with the software DMU [23].

G =
MM

′

∑m
j=1 2pjqj

,

D =
KK

′

2
∑m

j=1 pjqj(1− 2pjqj)
,

D∗
=

K∗K∗
′

∑m
j=1 (2pjqj)

2
,

In addition, the goodness-of-fit of the models was 
measured using − 2 times the maximum log likelihood of 
each model ( log(likelihood) ). For the comparisons of the 
nested models (e.g., MA vs. MAD, or MA vs. MAD*), the 
superiority of the more complex model over the less 
complex one was examined by the likelihood ratio test 
(LRT), which was calculated as LRT = − 2 log(likelihood 
for Model 1) − (− 2 log(likelihood for Model 2). These 
differences were assumed to follow a mixture of a χ2 dis-
tribution with 1 degree of freedom and a peak at 0 [27, 
28]. To compare the non-nested models (e.g., MAD vs. 
MAD*), we used Akaike’s information criterion ( AIC ), 
calculated as AIC = 2k − 2log(likelihood) (the lowest 
AIC is the better), where k is the number of estimated 
parameters. Finally, to compare the two models that 
included or not genomic inbreeding (e.g., MA vs. MAI), 
we used the Wald test to test the significance of the 
covariate of the inbreeding depression effect. The Wald 
statistic is η̂2

Var(η̂)
 , where η̂  is the regression coefficient of 

the inbreeding depression effect. The regression coeffi-
cients and their variance were obtained by solving mixed 
model equations with the DMU software [23]. The Wald 
statistic followed approximately a Chi-squared distribu-
tion with 1 degree of freedom.

As pointed out by Christensen et al. [29], the contribu-
tions of the inbreeding depression effects to the genetic 
variance are not negligible in the MAID model. To better 
understand the contributions of the inbreeding depres-
sion effects to the genetic variance, the genomic inbreed-
ing coefficients were reformulated as f = 1− N1

m  , where 
N is a matrix with dimensions equal to the number of 
individuals multiplied by the number of SNPs; the entries 
in the N matrix are 0, 1, and 0 for the genotypes AA, Aa, 
and aa, respectively; 1 is a vector of 1 s of corresponding 
length; and m is the number of SNPs. As shown by Xiang 
et al. [18], the sum of the inbreeding depression effects and 
dominance genetic effects is calculated as follows:

where d is a vector of the centered genotypic domi-
nance effects for each SNP. This equation results in the 
actual dominance genetic effects becoming (− η

m )1+ d , 
where the mean of the dominance genetic effects is − η

m . 
Hence, the vector of the allele substitution effects ( α ) is 
α = a + ((−

η
m )1+ d)(q − p) , where a is the vector of 

additive genetic effects, p is the vector of the frequency of 
the reference allele, and q = 1− p.

Thus, the estimates of the additive genetic variance ( σ 2
A ) 

in the MAID model can be calculated following Chris-
tensen et al. [29]:

fη + v =

(
1̃−

N1

m

)
η +Nd = 1̃η +N

((
−

η

m

)
1+ d

)
,
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where αj is the substitution effect at marker j ; aj is the 
additive genetic effect at marker j; dj is the dominance 
genetic effect at marker j ; σ 2

a j is the additive genetic vari-
ance at marker j ; σ 2

d j
 is the dominance genetic variance at 

marker j ; and σ 2
a  is the estimated additive genetic vari-

ance obtained via REML. Previous studies [14, 18] have 
neglected the contribution of η2

m2 , which is equal to 
∑m

j=1 2pjqj
(
qj − pj

)2
(
η2

m2 ).
In terms of directional dominance effects, the mean 

directional dominance effects of the markers is − η
m , and the 

directional dominance effect at marker j is dj − η
m . Thus, 

the estimates of the genotypic dominance genetic variance 
( σ 2

D ) in the MAID model can be calculated as follows:

where σ 2
d  is the estimated genotypic dominance genetic 

variance obtained via REML. Hence, the inbreeding 
depression effects do not contribute to the genotypic 
dominance genetic variance.

The derivation of the additive genetic variance in model 
MAI is similar to that in model MAID, except that σ 2

d j
 is 

set to zero in model MAI. Nevertheless, the inbreeding 
depression term 

∑m
j=1 2pjqj

(
qj − pj

)2
(
η2

m2 ) needs to be 
considered. To better show the influence of the inbreed-
ing depression effects across different traits, the estimates 
of the inbreeding depression coefficients were divided by 
the phenotypic standard deviation of the trait [30].

To reveal the differences in predictive abilities between 
the genomic models, the data were divided into a training 
dataset and a validation dataset based on a cutoff date of 
January 1, 2020. The numbers of pigs in the training and 

σ 2
A =

m∑

j=1

2pjqjE[
(
αj
)2
]

=

m∑

j=1

2pjqjE
[(

aj + (dj −
η

m
) ∗

(
qj − pj

))2]

=

m∑

j=1

2pjqj

(
σ 2
a j + σ 2

d j

(
qj − pj

)2)

+

m∑

j=1

2pjqj
(
qj − pj

)2
(

η2

m2

)

= σ 2
a +

m∑

j=1

2pjqj
(
qj − pj

)2
(
η2

m2

)
,

σ 2
D =

m∑

j=1

2pjqjE
[(

dj −
η

m

)
−

(
−

η

m

)]2

=

m∑

j=1

2pjqjσ
2

dj
= σ 2

d ,

validation datasets for each trait are in Table 2. Predictive 
abilities were calculated as the correlation between the 
predicted total genetic values ( ̂g ) and the corrected phe-
notypes ( yc ) in the validation dataset. In model MA, ĝ 
was equal to the additive genetic effects (ĝ = â) ; in model 
MAD, ĝ was calculated as the sum of the additive genetic 
effects and genotypic dominance effects (ĝ = â + v̂) ; in 
model MAD*, ĝ was calculated as the sum of the addi-
tive genetic effects and classical dominance deviation 
effects (ĝ = â + v̂∗) ; in model MAI, ĝ was calculated 
as the sum of the additive genetic effects and inbreed-
ing depression effects (ĝ = f η̂ + â) ; in model MAID, ĝ 
was calculated as the sum of the additive genetic effects, 
genotypic dominance effects, and inbreeding depression 
effects (ĝ = f η̂ + â + v̂) ; and in model MAID*, ĝ was cal-
culated as the sum of the additive genetic effects, classical 
dominance deviation effects, and inbreeding depression 
effects (ĝ = f η̂ + â + v̂∗) . Furthermore, the unbiasedness 
of the genomic predictions in each model was assessed 
according to the regression coefficient of yc on ĝ , with an 
expected result of 1.

Results
Imputation accuracies
In this study, imputation accuracy was assessed based 
on two statistics: CR and r2 . For CR, the mean imputa-
tion accuracies in Scenario 1 and Scenario 2 were equal 
to 0.957 and 0.956, respectively. For r2 , the mean imputa-
tion accuracies in Scenario 1 and Scenario 2 were equal 
to 0.923 and 0.908, respectively. The standard errors were 
smaller than 0.001. Overall, the imputation accuracy in 
Scenario 1 was slightly higher than that in Scenario 2.

Model‑based reliability
For the four combinations analyzed, the model-based 
reliabilities ( R2 ) for the five studied traits are in Table 3. 
For each trait, R2 was similar for the four combinations. 
Since Combination 3 was slightly more accurate than any 
other combination, Combination 3 was selected for sub-
sequent genomic evaluations in this study.

Table 2 Number of genotyped animals for each studied trait in 
the training and validation datasets

ADG: average daily gain; BF: backfat thickness; LMD: loin muscle depth; AGE100: 
days to 100 kg; TNB: total number of piglets born at first parity

Trait Training size Validation size

ADG 5245 1311

BF 5231 1308

LMD 5223 1306

AGE100 5246 1312

TNB 3874 969
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Estimation of variance components
Estimates of narrow-sense heritabilities and the propor-
tions of dominance variations relative to phenotypic vari-
ance are in Table  4, and the estimates of each variance 
component and the ratio of dominance to total genetic 
variance are in Additional file 1: Table S1. For each trait, 
the estimated additive genetic variances were similar 
across the six models regardless of whether nonaddi-
tive effects were included or not. The four production 
traits (ADG, BF, LMD, and AGE100) showed moderate 
narrow-sense heritabilities ranging from 0.210 to 0.373, 
and the reproduction trait TNB had a low narrow-sense 
heritability ranging from 0.093 to 0.102. TNB exhibited 
higher ratios of genotypic and classical dominance to 
total genetic variance (see Additional file  1: Table  S1), 
ranging from 0.108 to 0.123 and from 0.182 to 0.203, 
respectively, than the production traits (ranging from 
0.018 to 0.105). However, for all traits, there were no dif-
ferences between the proportions of classical and geno-
typic dominance variation when standard errors were 
taken into account.

In models MAID and MAI, the contribution of the 
inbreeding depression effect to the additive genetic vari-
ance has been ignored in many previous studies e.g. [9, 
18], and was found to be relatively small in our study. As 
shown in Additional file 1: Table S2, in the MAID model, 
the proportions of additive genetic variance contributed 
by the inbreeding depression effects relative to the total 
additive genetic variance were equal to 0.308%, 0.031%, 
0.130%, 0.282%, and 0.273% for ADG, BF, LMD, AGE100, 
and TNB, respectively.

Goodness‑of‑fit
The goodness-of-fit values of the six genomic models 
are in Additional file 1: Tables S1, S3–S5. The smaller the 
−  2 log likelihood value or the AIC value is, the better 
is the model fit. For all traits except AGE100, the mod-
els without inbreeding depression effects (MA, MAD 
and MAD*) exhibited similar −  2 log likelihood values 
(see Additional file  1: Table  S1), and the models with 
inbreeding depression effects (MAI, MAID and MAID*) 
also presented similar − 2 log likelihood values. Thus, the 

inclusion of dominance did not improve the goodness-
of-fit of the models, except for AGE100 (MA vs. MAD, 
MAD*). Nevertheless, as shown in Additional file  1: 
Table  S4, the significance of the dominance effects for 
this trait decreased when inbreeding depression was fit-
ted in the model (MAI vs. MAID, MAID*), which implies 
that the effect of inbreeding depression (which is a signif-
icant effect for this trait) partly captured the dominance 
effects.

In addition, for the non-nested models (such as MAD 
vs. MAD*, MAID vs. MAID*), each paired group showed 
similar AIC values for all traits, which indicated that 
different types of dominance effects (either ‘classical’ 
or ‘genotypic’) did not affect the goodness-of-fit of the 
genomic models.

Estimation of the inbreeding depression parameter
The mean genomic-based inbreeding coefficient was 0.67 
(ranging from 0.55 to 0.763). Estimates of the inbreed-
ing depression parameter ( η ) in models MAI, MAID, and 
MAID* are in Table 4, and were all significantly different 
from 0. The Wald test showed significant differences at 
the 0.05 level of type 1 error of inbreeding depression 
effects (see Additional file 1: Table S5) between the mod-
els without inbreeding depression effects (MA, MAD 
and MAD*) and the corresponding models with inbreed-
ing depression effects (MAI, MAID and MAID*), which 
showed that fitting inbreeding depression improved the 
goodness-of-fit of the models. In addition, there were 
no large differences in the estimates of the inbreeding 
depression parameter among models MAI, MAID and 
MAID*. For all traits except BF, the effects of inbreed-
ing depression were detrimental, and they deviated 
significantly from zero at the 0.05 level of type 1 error 
based on the results of the Wald test. For instance, for 
ADG in the MAI model, η was estimated to be − 229.9 g, 
which means that an increase of 0.10 in inbreeding led 
to a decrease of 22.9  g in the daily gain. In addition, in 
model MAI, the ratios of the inbreeding depression esti-
mates divided by the phenotypic standard deviation were 
equal to − 4.023, − 1.702, − 2.516, 3.261, and − 2.197 for 
ADG, BF, LMD, AGE100, and TNB, respectively.

Table 3 Reliability of the different combinations to integrate genomic information from the Illumina and Affymetrix arrays based on 
the SSGBLUP model

ADG: average daily gain; BF: backfat thickness; LMD: loin muscle depth; AGE100: days to 100 kg; TNB: total number of piglets born at first parity

Trait Combination 1 Combination 2 Combination 3 Combination 4

ADG 0.400 0.400 0.401 0.400

BF 0.414 0.414 0.415 0.414

LMD 0.388 0.388 0.390 0.389

AGE100 0.367 0.366 0.368 0.367

TNB 0.173 0.174 0.176 0.174
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Predictive abilities
The predictive abilities of the genomic models are in 
Table 5. For the four production traits (ADG, BF, LMD, 
and AGE100), the three models without inbreeding 
depression effects (MA, MAD and MAD*) showed 

similar predictive abilities. This was also true for the 
three models with inbreeding depression effects (MAI, 
MAID and MAID*). These results indicated that the 
inclusion of dominance effects in the model did not 
improve their predictive ability. However, for TNB, 
including dominance effects resulted in a 6.3% increase 
(from 0.167 to 0.177 for the MAD model and to 0.178 for 
the MAD* model) in predictive ability compared with 
the model with only additive effects (MA). In addition, 
for all the traits, the model with both additive effects and 
inbreeding depression effects (MAI) outperformed the 
model with only additive effects (MA), showing an ~ 1.7% 
increase in predictive ability.

Overall, the models with additive effects and inbreed-
ing effects or dominance effects usually outperformed 
the model with only additive effects (MA). For the pro-
duction traits, compared to model MA, the predictive 
ability was increased by ~ 1.5% with model MAI, ~ 1.5% 
with model MAID, and ~ 1.6% with model MAID*. For 
TNB, the predictive ability increased by ~ 6.0% with 
model MAD, ~ 6.6% with model MAD*, ~ 3.0% with 
model MAI, ~ 7.8% with model MAID, and ~ 8.4% with 
model MAID*. In terms of the regression coefficients 
of the corrected phenotypes on estimated genetic 

Table 4 Estimates of the heritabilities and inbreeding 
depression ( η ) and their standard error (SE) for each trait and 
each genomic model

h
2
a : additive heritability; h2d =

σ
2

d

σ
2
a+σ

2

d
+σ

2
e

 : genotypic dominance effect heritability; 

h
2

d∗ =
σ
2

d∗

σ
2
a+σ

2

d∗
+σ

2
e

 : classical dominance effect heritability; σp is the square root of 

total phenotypic variance; MA: additive model; MAI: additive plus inbreeding 
depression model; MAD: additive plus genotypic dominance model; MAD*: 
additive plus classical dominance model; MAID: additive plus inbreeding 
depression plus genotypic dominance model; MAID*: additive plus inbreeding 
depression plus classical dominance model; ADG: average daily gain (g); BF: 
backfat thickness (mm); LMD: loin muscle depth (mm); AGE100: days to 100 kg; 
TNB: total number of piglets born at first parity

Trait Model h
2
a(SE) h

2

d
(SE)|h

2

d∗
(SE) η(SE) η/σp

ADG MA 0.258 (0.018)

MAD 0.255 (0.018) 0.01 (0.011)

MAD* 0.258 (0.018) 0.008 (0.008)

MAI 0.262 (0.018) − 229.58 
(46.688)

− 4.023

MAID 0.26 (0.018) 0.005 (0.011) − 231.88 
(48.422)

− 4.063

MAID* 0.261 (0.018) 0.004 (0.008) − 231.984 
(48.59)

− 4.065

BF MA 0.373 (0.019)

MAD 0.365 (0.019) 0.018 (0.011)

MAD* 0.37 (0.018) 0.014 (0.008)

MAI 0.374 (0.019) − 4.749(2.195) − 1.702

MAID 0.366 (0.019) 0.017 (0.011) − 4.899 (2.107) − 1.756

MAID* 0.371 (0.018) 0.013 (0.008) − 4.992(2.046) − 1.789

LMD MA 0.249 (0.018)

MAD 0.243 (0.018) 0.012 (0.012)

MAD* 0.248 (0.018) 0.009 (0.009)

MAI 0.248 (0.018) − 11.604 (3.78) − 2.516

MAID 0.243 (0.018) 0.011 (0.012) − 11.696 
(4.086)

− 2.536

MAID* 0.246 (0.018) 0.008 (0.009) − 11.696 
(4.102)

− 2.536

AGE100 MA 0.218 (0.017)

MAD 0.21 (0.018) 0.025 (0.013)

MAD* 0.217 (0.017) 0.021 (0.01)

MAI 0.219 (0.017) 26.145 (6.628) 3.261

MAID 0.213 (0.018) 0.02 (0.013) 28.143 (7.546) 3.51

MAID* 0.218 (0.017) 0.017 (0.01) 28.307 (7.675) 3.53

TNB MA 0.101 (0.016)

MAD 0.093 (0.016) 0.024 (0.018)

MAD* 0.101 (0.015) 0.014 (0.013)

MAI 0.102 (0.016) − 7.278 (3.174) − 2.197

MAID 0.095 (0.017) 0.021 (0.018) − 7.606 (3.51) − 2.296

MAID* 0.102 (0.016) 0.012 (0.013) − 7.56 (3.444) − 2.282

Table 5 Accuracies of predicted total genetic values in the 
validation dataset for models MA, MAD, MAD*, MAI, MAID and 
MAID*

ADG: average daily gain; BF: backfat thickness; LMD: loin muscle depth; AGE100: 
days to 100 kg; TNB: total number of piglets born at first parity

Evaluation model ADG BF LMD AGE100 TNB

MA 0.286 0.335 0.250 0.228 0.167

MAD 0.286 0.336 0.250 0.229 0.177

MAD* 0.287 0.336 0.249 0.23 0.178

MAI 0.292 0.338 0.252 0.233 0.172

MAID 0.292 0.337 0.252 0.234 0.180

MAID* 0.293 0.337 0.251 0.235 0.181

Table 6 Regression coefficients of corrected phenotype on 
predicted total genetic values in the validation dataset for 
models MA, MAD, MAD*, MAI, MAID and MAID*

ADG: average daily gain; BF: backfat thickness; LMD: loin muscle depth; AGE100: 
days to 100 kg; TNB: total number of piglets born at first parity

Evaluation model ADG BF LMD AGE100 TNB

MA 0.969 0.641 0.803 0.935 1.016

MAD 0.973 0.643 0.805 0.941 1.069

MAD* 0.974 0.643 0.802 0.945 1.073

MAI 0.985 0.644 0.808 0.954 1.035

MAID 0.986 0.646 0.809 0.955 1.073

MAID* 0.986 0.645 0.806 0.958 1.077
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values (Table  6), the regression coefficient of model 
MA showed the greatest deviation from 1 compared to 
the other models. Most traits showed regression coeffi-
cients close to 1 for all models, except for BF and LMD, 
which had regression coefficients equal to 0.64 and 
0.80, respectively. This result was unexpected, and we 
do not have a clear explanation for it.

In addition, we explored the accuracies of the 
genomic estimated breeding values (GEBV). As shown 
in Table 7, regardless of the model used, the accuracies 
of the GEBV were almost the same for all models and 
all traits. For the regression coefficients of corrected 
phenotypes on GEBV (Table  8), there was no clear 
trend of one model outperforming the others.

Discussion
In this study, first we investigated different strategies to 
combine the genomic information from two SNP arrays. 
Subsequently, we examined the impact of the nonadditive 
effects on genomic predictive ability and further explored 
two models of fitting dominance effects (classical and 
genotypic) in the genomic prediction models. For the 
five traits studied, fitting inbreeding depression effects 
yielded the highest predictive abilities, and for one trait 

(TNB), the inclusion of dominance effects in the genomic 
model slightly increased the predictive ability.

Imputation accuracy
The imputation accuracy in Scenario 1 was slightly 
higher than in Scenario 2. Previous studies have shown 
that imputation accuracy is affected by the MAF of the 
imputed SNPs and by the top relatedness between ani-
mals in the reference and imputed populations [31–35]. 
Thus, we investigated the distribution of the MAF of 
imputed SNPs and studied the highest relatedness of 
individuals between the imputed and reference popula-
tions. The proportion of SNPs with a low MAF was lower 
in Scenario 1 than in Scenario 2 (see Additional file  2: 
Figure S1), and the top genomic relatedness was slightly 
lower in Scenario 2 than in Scenario 1 (see Additional 
file  1: Table  S6), which would probably lead to a higher 
imputation accuracy in Scenario 1.

Estimated variance components
In this study, the estimated narrow-sense heritability 
confirmed that ADG, BF, LMD, and AGE100 were mod-
erately heritable and that TNB was lowly heritable, in line 
with many other reports [13, 15, 36]. No significant dif-
ference in narrow-sense heritability was observed among 
the genomic models, which indicates that the additive 
genetic variance was accurately separated from the phe-
notypic variance in all genomic models, regardless of the 
nonadditive effects.

In this study, the proportions of dominance variation 
to the total genetic variance in production traits were 
relatively low (ranging from 1.9 to 10.5%) and generally 
lower than those found in other studies on production 
traits in pigs [8, 16]. The proportion of genotypic domi-
nance variations relative to the total genetic variance of 
TNB was moderate (ranging from 18.2 to 20.3%) and 
was similar to that reported in a previous study [17]. 
Our finding that the proportion of genotypic dominance 
variations relative to the total genetic variance of TNB 
(20.3%) was higher than that for the production traits 
(~ 8.5%) in Yorkshire pigs was consistent with a previous 
study that reported that the proportion of classical domi-
nance variation relative to the total genetic variance for 
another reproduction trait (calving interval) was ~ 34.3%, 
whereas that for production traits (milk, fat, and protein 
yields) was ~ 8.5% on average in Holstein cattle [14]. For 
all traits, there were no significant differences between 
the proportions of classical and genotypic dominance 
variation when standard errors were taken into account. 
One possible reason could be that the dominance vari-
ance was too small to distinguish between its two forms, 
and therefore this needs to be further investigated. Our 

Table 7 Accuracies of predicted breeding values in the 
validation dataset for models MA, MAD, MAD*, MAI, MAID and 
MAID*

ADG: average daily gain; BF: backfat thickness; LMD: loin muscle depth; AGE100: 
days to 100 kg; TNB: total number of piglets born at first parity

Evaluation model ADG BF LMD AGE100 TNB

MA 0.286 0.335 0.25 0.228 0.167

MAD 0.285 0.335 0.249 0.226 0.165

MAD* 0.286 0.336 0.25 0.227 0.169

MAI 0.286 0.335 0.248 0.225 0.168

MAID 0.286 0.335 0.248 0.224 0.166

MAID* 0.286 0.336 0.248 0.224 0.169

Table 8 Regression coefficients of corrected phenotype on 
predicted breeding values in the validation dataset for models 
MA, MAD, MAD*, MAI, MAID and MAID*

ADG: average daily gain; BF: backfat thickness; LMD: loin muscle depth; AGE100: 
days to 100 kg; TNB: total number of piglets born at first parity

Evaluation model ADG BF LMD AGE100 TNB

MA 0.969 0.641 0.803 0.935 1.016

MAD 0.978 0.650 0.814 0.959 1.108

MAD* 0.970 0.643 0.805 0.934 1.029

MAI 0.964 0.642 0.803 0.934 1.017

MAID 0.968 0.649 0.812 0.944 1.102

MAID* 0.964 0.642 0.804 0.933 1.029
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data showed that although both classical dominance vari-
ance and genotypic dominance variance were small, the 
genotypic dominance variance was slightly larger than 
the classical dominance variance, as reported by Vitezica 
et al. [9]. Based on the conversion method described by 
Vitezica et  al. [9], the estimated genotypic dominance 
variance can be easily converted into that obtained via 
the classical approach. As shown in Additional file  1: 
Table  S7, after transformation, the estimated genetic 
variances from the genotypic dominance model (MAID) 
were close to those obtained from the classical domi-
nance model  (MAID*), which confirmed the equivalence 
of the estimates of dominant variation generated in this 
study. The standard error of the estimates of dominance 
variation was still relatively large, which indicates that 
the size of our dataset was not sufficient to accurately 
estimate dominance variation. Therefore, more data are 
needed to further investigate the dominance effects in 
the current population.

In this study, we used the pre-corrected phenotypes 
of the genotyped pigs as the response variables to esti-
mate dominance variances. These genotyped pigs were 
not randomly sampled from the population, and most of 
them showed high EBV and were selected as parents for 
producing the next generation. Xiang et al. [18] reported 
that preselection and precorrection greatly reduced the 
variances of the dominance effects. In addition, puta-
tive errors in the imputed genotypes might increase 
the uncertainty of genomic evaluations [37]. It should 
be noted that in some other studies, the proportion of 
dominance variation to total genetic variance was found 
to be lower than in our study and even closer to 0 [38, 
39]. Previous studies have shown that the proportion of 
dominance variation to total genetic variance is affected 
by various factors, i.e., the studied population, the target 
traits, types of information, and genomic models [8, 16]. 
Thus, more studies are needed to further investigate the 
effect of various factors on dominance variation.

Estimates of inbreeding depression
As shown in Table  4, there were no large differences 
in the estimates of inbreeding depression parameters 
among the MAI, MAID and MAID* models when stand-
ard errors were taken into account, which is in line with 
previous studies [14, 18]. The estimates of inbreeding 
depression showed that inbreeding depression had detri-
mental effects on ADG, LMD, AGE100, and TNB, thus 
should be included in the model for genetic evaluation 
[30]. Inbreeding depression estimates for the same traits 
from previous studies [18, 19, 30, 36, 40] were similar 
to our results. For BF, inbreeding depression (negative 
value) did not show a detrimental effect in this study, in 
agreement with results on Pietrain pigs reported in [28]. 

For the BF trait in model MAI, we estimated a η value of 
− 4.749, which means that an increase of 0.10 unit in the 
inbreeding coefficient led to a decrease of 0.479  mm in 
backfat thickness. Another study reported that inbreed-
ing depression had no effect on backfat [41], and the 
authors attributed this to the change in dominance effect 
values across genes, suggesting that dominance effects 
at different loci might be either positive or negative [23]. 
Notably, the standard errors of the backfat estimates were 
large in our study, and the estimates of dominance effects 
of BF only slightly differed from 0. Therefore, larger data-
sets are needed to further investigate the inbreeding 
depression effects of BF.

The ratio of the estimated inbreeding depression effect 
divided by the phenotypic standard deviation for the 
trait is an indicator of the importance of the inbreeding 
depression effect [30]. In model MAI, for the ADG, LMD, 
AGE100, and TNB traits, the absolute values of this ratio 
were equal to 4.023, 2.516, 3.261, and 2.197, respectively. 
Note that the estimate of this effect refers to an individual 
with 100% inbreeding. For BF, the absolute value of the 
ratio was 1.702, which showed that inbreeding depres-
sion had little impact on BF. This phenomenon was con-
sistent with the above findings.

Our study is the first to report the proportion of addi-
tive genetic effects that is contributed by inbreeding 
depression effects. According to the formula for calcu-
lating the additive variance, the proportion contributed 
by inbreeding depression is mainly affected by allelic 
frequencies, the magnitude of the estimated inbreeding 
depression parameter, and the number of SNPs used. As 
shown in Additional file 2: Figure S2, for a single locus, 
the value of 2pjqj

(
qj − pj

)2 is largest when the frequency 
of the reference allele is approximately 0.15. However, 
even if the frequency of the reference allele was 0.15 for 
all loci, the proportion of additive variance contributed 
by inbreeding depression would not change much since it 
needs to be divided by the number of SNPs used, m . This 
explains why the proportion of additive variance contrib-
uted by inbreeding depression was small for all traits in 
this study.

Overall, the inclusion of the inbreeding depression 
effect in the genomic model had no significant effect 
on the estimation of variance components for all traits, 
although all of the dominance variances were slightly 
reduced, as also reported by Aliloo et al. [14].

Predictive abilities
The goodness-of-fit of the six genomic models showed 
that those with inbreeding depression effects (MAI, 
MAID, and MAID*) presented a better goodness-of-fit 
than the model with only additive effects (MA) for all 
traits, in line with Aliloo et al. [14]. This result suggests 
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that inbreeding depression had an impact on the pro-
duction traits and TNB, and thus this effect should be 
explicitly fitted in genomic evaluation models. This was 
confirmed by the results regarding predictive ability. 
Previous studies have reported that including domi-
nance effects in a genomic model can improve its predic-
tive abilities [8, 11, 15]. However, our study showed that 
including dominance effects in the genomic model only 
slightly improved predictive abilities for TNB. This might 
be related to the degree to which traits are affected by 
dominant genes. The observation that including inbreed-
ing depression in the model improved the predictive abil-
ity whereas including dominance effects did not was also 
reported by Xiang et  al. [18] and Aliloo et  al. [14]. Our 
explanation for this finding is that dominance has two 
components that can be modeled separately [18]. The 
first is the directional dominance effect [18], which accu-
mulates across loci and leads to an inbreeding depression 
effect that is modeled via a single covariate, with an accu-
rately estimated effect. For the remaining residual domi-
nance effects (which show a mean of zero), it is difficult 
to obtain accurate estimates using a dominance relation-
ship matrix, especially when the sample size is not suf-
ficient. Thus, even when dominance deviations were 
included in the genomic model, predictive abilities were 
not further improved. However, our study showed that 
although including dominance effects in the model did 
not improve its predictive ability for production traits, 
it did not decrease them either, which agrees with the 
results of a study on the total number of piglets born to 
Danish Yorkshire pigs [18].

Conclusions
Our results revealed that the inclusion of an inbreeding 
depression effect in the genomic model increased its pre-
dictive ability for the four production traits (ADG, BF, 
LMD, and AGE100) and the reproduction trait (TNB) 
studied and that when the tested trait was strongly 
affected by dominance genes, the inclusion of the domi-
nance effect in the model further improved its predictive 
ability. Even when the trait was little affected by domi-
nance, the inclusion of the dominance effect in the model 
did not decrease its predictive ability.
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