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Some numerical methods with R

Generating distributions

In the following exercises, we will use the R functions:

• rnorm, rexp, rbinom, rpois to simulate random variables with respectively Gaussian, exponential, binomial and poisson distributions • pnorm, pexp, pbinom, ppois to to evaluate the c.d.f. of random variables with respectively Gaussian, exponential, binomial and poisson distributions • qnorm, qexp, qbinom, qpois to to evaluate the quantile function, i.e. the inverse of the c.d.f. of random variables with respectively Gaussian, exponential, binomial and poisson distributions • dnorm, dexp, dbinom, dpois to to evaluate the density or p.m.f. of random variables with respectively Gaussian, exponential, binomial and poisson distributions

Simulation of classical distributions

First, fix the seed by using the following command set.seed(1)

• Using the R functions rexp, rnorm, rbinom, generate i.i.d. samples X 1 , X 2 and X 3 of size n = 10000 respectively from exponential distribution with shame parameter λ = 2, from Gaussian distribution with mean value µ = 3 and standard deviation sd = 2 and from Bernoulli distribution with probability of success p = 0.25.

• Create a data frame X (R command data.frame) which contains X 1 , X 2 and X 3 . Print the top of the data frame (use head). • Using the R function apply, Calculate the mean value and the empirical variance of the samples.

Compare with the theoretical values. Evaluate the Pearson's correlation between the 3 samples and also the covariance matrix (use cov(X)). 

Histogram of X1

Simulating distributions using uniform samplings

Let U a random variable distributed from the uniform distribution on [0, 1]. Then for any cumulative distribution function F , the random variable

Z = F -1 (U ) has distribution F.
Using this result, simulate the same exponential, Gaussian samples and answer the same questions as exercise 1. Use the r function runif, qexp, qnorm, qbinom 

U1=runif(n) U2=runif(n) U3=runif(n) X1= qexp(U1, 2) X2= qnorm(U2,3,2) X3=qbinom(U3,
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table(X3) ## X3 ## 0 1 ## 7521 2479
Let X a continuous random variable with c.d.f. F . Then the random variable Z = F (X) is uniformly distributed on [0, 1].

Using this result, from a Gaussian distribution, then from an exponential distribution, simulate a uniform sample on [0, 1].

X1=rnorm(n,2,3) X2=rexp(n,3) U1=pnorm(X1,2,3) U2=pexp(X2,3) hist(U1,breaks=30,freq=FALSE) U1 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 hist(U2,breaks=30,freq=FALSE)

Histogram of U2

U2 Density 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Theorem Central Limit (TCL), convergence in distribution

Let X 1 , . . . , X n an i.i.d. sample with expectation E(X) = µ and variance V ar(X) = σ 2 . Then,

√ n( Xn -µ) → N (0, σ 2 ) as soons as n → ∞
We say that the mean value Xn converges in distribution to a Gaussian distribution.

Using a loop 'for', simulate M = 10 4 samples of size n = 1000 from a Poisson distribution with parameter λ = 5 and verify the theorem. Plot the histogram of the statistic with the density of the Gaussian. try now with a exponential distribution with rate parameter λ = 5. Note that for an exponential distribution the expectation is 1/λ = 1/5, and the variance is 1/λ 2 = 1/25 (so the sd is 1/5) M=10ˆ4;n=10ˆ3 Z=NULL; We say that Xn converges almost surely (a.s.) to µ.

M=10ˆ4;n=10ˆ3 Z=NULL; for(m in 1:M){ X=rpois(n,5) Z[m]=sqrt(n)*(mean(X) -5) } hist(Z,freq=FALSE) plot(function(x) dnorm(x,0,sqrt(5)),add=TRUE,col="red",xlim=c(-6,6) )

Histogram of Z

for(m in 1:M){ X=rexp(n,5) Z[m]=sqrt(n)*(mean(X) -1/5) } hist(Z,freq=FALSE) plot(function(x) dnorm(x,0,sqrt(1/25)),add=TRUE,col="red",xlim=c(-1,1) )

Histogram of Z

simulate a sample of size n = 10 4 of exponential distribution with parameter λ = 2. For k varying from 1 to n, evaluate the mean value Z k = Xk . Plot the sequence Z k and add the horizontal line y = 0.5 (use abline(h=0.5)).

set.seed(2) n=10ˆ4 Z=NULL; X=rexp(n,2) for(k in 1:n){ Z[k]=mean(X[1:k]) } plot(Z) abline(h=1/2,col="red") 0 2000
4000 6000 8000 10000 0.4 0.5 0.6 0.7 0.8 0.9 Index Z 1.5 Multivariate Gaussian distribution

Cholesky decomposition

Any symmetric definite-positive matrix Σ can to be decompose in the product of an lower triangular matrix L (composed with 0 above the diagonal) and his transposed:

Σ = LL T .
Find these two triangular matrices require specific algebra algorithm (refereed as the Cholesky decomposition).

Let

Σ = 1 0.4 0.4 1
Using the eigen R function that provides the eigen value of a matrix, check that the matrix Σ is definitepositive (Note that a symmetric matrix is positive definite if and only if all the eigen values of Σ are strictly positives). Use the R function chol to get the lower triangular matrix. Make the matricial product to check that Σ = LL T . The R matricial product is %*% and the transpose operation is t().

sigma=matrix(c(1,0.4,0.4,1),2,2) eigen(sigma)

## eigen() decomposition ## $values ## [1] 1.4 0.6 ## ## $vectors ## [,1] [,2] ## [1,] 0.7071068 -0.7071068 ## [2,] 0.7071068 0.7071068 L=t(chol(sigma)) L%*%t(L) ## [,1] [,2] ## [1,] 1.0 0.4 ## [2,] 0.4 1.0

Simulating of the multivariate Gaussian distribution

Let X = (X 1 , X 2 ) be a random vector. We say that X is multivariate Gaussian with mean value m = (m 1 , m 2 ) and covariance matrix Σ if the density of X is

f (x, m, Σ) = 1 (2π) n/2 √ det Σ exp - 1 2 (x -m) t Σ -1 (x -m) , x ∈ R 2
To simulate a multivariate Gaussian sample with mean value m = (m 1 , m 2 ) and covariance matrix Σ we can use the Cholesky decomposition. In fact, Consider Z 1 and Z 2 two independent random variable from the Gaussian distribution with mean value 0 and sd 1. Let Z = (Z 1 , Z 2 ). Then we have the property that the vector X = L T Z + m is multivariate Gaussian with covariance matrix Σ and mean value m.

• Generate a sample of size n from the multivariate Gaussian distribution with covariance Σ and mean value m = c(0, 0). To do that, use the cholesky decomposition (optional) or use the R package mvtnorm:

##or using mvtnorm library(mvtnorm) sigma=matrix(c(1,0.4,0.4,1),2,2) #matrix sigma m=c(0,0) #mean value vector m X<-rmvnorm(M,m,sigma)

• Plot the sample and the two histograms

• Calculate the mean value and the empirical variance of the two component of the samples and the empirical covariance between the two components.

• Start again with Σ 2 = 1 0.1 0.1 1 and Σ 3 = 1 0.9 0.9 1 .

• Use the following code to add the 'contour-plot' of the distribution library(rvinecopulib) ## Warning: le package rvinecopulib a été compilé avec la version R 4.1.3 plot(X[,1],X[,2],main=paste("rho=",0.4)) Cn <-bicop_dist(family = "gaussian", rotation = 0, parameters =0.4) contour(Cn,col="blue",add=TRUE) 

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 rho= 0.4 X[, 1] X[, 2]

Other multivariate distributions

Simulate a bivariate sample (X 1 , Y 1 ), . . . , (X n , Y n ) in which X 1 , . . . , X n are i.i.d. and follow a exponential distribution with shape parameter λ = 3, Y 1 , . . . , Y n are i.i.d. and follow a Gaussian distribution white mean value µ = 2 and variance σ 2 = 1, and such that X 1 and X 2 be correlated To do that:

• Simulate a (X 1 , Y 1 ), . . . , (X n , Y n ) following a multivariate Gaussian distribution with mean value m = (2, 2) and covariance 0.4 using the R package mvtnorm and the function rmvnorm. • Transform X 1 , . . . , X n in order to obtain an uniform sample following Exercise 2.

• Transform the uniform sample in order to obtain an exponential sample following Exercise 2.

• plot Y vs X. Plot the histogram of X 1 , . . . , X n and Y 1 , . . . , Y n • print the Pearson's correlation and Spearman's correlation. 

(mvtnorm) X<-rmvnorm(M,c(2,2),K) X[,1]<-pnorm(X[,1],2,1) X[,1]<-qexp(X[,1],3) hist(X[,1],freq=FALSE) plot(function(x) dexp(x,3),xlim=c(0,3),add=TRUE,col="red") Histogram of X[, 1] X[, 1] Density 0 1 2 3 4 0.0 0.5 1.0 1.5 2.0 plot(X[,1],X[,2]) 0 1 2 3 4 -2 0 2 4 X[, 1] X[, 2] cor(X[,1],X[,2]) ## [1] 0.3643721 cor(X[,1],X[,2],method="spearman") ## [1] 0.3909433
• Use the following R code to have the scatterplot of the distribution and the histograms: (vx,vy,z,col=rev(heat.colors(101))) plot(X,cex=0.2) #points(X,cex=.2) par(mar=c(0,3,1,1)) barplot(xhist$density, axes=FALSE, ylim=c(0, top), space=0) lines((density(X

xhist <-hist(X[,1], plot=FALSE) yhist <-hist(X[,2], plot=FALSE) top <-max(c(xhist$density, yhist$density)) nf <-layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE) par(mar=c(4,4,1,1)) #image
[,1])$x-xhist$breaks[1])/diff(xhist$breaks)[1], dexp(density(X[,1])$x,3),col="red") par(mar=c(3,0,1,1)) barplot(yhist$density, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE) lines(dnorm(density(X[,2])$x,2,1),(density(X[,2])$x-yhist$breaks[1])/ diff(yhist$breaks)[1],col="red") log L(µ, σ 2 ; y 1 , . . . , y n ) = n i=1 log L(µ, σ 2 ; y i ) = n i=1 log 1 √ 2πσ 2 exp - (y i -µ) 2 2σ 2 = - n 2 log(2π) - n 2 log(σ 2 ) - n i=1 (y i -µ) 2 2σ 2 So ∂ ∂µ log L(µ, σ 2 ; y 1 , . . . , y n ) = 0 ⇔ ∂ ∂µ - n 2 log(2π) - n 2 log(σ 2 ) - n i=1 (y i -µ) 2 2σ 2 = 0 ⇔ ∂ ∂µ n i=1 (y i -µ) 2 2σ 2 = 0 ⇔ - 1 σ 2 n i=1 (y i -µ) = 0 ⇔ µ = ȳn ∂ ∂σ 2 log L(µ, σ 2 ; y 1 , . . . , y n ) = 0 ⇔ ∂ ∂σ 2 - n 2 log(2π) - n 2 log(σ 2 ) - n i=1 (y i -µ) 2 2σ 2 = 0 ⇔ ∂ ∂σ 2 - n 2 log(σ 2 ) - n i=1 (y i -µ) 2 2σ 2 = 0 ⇔ - n 2σ 2 + 1 2σ 4 n i=1 (y i -µ) 2 = 0 ⇔ σ 2 = 1 n n i=1 (y i -ȳn ) n=10ˆ4 Y<-rnorm(n,2,2) mu.MLE<-mean(Y) sigma2.MLE<-var(Y) mu.MLE;sigma2.MLE ## [1] 1.98438 ## [1] 4.060696
• Generate a sample (use rnorm function) of size n = 10 6 from a Gaussian distribution with mean value µ = 2 and variance σ 2 = 4. Estimate the MLE and illustrate the a.s. convergence of the estimator, that is to say the convergence of the estimator when the sample size increase 

Me<-Va<-NULL for(m in 1:M){ Me[m]=mean(Y[1:m]) Va[m]=var(Y[1:m]) } plot(Me) abline(h=2,col="red")

Gamma distribution

The density of the Gamma distribution with shape parameter α and rate parameter β is defined by

f (x; α, β) = β α Γ(α) x α-1 exp(-βx), x > 0, α > 0, β > 0,
where the Gamma function Γ is defined by

Γ(z) = ∞ 0 t z-1 e -t dt.
Note that Γ(z + 1) = zΓ(z) and Γ(1) = 1. If Y follows a Gamma distribution with shape parameter α and rate parameter β,

E(Y ) = α β , V ar(Y ) = α β 2 .
• Check that for α = 1, the Gamma distribution is the exponential distribution.

• Plot the density of the Gamma distribution for many parameter α and β (use dgamma function).

plot(function(x) dgamma(x,1,3),xlim=c(0,5)) plot(function(x) dgamma(x,2,0.5),xlim=c(0,5),col="red",add=TRUE) plot(function(x) dgamma(x,4,6),xlim=c(0,5),col="blue",add=TRUE) plot(function(x) dgamma(x,0.5,6),xlim=c(0,5),col="green",add=TRUE) 

  Note that pour a Poisson distribution the expectation and the variance is λ = 5, so the standard deviation is √ λ = 5.

  of large numbers (LLN), almost surely convergenceLet X 1 , . . . , X n an i.i.d. sample with expectation µ. Then P ( Xn → µ) = 1.

  (c(1,rho,rho,1),2,2) ##matrice de covariance souhaitée ##in the same way of the previous exercise L=chol(K) ##matrice triangulaire supérieur L=t(L) ##matrice triangulaire inférieur X=matrix(rep(0,M*2),M,2) ##Initialisation de la matrice for(m in 1:M) X[m,]=L%*%rnorm(2) + c(2,2) ##Remplissage de la matrice X ##or using mvtnorm library

  number of iteration to reach the solution • Compare the solution with the true value that is qnorm(0.975)• print the convergence of the algorithm maxit=1000 >=0) a<-c[m] if(abs(b-a)<eps) break; } c[m]=(a+b)/2 #print(c[m]) #print(qnorm(0.975))plot(c, type= l ,ylab="value",xlab="iteration") abline(h=qnorm(0.975),col="red",lty=2) ("we used",m,"iterations to get the solution",c[m])) ## we used 27 iterations to get the solution 1Let recall that the equation of the unit circle (circle with a radius of 1) is given by x 2 + y 2 = 1. In the following Figure, the circle equation y = √ 1 -x 2 is plotted on [0,1]. plot(function(x) sqrt(1-xˆ2),ylab="",xlab="")

•

  Evaluate π/4 then π • Illustrate the (almost surely) convergence of the Monte Carlo estimator of π. (Note that in R, you can access to the true value of π using the R command pi): Z=NULL for(k in 1:M) Z[k] =4*mean(U[1:k,1]ˆ2+U[1:k,2]ˆ2<1)plot(Z,type= l ,xlab="number of simulations",ylab="") abline(h=pi,col="red",lty=2) text(10000+0.04,pi+0.04,expression(pi),col="red") Carlo approximation of the area under the Gaussian densityIn the the same way of exercise 1, propose a Monte Carlo(MC) algorithm to evaluate the area under the Gaussian density between a = -1 and b = 5, that is to say the probability P (a ≤ X ≤ b) = P (X ≤ b) -P (X ≤ a) for X a random variable with standard Gaussian distribution.• Plot the density of the Gaussian distribution on the interval (-10, 10). • In the same graphic, add the vertical lines a = -1 and b = 5.• Add the points of the MC algorithm which are under the Gaussian curve in red and the points of the MC algorithm which are above the Gaussian curve in blueP (a ≤ X ≤ b) ≈ number of red points total number of points × (b -a)• Evaluate the value of the area under the Gaussian density between a = -1 and b = 5 and compare with the theoretical value obtained using pnorm • Illustrate the (almost surely) convergence of the Monte Carlo estimation of the area under the Gaussian curve.

#Print the head of the matrix (or dataset) X

  • Plot the histogram of the distributions of the exponential et Gaussian distribution and add the corresponding density curves (use hist(X1, freq=FALSE)) • print the table of frequency (use table(X3)/n) and compare these values with p and 1 -p

	n=10000			
	X1<-rexp(n,2)	
	X2<-rnorm(n,3,2)	
	X3<-rbinom(n,1,0.25)
	X=data.frame(exp=X1,Gauss=X2,Bernouilli=X3) ###concatenation de X1, X2 et X3
	head(X) ###	exp	Gauss Bernouilli
	## 1 0.37759092 4.869048	0
	## 2 0.59082139 3.580626	0
	## 3 0.07285336 3.387249	0
	## 4 0.06989763 5.147031	1
	## 5 0.21803431 2.286873	0
	## 6 1.44748427 3.790633	0
	apply(X,2,mean)	
	##	exp	Gauss Bernouilli
	## 0.4991806 3.0078905 0.2482000
	apply(X,2,var)	
	##	exp	Gauss Bernouilli
	## 0.2578852 4.0025920 0.1866154
	cov(X)			
	##			exp	Gauss	Bernouilli
	## exp		0.25788516 -0.023411310 -0.006222800
	## Gauss		-0.02341131 4.002592022 -0.005486475
	## Bernouilli -0.00622280 -0.005486475 0.186615422
	hist(X1,breaks=30,freq=FALSE)
	plot(function(x) dexp(x,2),add=TRUE,col="red",xlim=c(0,5))

##concatenation de X1, X2 et X3 head(X) ##Affiche le début de la matrice X

  

	## 3 0.59454820 2.5494842	0
	## 4 0.08673629 6.3367267	0
	## 5 0.91940992 2.3569812	1
	## 6 0.78985083 4.1971632	0
	apply(X,2,mean)	
	##	exp	Gauss Bernouilli
	##	0.507474	3.009853	0.247900
	apply(X,2,var)	
	##	exp	Gauss Bernouilli
	## 0.2578895 4.0610531 0.1864642
	cor(X)		
	##		exp	Gauss	Bernouilli
	## exp	1.0000000000 -0.0009199897 -0.0121168116
	## Gauss	-0.0009199897 1.0000000000 -0.0009433278
	## Bernouilli -0.0121168116 -0.0009433278 1.0000000000
	hist(X1,breaks=30,freq=FALSE)
		1,0.25)	
	X=data.frame(exp=X1,Gauss=X2,Bernouilli=X3) ### exp Gauss Bernouilli
	## 1 0.01972026 4.5880807	0
	## 2 0.18615195 0.7783434	0
					4

2 Maximum likelihood estimator

log-Likelihood

Let y 1 , . . . , y n a i.i.d. sample with density (or p.m.f.) f with parameter θ. The likelihood of the sample y 1 , . . . , y n is

where L(θ; y i ) is the function θ → f (y i , θ). Generally, Instead of the likelihood function, we consider the log-likelihood:

The Maximum Likelihood Estimation (MLE) consists to maximizing the log-likelihood of the sample, (or minimizinglog L(θ; y 1 , . . . , y n ) ). With some distributions, it can be done to solve the scoring equations, that are ∂ ∂θ log L(θ; y 1 , . . . , y n ) = 0.

for many distributions, the scoring equations do not have an explicit solution, and an optimization procedure can be down to obtain the MLE, use optim in R.

• Let y 1 , . . . , y n be a sample from a Gaussian distribution with mean value µ and variance σ 2 . Found the MLE of µ and σ 2 . 

Dichotomy algorithm (bisection method)

The objective of the exercise is to find the value of x such that F (x) = P (X ≤ x) = 0.975, that is to say F -1 (0.975) where X is a random variable following a standard Gaussian distribution, using a dichotomy algorithm plot(function(x) pnorm(x),xlim=c(-6,6)) abline(h=0.975,col="red",lty=2) abline(v=qnorm(0.975),col="blue",lty=2) points(c(qnorm(0.975),0.01),pch="?",col="blue") Consider now the middle of the new interval and find a smaller interval which contains x. Reiterate the algorithm as many times as necessary until you get an interval smaller than an , chosen by user. (We will consider = 10 -7 ). The final value for the estimation of x will be the middle of the considered interval.

To do that:

• define a maximum number of iteration, maxit = 1000 and do a loop from 1 to maxit.

• Use the following command to stop the algorithm: In this example,

• U 1 = (U 1,1 , U 1,2 ) = (0.27, 0.37) is under the curve of the quarter circle:

Remember that the area of the circle is π so the area of the quarter circle is π/4. What is the probability for any simulated U = (U 1 , U 2 ) where U 1 and U 2 are uniform, to be under the curve of the quarter circle?

To estimate π/4, Monte Carlo procedure consists in simulating M random vectors U 1 = (U 1,1 , U 1,2 ), . . . , U M = (U M,1 , U M,2 ), according to uniform distributions on [0, 1], and evaluate the proportion of the points U m which are under the curve of the quarter circle, that is to say, such that U 2 m,1 + U 2 m,2 < 1. • Using M = 10 4 , simulate M such random vectors • Plot the points which are under the curve of the quarter circle in red and the points which are above the curve of the quarter circle in blue: