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A B S T R A C T   

Multiple reaction monitoring (MRM) mass spectrometry is emerging as a relevant tool for measuring customized 
molecular markers in freshwater sentinel species. While this technique is typically used for the validation of 
protein molecular markers preselected from shotgun experiments, recent gains of MRM multiplexing capacity 
offer new possibilities to conduct large-scale screening of animal proteomes. By combining the strength of active 
biomonitoring strategies and MRM technologies, this study aims to propose a new strategy for the discovery of 
candidate proteins that respond to environmental variability. For this purpose, 249 peptides derived from 147 
proteins were monitored by MRM in 273 male gammarids caged in 56 environmental sites, representative of the 
diversity of French water bodies. A methodology is here proposed to identify a set of customized housekeeping 
peptides (HKPs) used to correct analytical batch effects and allow proper comparison of peptide levels in 
gammarids. A comparative analysis performed on HKPs-normalized data resulted in the identification of peptides 
highly modulated in the environment and derived from proteins likely involved in the environmental stress 
response. Overall, this study proposes a breakthrough approach to screen and identify potential proteins 
responding to relevant environmental conditions in sentinel species.   

1. Introduction 

Thousands of pollutants are routinely disposed in cocktails into the 
aquatic environment, threatening the health of both wildlife and 
humans (Schwarzenbach et al., 2006). The importance of ecosystem 
services (biodiversity, drinking water, recreation) provided by natural 
water bodies leads to strong societal expectations regarding water 
quality and protection of this resource. Over the world, these expecta-
tions led to the development of legislative framework that requires 
states to achieve a good chemical and ecological status of their fresh-
water ecosystems (Hödl et al., 2018), in particular their compliance to 
environmental quality standard (EQS). EQSs are available for few 
chemical compounds and current chemical approaches focus on a 
limited number of selected priority compounds, oversighting a majority 
of contaminants and the relative cocktail effects (Milinkovitch et al., 
2019; Beyer et al., 2014). In this context, the use of biological responses 

in sentinel organisms is a promising alternative that allows to integrate 
the effects of chemical cocktails in aquatic environments (Milinkovitch 
et al., 2019; Wernersson et al., 2015). Over the last decades, consider-
able efforts have been made to identify biomarkers that provide valuable 
information on the level of pollution (Adams, 2001; Palos Ladeiro et al., 
2017; Catteau et al., 2021; Butcherine et al., 2022). Most ecotoxico-
logical biomarkers developed on invertebrate sentinel species were 
directly transposed from toxicological studies performed on vertebrate 
model animals (e.g. zebrafish, mouse), limiting the extrapolation to the 
biological diversity of ecosystems, as reviewed by Trapp et al. (2014). 
For example, the measure of several enzyme activities (i.e. catalase, 
phenoloxydase, acetylcholinesterase) may have different sensitivities to 
substrates and inhibitors among species. In the same way, the devel-
opment phase of biomarkers is usually achieved through laboratory 
investigations, focusing on a single chemical compound often tested at 
high concentrations compared to those found in the environment 
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(Piedade et al., 2020; Aguirre-Martínez et al., 2016; Giarratano et al., 
2014). While laboratory experiments are required to validate the 
sensitivity and specificity of identified biomarkers, this approach does 
not take into account the environmental complexity, which includes 
complex cocktails of pollutants of unknown composition and low 
contamination levels, for the discovery of markers of interest. For this 
purpose, field-based studies represent a promising alternative to develop 
biomarkers that integrate the environmental complexity. However, such 
challenge requires (i) the use of controlled and calibrated organisms to 
limit the effect of biotic factors (i.e. active biomonitoring approach) 
(Catteau et al., 2021; Ji et al., 2010) and (ii) the development of 
analytical tools to explore and compare properly biological modulations 
in samples collected at different sites and dates. 

The crustacean Gammarus fossarum has emerged as a relevant 
sentinel species for tracking the pollution of freshwater ecosystems. 
Found in most of European waterbodies, many studies have shown that 
these organisms bioaccumulate different pollutants in a dose- and time- 
dependent manner (Alric et al., 2019; Ciliberti et al., 2017; Wattier et al., 
2020). Gammarids are also sensitive to pollutants, so several ecotoxi-
cological biomarkers have been developed for this organism. For 
example, feeding and reproductive assays have been used to assess the 
biological impact of environmental pollution on G. fossarum (Coulaud 
et al., 2011; Coulaud et al., 2015; Lopes et al., 2020). Easy to handle, 
field caging of G. fossarum is well mastered, standardized (AFNOR XP 
T90-721) and is now part of the operational tools of French Water 
Agencies to evaluate environmental quality standards (Babut et al., 
2020). This active biomonitoring strategy involve field caging of cali-
brated organisms (same age, size, sex) collected from one unstressed and 
uncontaminated population (Besse et al., 2012). In contrast to passive 
sampling, this methodology has provided the standardization of several 
biotic parameters which guarantees a reliable comparison of biological 
responses between organisms exposed in situ to large-scale studies (Besse 
et al., 2012; Oikari, 2006). Therefore, active biomonitoring methodol-
ogies are increasingly employed to evaluate the impact of pollution on 
aquatic organisms, through the measure of ecotoxicological biomarkers 
(Barjhoux et al., 2018; Palais et al., 2012). 

By combining RNA sequencing (RNA-Seq) and MS-based shotgun 
proteomics, proteogenomic analysis are now routinely conducted to 
characterize the proteomes of sentinel species without sequenced- 
genomes (Armengaud et al., 2014). Shotgun analyses also provide the 
quantitative values of thousands of proteins and are therefore conven-
tionally used to study protein modulations in organisms exposed to 
pollutants and identify potential molecular biomarkers (Gouveia et al., 
2019; Trapp et al., 2018; Teng et al., 2021). For example, shotgun in-
vestigations performed on the gammarid Gammarus fossarum exposed in 
the laboratory to different concentrations of xenobiotics resulted in the 
identification of several candidate proteins related to endocrine 
perturbation (Trapp et al., 2015; Koenig et al., 2021). However, shotgun 
analysis remains costly and often suffers from poor reproducibility over 
time, making it unsuitable for the routine monitoring of biomarkers 
(Bian et al., 2020). The multiple reaction monitoring mode (MRM) of MS 
appears to be a promising tool for the quantification and application of 
protein markers in sentinel species, as already demonstrated in clinical 
practice (Shi et al., 2016). Targeted proteomic assays offer a highly se-
lective, multiplexed, and accurate quantitation of peptides derived from 
extracted proteins (Shi et al., 2016; Schmidt et al., 2012). Compared to 
shotgun proteomics, MRM technologies are cost- and time-effective in 
terms of sample preparation, and data processing (White, 2011; Percy 
et al., 2014). These tools are therefore particularly suitable for the 
protein measurement in large number of samples, such as those 
collected within biomonitoring survey (Shi et al., 2016; Vidova and 
Spacil, 2017). In aquatic ecotoxicology, MRM assays have been devel-
oped for the quantification of protein markers in G. fossarum and 
Dreisseina polymorpha exposed to pollutants in laboratory or field con-
dition. Recent technical and methodological advances in MRM provide 
rapid detection of hundreds of peptides and related proteins (Faugere 

et al., 2020; Leprêtre et al., 2020). For example, Faugere et al. (2020) 
have recently developed an MRM assay that provides the monitoring of 
277 reporter peptides of 157 proteins in the whole body of G. fossarum, 
offering the possibility to conduct comprehensive and accurate in-
vestigations of the gammarid’s proteome and to discover proteins of 
interest without a priori preselection. 

As evidenced in several studies, proteomic data acquired by MS are 
often subject to measurement variability due to variations in sample 
preparation or in analytical performance, potentially introducing biases 
in the comparison of protein levels measured in samples. To address this 
issue, peptides targeted by MRM are generally quantified using heavy 
isotope-labeled peptides introduced into samples before LC-MS ana-
lyses. These internal standards (ISTDs) are spiked into samples after 
protein digestion steps and are therefore particularly efficient for cor-
recting analytical biases generated by the variations of LC-MS in-
struments but do not address biases introduced during sample extraction 
and digestion (Chambers et al., 2021). In the context of exhaustive MRM 
assays, the use of hundreds of spiked ISTDs appears not a suitable option 
given the high cost of ISTDs. Thus, normalizing MRM data by the signal 
of stably expressed endogenous peptides, called housekeeping peptides 
(HKPs), may be an attractive solution to compare peptide levels 
measured in samples. Stably expressed in cells, regardless of physio-
logical conditions of organisms, housekeeping genes and proteins have 
been used for many years as internal control to compare gene and pro-
tein expression data obtain by transcriptomic (qPCR, RNAseq, DNA 
Microarray) and Western blot (WB) analyses (Lee et al., 2016; Wang 
et al., 2019; Tao et al., 2020). To our knowledge, few studies have 
proposed HKPs to normalize proteomic data obtained from MS proteo-
mic analyses. Moreover, several reports indicate that common selected 
housekeeping proteins differ in expression between species and organs 
(McCurley and Callard, 2008; Joshi et al., 2021), highlighting the need 
to identify and select HKPs unique to each sentinel species. 

As a proof of concept, this study aims to demonstrate the relevance of 
an original application of targeted proteomic approaches in field studies 
for the identification of modulated proteins under realistic environ-
mental conditions. Using the advantages of active biomonitoring stra-
tegies (i.e. calibrated organisms and reliable inter-site comparison) and 
MRM technologies, this study benefited from a large proteomic dataset, 
which included the monitoring of 249 peptides derived from 147 pro-
teins in 273 male gammarids caged in 56 environmental sites. The sites 
belong to the monitoring networks of French water agencies, and they 
are representative of the national diversity of water bodies. From this 
unique environmental proteomic dataset, a strategy was first developed 
to identify and select HKPs for normalizing MRM data and make com-
parable peptide levels between caged gammarids. Subsequently, a 
comparative proteomic analysis was conducted to reveal highly modu-
lated peptides under field conditions and define their biological 
functions. 

2. Material and methods 

2.1. Caging of gammarids 

Field exposure of male gammarids was performed according to a 
procedure adapted from the standardized caging protocol (AFNOR XP 
T90-721) as described in Alric et al. (2019). Briefly, male gammarids 
were collected from well-established population of G. fossarum leaving 
in a watercress farm located in Saint-Maurice-de-Rements (France). 
Organisms were acclimatized to the laboratory for 10 days in tanks 
supplied with drilled groundwater, under a constant temperature 
(12 ◦C), controlled aeration and a photoperiod of 16/8 h light/dark. 
During the whole acclimatization period, organisms were fed ad libitum 
with alder leaves (Alnus glutinosa). Twenty-four hours before field ex-
posures, male gammarids were calibrated (same size) and placed in 
punctured polypropylene cylinders ready for caging experiments. Field 
exposure experiments were conducted from September to October 2017. 
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For each site, the river typology (ranked from very small to very big), 
chemical status (either good or bad) and ecological status (ranked from 
good to bad) were retrieved from the French Water Agencies at the 
corresponding dates of caging (Table S1). Chemical and ecological sta-
tuses are defined following the Water Framework Directive 
(2000/60/EC). The chemical status is an assessment of the amount of 
priority substances in the aquatic environment. Good chemical status is 
achieved when no priority substances exceed agreed standards. The 
ecological status assessment falls into one of five status classes (bad, 
poor, moderate, good or high). The chemical status was unknown for 
only two sites and the ecological status was unknown for only one site. 
Physicochemical parameters (pH, temperature, dissolved oxygen and 
conductivity) of water were monitored throughout the exposure 
(Table S1). Gammarids were caged in 56 environmental sites distributed 
throughout the French territory (Fig. 1). For each environmental site, 
four cylinders containing 20 male gammarids, fed ad libitum with alder 
leaves, were placed at the site for 7 days. After 7 days of exposure, 
gammarids were brought back to the laboratory in water of their 
respective caging sites. For each environmental condition, 5 gammarids 
were randomly sampled, weighed, frozen in liquid nitrogen, and stored 
at − 80◦c for proteomic investigations. 

2.2. Sample preparation for proteomic investigations 

Total protein content of gammarids was extracted following the 
protocol described in Charnot et al. (2017), without modifications. To 

optimize the reproducibility of sample preparation, digestion and solid 
phase extraction (SPE) steps were conducted using an automated liquid 
handler (Biomek NXP, Beckman Coulter). For protein digestion, a vol-
ume of 3 mL of ammonium bicarbonate (50 mM) and 130 μL of 
dithiothreitol at a final concentration of 15 mM was added to 250 μl of 
protein extracts resuspended in a Tris-HCL buffer (50 mM, pH 7.8). After 
incubation of 40 min at 60 ◦C, 200 μL of iodoacetamide was added to a 
final concentration of 15 mM and samples were placed in the dark at 
room temperature for 40 min. Then, protein digestion was performed by 
adding 300 μg of treated TCPK trypsin into samples (Fisher Scientist, 
France). Samples were incubated for 1 h at 37 ◦C and the digestion was 
stopped by the addition of 40 μL of formic acid (FA). Before the SPE step, 
10 μL of a mixing solution containing 34 internal standards (ISTD, 
purity>97%), consisting of peptides isotopically labeled with [15N2 and 
13C6] on the C-ter of lysine or arginine (Scientific Thermo Fisher, Scot-
land), were spiked at a concentration of 4 μg/mL in samples. SPE was 
performed using 60 mg hydrophiliclipophilic balance (HLB) cartridge 
Oasis from Waters (Millford, MA). HLB-cartridges were conditioned by 
1 mL of methanol and 1 mL of acidified water (0.5% FA). After loading 3 
mL of sample solution, cartridges were rinsed with 1 mL of water/-
methanol (95/5 v/v) solution acidified to 0.5% FA. Peptides were then 
eluted in an Eppendorf tube by the addition of 1 mL of methanol acid-
ified to 0.5%. After evaporation under nitrogen flow, peptides were 
re-suspended in 90 μL of water/acetonitrile (90/10) with 0.5% FA. 
Finally, samples were centrifuged at room temperature during 5 min and 
15,000×g and supernatants were transferred to vials before LC-MS/MS 

Fig. 1. Distribution of caging sites over the French territory. The red dots represent caging sites of gammarids. The geographical boundaries on the map represent the 
boundaries of the six French regional environmental agencies: Adour Garonne (AG), Artois-Picardie (AP), Loire-Bretagne (LB), Seine-Normandie (SN), Rhin-Meuse 
(RM), Rhône Méditerranée-Corse (RMC). 
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analysis. 

2.3. Liquid chromatography and mass spectrometry analysis 

Peptide solutions were analyzed with an Agilent 1290 Infinity II High 
Performance Liquid chromatography (HPLC) system coupled to Agilent 
6495B triple quadrupole mass spectrometer (Agilent Technologies, 
Waldbronn, Germany). LC separation of the 20 μL sample injected was 
carried out on an XBridge BEH C18 column (100 mm × 2.1 mm, particle 
size 3.5 μm) coupled to a symmetry XBridge BEH C18 guard column 
(2.1 mm × 5 mm, particle size 3.5 μm) purchased from Waters (Milford, 
MA, USA). Elution was performed at a flow rate of 300 μL/min with 
water containing 0.1% (v/v) FA as eluent A and acetonitrile containing 
0.1% (v/v) FA as eluent B, using the following gradient (time in minutes, 
%B): (0, 5%), (2, 5%), (38, 35%), (38.1, 100%), (43, 100%), (43.1, 5%), 
(48, 5%) for an injection duty cycle of 48 min considering the column 
equilibration time. The temperature of the auto-sampler and column 
were kept at room temperature and 40 ◦C, respectively. 

Instrument control, data acquisition, and processing were performed 
using MassHunter LC/MS Data Acquisition B.09.00 software. The mass 
spectrometer was initially tuned and calibrated using Agilent ESI-L Low 
Concentration Tuning Mix, and checked every week after cleaning 
protocol. The mass spectrometer was interfaced with an Agilent ESI 
JetStream (AJS) electrospray ion source operating in positive ionization 
mode with an ion spray voltage of 4500 V. The nebulizer gas flow rate 
was set to 12 L/min with a pressure of 40 psi using nitrogen (N2). The 
ion source was set at 250 ◦C at the nebulizer and 210 ◦C at the transfer 
capillary. A gas flow rate (N2) of 17 L/min was applied in the transfer 
capillary. The collision cell accelerator voltage was set to a value of 4 V. 
Ion funnel parameters were set at 145 V for High Pressure RF et 115 V 
for Low Pressure RF. 

The software Skyline 21.1.0.146 (MacCoss Lab Software, USA) was 
used to produce the list of appropriate MRM transitions. Q1 and Q3 
masses for endogenous and heavy labeled peptides as well as collision 
energy (CE) values were predicted by Skyline. A total of 850 MRM 
transitions were monitored in a dynamic MRM mode (dMRM), with 
scheduled windows ranging from 2 to 10 min (Table S2). All MRM 
transitions were monitored at a unit resolution (0.7 Da) in Q1 and Q3, 
with a minimum dwell time of 5 ms and a cycle time set to 1500 ms in 
order to ensure a minimum of 10 points per chromatographic peak. With 
an average of three MRM transitions per peptide, the dMRM method 
included the monitoring of 283 peptides. Specifically, 249 peptides 
derived from 147 G. fossarum proteins as well as 34 labeled peptides 
(ISTDs) of the same sequence as G. fossarum peptides were targeted by 
dMRM (Table S3). As detailed in Faugere et al. (2020), these peptides 
were selected from a proteogenomic database acquired from G. fossarum 
males and were successfully detected by MRM. 

2.4. Multiple reaction monitoring data processing 

Quantitative data of targeted peptides were estimated after auto-
matic and manual integration of chromatographic peak areas using 
MassHunter Quantitative Analysis software (version B.09.00; Agilent 
Technologies). Peptide levels were assessed using the most intense and 
the least interfered MRM transitions among the 3 transitions monitored 
per peptide (Faugere et al., 2020). Only transitions detected with a 
signal-to-noise ratio (S/N) greater than 5 were considered for further 
analysis. To minimize the constraints of missing values in differential 
proteomics (Jin et al., 2021), peptides detected below this limit of 
quantification (LOQ) were replaced by the minimum values accepted for 
the same peptides in other samples. Raw data are available in Table S4. 

2.5. Diagnosis of batch effects 

Batch effects were defined as variations in the overall peptide levels 
observed across different analytical runs, ranging from sample 

preparation to MRM analyses. The presence of batch effects in raw data 
and normalized datasets was assessed visually using different graphical 
representations as provided by the R package proBatch (Čuklina et al., 
2021). In particular, the distribution of log-2 transformed peptide in-
tensities measured in the samples were visually compared using hier-
archical clustering heatmap and box plots to reveal the presence of batch 
effects among the different analytical runs conducted over time. 

2.6. Normalizations of raw data 

The normalization of raw data was performed on log2 transformed 
peptide intensities using the dataProcess function of the R package 
MSstats (Choi et al., 2014). Raw data underwent four different 
normalization procedures, two were based on the global signal of MRM 
data distributions and two others were based on the signal acquired from 
specific peptides. Among global normalization methodologies, quantile 
and median adjustment methods were applied to raw data by assuming 
that the distribution of quantiles from measured peptide levels are 
equally distributed across all samples. The normalizations based on 
specific peptides were performed using the ‘globalstandards’ option of 
the dataProcess function, which assumes that median levels of a set of 
peptides defined as global standards are the same across samples. Using 
this procedure, raw data were normalized using (1) the signal acquired 
from ISTDs introduced into samples with the same quantity before the 
SPE step, or (2) using the signal of HKPs, identified by the methodology 
detailed below. 

2.7. Identification and selection of housekeeping peptides 

Investigation of HKPs was performed on peptides detected in all 
samples above the LOQ (S/N > 5). The strategy developed for the 
mapping of HKPs relies on the identification of the least variable and the 
most correlated peptides measured in different individual samples 
analyzed by MRM. First, the GeNorm algorithm (Vandesompele et al., 
2002) was applied to evaluate the most stable peptides in quantile – and 
median – normalized datasets as well as the data normalized by ISTDs. 
In each normalized dataset, peptides were ranked with respect to their 
stability values (M-values) calculated by GeNorm, where peptides with 
the lowest M-values were considered as the most stable peptides. Then, 
an overall stability ranking was assigned to each peptide by summing 
their ranks in the different normalized datasets. Based on this overall 
stability ranking, the most stable peptides were selected and further 
investigated as candidate HKPs. To validate and select a set of stable 
peptides as HKPs, Pearson’s correlation tests were performed on raw 
intensities of the most stable peptides with respect to the GeNorm 
analysis. Based on these results, a set of peptides correlated with a 
Pearson’s correlation coefficient higher than 90% were selected as 
HKPs. 

2.8. Identification of differentially expressed peptides 

Differential proteomic analysis was performed on the HKPs- 
normalized dataset to evidence differentially expressed peptides 
(DEPs) in gammarids exposed to different environmental conditions. To 
avoid misinterpretation, comparisons of peptide levels were conducted 
exclusively on well detected peptides measured above the LOQ in at 
least 80% of samples. First, a student t-test analysis was conducted using 
the web application Biostatflow (v.2.9.2; http://biostatflow.org) to 
highlight peptides whose abundances differed statistically between at 
least two environmental sites. Pairwise comparisons were performed 
between each environmental site, and multiple test p-values were cor-
rected by the Benjamini-Hochberg method. Peptides levels were 
considered different between two sites with a false discovery rate (FDR) 
lower than 0.05. Then, based on median (med) levels and quantile (q) 
distributions of peptides, induction factors (IFs) were assigned to each 
peptide to evaluate the degree of their modulation in specific 
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environmental sites compared to overall sites. IFs specific to each pep-
tide (a) and environmental condition (b) were calculated as follows: 
IFab= (medab-meda)/(q75(meda)− q25(meda)). Based on these calcu-
lated IFs, peptides found statistically differentially expressed with IFs 
greater than 2 were considered as DEPs in specific sites. For each pro-
tein, reporter peptides showing the highest IFs were retained and further 
analyzed. 

2.9. Functional analysis 

Protein sequences related to targeted peptides were annotated to 
different functional categories to evaluate the biological functions (BP) 
and molecular functions (MF) of HKPs and DEPs. BLAST annotations of 
protein sequences were performed using the BLASTp module of 
OmicsBox software (https://www.biobam.com/omicsbox) (Götz et al., 
2008). The search for sequence similarity was conducted against the 
SWISSPROT database, without taxonomic restriction. Still using 
OmicsBox, slim gene ontology (GO) slim annotations of blasted protein 
sequences were retrieved using the GO mapping module. All functional 
annotations were validated with an expected value (E-value) threshold 
set at 1 × 10− 3. To avoid redundancy of GO-slims, MF or BP annotations 
mapped to DEPs were clustered using the affinity propagation clustering 
algorithm (Frey and Dueck, 2007). Graphical visualizations of MF and 
BP GO-slims annotated to DEPs were done with the R package ggplot2. 

3. Result and discussion 

MRM analyses were performed to monitor a large set of peptides in 
male gammarids caged in sites covered by the monitoring network of 
French water agencies, as part of a collaborative project with the French 
Biodiversity Agency (OFB). In the present study, this large environ-
mental proteomic dataset was processed to investigate the ability of 
MRM as a promising and original approach for the identification of 
modulated proteins in realistic environmental conditions. 

3.1. Batch effects 

The large proteomic dataset included the analysis of 249 reporter 
peptides of 147 proteins measured in 273 gammarid samples caged in 56 
environmental sites. To acquire this dataset, 23 analytical series, each of 
twelve samples ranging from sample preparation to the MRM analysis, 
were conducted over a period of about two months (Fig. 2A). Given the 
large number of samples and analytical series, the presence of potential 
batch effects related to variations in sample preparation and mass 
spectrometer responses should be taken into account to properly 
normalize peptide levels across samples. Boxplots and hierarchical 
clustered heatmap representations were used to visually inspect data for 
the presence of batch effects (Fig. 2). Peptide levels measured in samples 
varied in intensity within and across the 23 analytical series conducted 
over time, highlighting the presence of batch effects on raw data 
(Fig. 2A). In particular, the 23 analytical series could be classified into 3 
batches, characterized by different patterns of global peptide intensities 
(Fig. 2A). First, peptide signal intensities showed constant levels in 
samples analyzed until 6th of August (Batch 1). Then, peptide signal 
intensities increased significantly in the 3 analytical series performed 
from the 6th to the 9th of August (batch 2). Finally, in the batch 3, the 
global peptide intensities returned to levels similar to those observed in 
batch 1. These different patterns of signal intensities between batches 
were confirmed by the clustered heatmap (Fig. 2B). Indeed, samples 
were grouped into three clusters characterized by different peptide in-
tensities. A first cluster (cl 1) was composed of about twenty samples 
analyzed from all the three batches. These samples differed from the 
others due to the occurrence of peptides measured with low intensities, 
probably below the LOQ. The second cluster (cl 2) comprised samples 
analyzed in batches 1 and 3, which displayed relatively similar peptide- 
level profiles. The third cluster (cl 3) was composed exclusively of 
samples analyzed from the batch 2. 

The increased peptide levels observed in the samples analyzed from 
the 6th to the 9th of August are probably associated with a change in the 
response of the LC-MS instruments, since signal increases were also 

Fig. 2. (A) Boxplots representing the distribution of peptide raw intensities in each sample. Boxplot colors represent the 23 different analytical series, starting from 
sample preparation to MRM analyses. (B) Clustered heatmap of peptide raw intensities in samples classified by analytical series and batches. 
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observed for the 34 ISTDs (Fig. S1). Stability of LC-MS instruments can 
be impacted by several parameters, such as clogging of columns or MS 
components, causing the drift of LC-MS analytical performances and 
contributing to the introduction of batch effects (Fernández-Albert et al., 
2014). To solve this issue, MRM data are traditionally normalized using 
the signal of ISTDs (Leprêtre et al., 2020; Charnot et al., 2017; Addona 
et al., 2009; Liebler and Zimmerman, 2013; Villanueva et al., 2014). 
Spiked in samples in the same quantities before LC-MS analyses, ISTDs 
are effective for adjusting biases of quantitation caused by the instability 
of LC-MS instruments. However, because they are generally spiked in 
samples after the protein digestion step, normalizations based on ISTDs 
cannot consider the potentially non-negligible part of variability intro-
duced during sampling and protein extractions (Piehowski et al., 2013). 
Indeed, subtle random variations in conditions during sample prepara-
tion may also significantly contribute to the peptide-level variability 
observed within the 273 gammarid samples assayed by MRM (Fig. 2). In 
particular, Piehowski and coworkers (Piehowski et al., 2013) showed 
that the protein extraction step explain the main part of variability in 
LC-MS analysis. In this study, sample preparations were performed on 
calibrated gammarids using the same materials and chemical reagent 
solutions. In addition, variability was controlled by performing all 
protein digestion and SPE steps with an automated liquid handler. 
Nevertheless, different extracted protein yields per samples could 
explain disparities of peptides levels observed within analytical series 
and throughout the two-month analysis period. Global normalization 
methods, such as those based on the median or quantile distribution of 
peptide levels, have been typically proposed to address technical biases 
in large-scale proteomic datasets, like in shotgun experiments (Callister 
et al., 2006; Välikangas et al., 2018). These normalization procedures 
assume that global signals have the same distribution across samples and 
are therefore justified in datasets where thousands of peptides are 
measured and only a minority of proteins are expected to be modulated. 
However, when only a few peptides are targeted or when they are ex-
pected to be modulated, global normalizations may conceal the true 
biological variability and introduce biases in the comparison of peptide 
levels between samples (Nakayasu et al., 2021). In this context, 
normalization with HKPs may be the most appropriate method to 
minimize biases introduced during both sample preparation and LC-MS 
analysis steps, ensuring a reliable comparison of peptide levels measured 
by MRM. However, such a normalization remains challenging since it 
first implies the identification of ubiquitously and constitutively 
expressed HKPs in tested samples. 

3.2. Identification of housekeeping peptides and raw data normalization 

The proteomic dataset was acquired from 273 gammarids exposed in 
situ to 56 watershed sites, representing the variability of realistic and 
complex environmental conditions (Table S1), making it particularly 
suitable for the identification of stable HKPs. In fact, previous studies 
that aimed to propose HKPs derived them from known proteins used as 
external controls in Western blot or gene expression analysis from model 
organisms (Hartung et al., 2021; Whiteaker et al., 2011; Groh et al., 
2013). Indeed, to be effective in data normalization, HKPs must be 
ubiquitously and stably expressed in the tissues of the analyzed organ-
isms, regardless of whether their physiological status has been poten-
tially altered by environmental changes (Zhang et al., 2015). To identify 
and select appropriate HKPs in G. fossarum, our methodology relied on 
the identification of well-detected, stable and correlated peptides among 
the 273 gammarids. Among the 277 peptides measured by MRM in male 
gammarids, 126 were detected in all samples above the LOQ (S/N > 5) 
and were further investigated as candidate HKPs. Then a GeNorm 
analysis was conducted on the median, quantile and ISTD-normalized 
datasets to evidence the most stable peptides measured in samples. 
Based on the mean pairwise variation between individual peptide and 
other tested peptides, GeNorm algorithm estimates a stability measure 
for each peptide (M-value) (Vandesompele et al., 2002). According to 

M-values, peptides were ranked from the most to the least stably 
expressed in the three normalized datasets. Then, a global ranking was 
assigned to each peptide by summing their ranks obtained from the 
three normalized datasets and the most stable peptides were further 
investigated as candidate HKPs (Table 1). Except for the peptides 
LFEVGGPPSCTK, GNLANVIR and DVNAAIAAIK, all candidate HKPs 
were ranked among the most stably expressed peptides in median-, 
quantile- and ISTD-normalized databases. In particular, the three most 
stable peptides evidenced by the global ranking (AVIDSGEGLIR, 
LPTVAAIIYR and LGFLTFCPTNLGTTIR) were ranked in the top 5 of all 
normalized datasets. To validate and select a set of stable peptides as 
HKPs, correlations of candidate HKPs were evaluated using Pearson’s 
correlation tests. All candidate HKPs were positively correlated with 
Pearson’s correlation coefficient (R2) greater than 80% (Fig. S2). Among 
them, five peptides AVIDSGEGLIR, LPTVAAIIYR, LGFLTFCPTNLGTTIR, 
LFEVGGPPSCTK, and IINEGAALLR were highly correlated with an R2 

greater than 90% and were therefore selected as HKPs to normalize 
proteomic data (Fig. S2). According to the functional analysis, these five 
selected HKPs were derived from proteins that play a central role in the 
maintenance of cell function and are therefore likely to be constitutively 
expressed in gammarid cells. In particular, the peptides ‘AVIDSGEGLIR’ 
and ‘LPTVAAIIYR’ were derived from the structural protein alpha acti-
nin and the mitochondrial protein citrate synthase, respectively. Struc-
tural proteins are essential to maintain cell shape and mitochondrial 
proteins are crucial for cell survival since mitochondria are the main 
organelles that ensure the production of cell energy. In this context, both 
structural and mitochondrial proteins are considered as valuable 
housekeeping proteins and have been extensively used as internal 
reference proteins to normalize protein levels measured by western blots 
(Eaton et al., 2013). The peptide ‘LGFLTFCPTNLGTTIR’ was annotated 
to an Arginine kinase (AK), a key enzyme involved in energy metabolism 
homeostasis (Yao et al., 2009). Found stably expressed in several 
invertebrate species, the gene coding for the AK has been considered as a 
valuable reference gene to normalize gene expression data obtained by 
quantitative PCR (Lu et al., 2013; Li et al., 2019). Finally, the two other 
selected peptides (IQVDPAK and FGFYEVFK) were linked to a phos-
phatase enzyme (PP2). Involved in the regulation of many vital 
cell-signaling pathways, PP2 proteins have been found stably expressed 
in several organisms and the gene coding for PP2 is frequently used as a 
reference gene in qPCR analyses (Ruediger et al., 1991; Seshacharyulu 
et al., 2013; Tang et al., 2019). The normalization of raw data using 
selected HKPs eliminated the batch effect previously observed in raw 
data. As illustrated in Fig. 3, the distribution of peptide levels measured 
in samples over time were more homogeneous after normalization with 
HKPs. The clustered heatmap also confirms the correction of batch ef-
fects, revealing two clusters independent of analytical series (Fig. 3B). 
Like in the raw data, a first cluster (cl 1) included samples that contain 
missing data or peptides measured below the LOQ. The second cluster 
(cl 2) included other samples analyzed from the 23 analytical series, 
confirming the batch effect correction. 

By providing the measure of hundreds peptides in a considerable 
number of samples and environmental conditions, MRM tools are of-
fering new opportunities for the identification of customized HKPs in 
sentinel species. This study proposes, for the first time, a methodology to 
identify and select a set of HKPs specific to tested biological samples. 
This strategy led to the identification of co-expressed HKPs derived from 
key proteins involved in basal cell maintenance, that are stably 
expressed in males of G. fossarum. These selected HKPs have proven to 
be particularly effective to correct batch effects by minimizing technical 
variability introduced during sample preparations and LC-MS analysis, 
confirming their value to normalize large scale proteomic data acquired 
by MRM. Successfully applied to the whole body of G. fossarum, this 
methodology could be easily extended to find HKPs in other biological 
tissues (i.e. gills, caecum) or sentinel species, provided that a significant 
number of peptides are measured in samples with contrasting biological 
states. The use of these HKPs may open new opportunities for the 
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quantification and assessment of protein markers in male gammarids. 
Indeed, by comparing peptide intensities to HKPs intensities, it may 
become possible to quantify and properly compare biomarker levels in 
gammarids collected and analyzed on different dates, as required within 
large-scale biomonitoring surveys. 

3.3. Discovery of proteins highly modulated in the environment 

A comparative proteomic analysis was performed on HKPs- 
normalized data to identify peptides and related proteins modulated 
in gammarids exposed in situ to the different environmental conditions 
(Table S1). The comparative analysis was performed exclusively on the 
220 peptides detected above the LOQ (S/N > 5) in more than 80% of 
samples. First, a t-test analysis was conducted to highlight peptides 
whose expression differed statistically (FDR<0.05) between at least two 
environmental sites, resulting in the identification of 75 peptides 
(related to 47 proteins). Then, induction factors (IFs) of peptides were 

calculated to estimate their levels of modulation in specific sites. For 
each protein, reporter peptides showing the highest IFs were retained 
and further analyzed (Fig. 4). Overall, out of the 75 peptides and 47 
proteins that satisfied statistical criteria, 40 DEPs related to 30 proteins 
displayed IFs greater than 2 and were considered modulated in the 
environment (Fig. 4). A functional analysis was performed on modulated 
proteins to identify the biological functions impacted in the environ-
ment and evidence the implication of these proteins in response to 
environmental stress. The purpose of this functional analysis was to find 
whether general biological trends were present in the list of proteins 
generated by the mass spectrometry techniques and bioinformatics an-
alyses. The Gene Ontology (GO) analysis reveals that more than 50% of 
the modulated proteins were annotated to the BP ‘stress response’ 
(Fig. 5). More than 30% of proteins were annotated to the BP ‘homeo-
static process’, a BP essential for maintaining internal steady states and 
often impaired by pollutants, such as heavy metals (Liu and Wang, 2016; 
Mezzelani et al., 2021). In addition, about 15% of proteins were 

Table 1 
Descriptions of the ten most stable peptides according to their global ranks. In each normalized dataset, peptides were ranked from the most to least stable based on 
their M-values. Global ranks were then assigned to each peptide by summing their ranks obtained from the different normalized datasets.  

Candidate HKPs Blast annotations Global Rank Normalized datasets 

Median ISTDs Median Quantile 

M-value Rank M-value Rank M-value Rank 

AVIDSGEGLIR Alpha-actinin-4 1 0.316 1 0.336 1 0.342 2 
LPTVAAIIYR Citrate synthase, mitochondrial 2 0.317 2 0.338 2 0.346 3 

LGFLTFCPTNLGTTIR Arginine kinase 3 0.321 4 0.339 3 0.353 5 
LFEVGGPPSCTK protein phosphatase 2B 4 0.318 3 0.343 4 0.361 11 

IQVDPAK Phosphate carrier protein, mitochondrial 5 0.334 10 0.344 5 0.352 4 
IINEGAALLR protein phosphatase 2B 6 0.328 7 0.351 9 0.354 6 
FGFYEVFK Phosphate carrier protein, mitochondrial 7 0.322 5 0.348 8 0.365 10 

ASHSDILASIAK unknown 8 0.333 8 0.347 7 0.361 9 
GNLANVIR ADP/ATP translocase 2 9 0.323 6 0.346 6 0.373 18 

DVNAAIAAIK Tubulin alpha-1C chain 10 0.338 16 0.351 10 0.356 7  

Fig. 3. (A) Boxplots representing the distribution of peptide HKPs-normalized intensities in each sample. Boxplot colors represent the 23 different analytical series, 
starting from sample preparation to MRM analyses. (B) Clustered heatmap of peptide HKPs-normalized intensities in samples classified by analytical series 
and batches. 
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Fig. 4. Induction factors (IFs) of the most induced peptides reporting for the proteins shown in the x axis. Each dot corresponds to one of the 56 environmental sites 
investigated. Only proteins related to peptides that satisfied statistical criteria (FDR<0.05) are presented. The red line indicates a threshold of IF equal 2. 

Fig. 5. Biological process (BP) and molecular function (MF) GO slim annotations related to modulated proteins. To avoid redundancy, GO-slims were clustered using 
affinity propagation clustering algorithm. 
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assigned to the BPs ‘Autophagy’ and ‘Nervous system’ (Fig. 5). Auto-
phagy processes promote the recycling of dysfunctional or damaged 
cellular elements under conditions of cellular stress (Kroemer et al., 
2010). In aquatic organisms, several studies have demonstrated the 
implication of autophagy processes in response to environmental pol-
lutants and many authors reviewed the value of monitoring autophagic 
responses to probe the environmental pollution (Tang, 2016). It is also 
not surprising to identify modulated proteins related to the nervous 
system since thousands of chemical released in the environment exert 
neurotoxic effect (Iqubal et al., 2020). For example, several studies have 
shown the nervous system is targeted by different classes of anthropo-
genic pollutants, such as pesticides and microplastics (Prokić et al., 
2019; Deidda et al., 2021). Regarding the molecular functions, 4 
modulated proteins were annotated to the GO-slim ‘oxidoreductase ac-
tivity’, a key function involved in the oxidative stress response induced 
by a wide range of environmental pollutants (Ahmad, 1995; Valavanidis 
et al., 2006). Out of these 30 modulated proteins, 8 proteins showed IFs 
higher than 3 (Fig. 4). For example, a gelsolin-like protein was observed 
with an IF higher than 3.5 in a specific site. Involved in the regulation of 
actin filament assembly, gelsolins are considered as biomarkers of 
inflammation in humans (DiNubile, 2008) and their modulation is 
recurrently observed in invertebrate species exposed in the laboratory to 
different classes of pollutants (Trapp et al., 2018; Khondee et al., 2016; 
Lafontaine et al., 2017). Others proteins that were found modulated in 
the environment (Fig. 4) are already considered as valuable biomarkers 
to track the impact of pollution in freshwater sentinel species, including 
G. fossarum. In particular, catalase and phenoloxidase enzyme activities 
have been monitored for several years to assess the oxidative stress or 
immune modulations of sentinel species exposed to pollutants in labo-
ratory or environmental conditions (Catteau et al., 2021; Luna-Acosta 
et al., 2017; Xiao et al., 2021). 

This study proposes a new methodology for the discovery of protein 
markers that integrate the environmental complexity, overcoming some 
of the limits of the traditional single-molecule approach under 
controlled laboratory conditions. As a proof of concept, this work il-
lustrates the potential of highly multiplexed MRM tools to robustly 
investigate and compare proteomes of gammarid caged at different 
environmental sites, such as in large-scale biomonitoring surveys. Given 
their high modulation patterns and their biological functions related to 
the stress response, most of the proteins identified in this study may 
represent potential molecular markers to track the impact of pollution in 
waterbodies. To validate these proteins as environmental biomarkers, 
their sensitivities to pollutants and confounding factors must be further 
investigated. Indeed, several environmental factors, other than pollut-
ants, may also influence the biology of gammarids and lead to protein 
modulations. For example, the temperature is known to influence 
several physiological processes in crustacean species, including energy 
metabolism, reproduction and immune defense (Ren et al., 2021). 
Finally, protein markers developed at the organ level may respond more 
sensitively and specifically to pollutants compared to those developed 
from whole bodies. Depending on their physicochemical properties, 
pollutants have different modes of action and different accumulation 
profiles in organs. For instance, Gestin et al. (2021) have recently 
revealed that heavy metals accumulate differently in the organs of 
G. fossarum. Thus, investigating protein modulations in G. fossarum or-
gans targeted by metals (i.e. caecum, gills) would enhance the discovery 
of metal-sensitive biomarkers. 

4. Conclusion 

This study highlights the strength of combining active biomonitoring 
strategies and highly multiplexed MRM mass spectrometry to investi-
gate the proteomes of sentinel organisms under real field conditions. The 
high-throughput measurement of hundreds of peptides in gammarids 
caged across the French territory provides a unique dataset of environ-
mental proteomic data. Based on this dataset, a novel strategy was 

designed to identify customized HKPs, resulting in the identification of 
stable peptides effective for normalizing MRM data and compare prop-
erly peptides levels measured in male gammarids. Then, the compara-
tive proteomic analysis performed on HKPs-normalized data resulted in 
the identification of highly modulated proteins in the environment, 
which have biological functions related to the environmental stress 
response. Overall, this innovative approach offers new perspectives for 
the discovery of protein biomarkers in sentinel species by providing the 
identification of modulated proteins that integrate the environmental 
complexity. 
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