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INVEXITY OF CONSTRAINT MAPS

IN MATHEMATICAL PROGRAMS

Do Van Luu and Nguyen Manh Hung

Abstract. In this paper, we study a multiobjective programming problem
with constraints of equality and inequality types which are maps from a Banach
space into other Banach spaces. Sufficient conditions for the invexity of con-
straint maps with respect to the same scale map are established together with
a new constraint qualification involving a invexity condition and a generalized
Slater condition.

1. Introduction

In the last two decades, theory of invex functions has been the subject of
much development (see, e.g., [2], [4]-[7], [11], [14]). The invexity of functions
occuring in mathematical programming problems plays an important role in
the theory of optimality conditions and duality. A question arises as to when
constraints in a mathematical programming are invex at a point with re-
spect to the same scale. Recently, Ha-Luu [4] have shown that the constraint
qualifications of Robinson [15], Nguyen-Strodiot-Mifflin [13] and Jourani [9]
types are sufficient conditions ensuring constraints of Lipschitzian mathemat-
ical programs to be invex with respect to the same scale. It should be noted
that the single-objective mathematical programs there involve finitely many
constraints of equality and inequality types which are locally Lipschitzian
real-valued functions defined on a Banach space.Motivated by the results due
to Ha-Luu [4], in this paper we shall deal with a multiobjective program-
ming problems with constraints maps from a Banach space into other Banach
spaces which are directionally differentiable. Sufficient conditions for the in-
vexity of constraint maps with respect to the same scale map are established
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together with showing that the invexity of constraint maps along with an
another suitable condition gives a new constraint qualification. After Intro-
duction, Section 2 is devoted to derive sufficient conditions for the invexity of
constraint maps with respect to the same scale map. The results show that
known constraint qualifications together with a condition on the existence of
interior points will ensure constraint maps to be invex with respect to the
same scale. Section 3 gives a new constraint qualification which comprises an
invexity condition and a generalized Slater condition.

2. Sufficient conditions for invexity

Let X, Y , Z, V be real Banach spaces, and let f , g, h be maps from X into
V , Y , Z, respectively. Let Q, S be closed convex cones in V , Y , respectively,
with vertices at the origin, int Q 6= ∅ and intS 6= ∅. Let C be a nonempty
convex subset of X. In this paper, we shall be concerned with the following
mathematical programming problem:

(P )

W −min f(x),

subject to

− g(x) ∈ S,

h(x) = 0,

x ∈ C,

where W -min denotes the weak minimum with respect to the cone Q.
Denote by M the feasible set of (P):

M =
{
x ∈ C : −g(x) ∈ S, h(x) = 0

}
.

For x ∈ C, we define the following set

C(x) =
{
α(x− x) : x ∈ C,α ≥ 0

}
.

Then C(x) is a convex cone with vertex at the origin. Denote by S∗ the dual
cone of S

S∗ =
{
y∗ ∈ Y ∗ : 〈y∗, y〉 ≥ 0, ∀ y ∈ S

}
,

where 〈y∗, y〉 is the value of the linear function y∗ ∈ Y ∗ at the point y ∈ Y .
Y ∗ and Z∗ will denote the topological duals of Y and Z, respectively.

The following notions are needed in the sequel.
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Definition 2.1 [1]. A subset D of X is said to be nearly convex if there exists
α ∈ (0, 1) such that for each x1, x2 ∈ D,

αx1 + (1− α)x2 ∈ D.

Note that if D is nearly convex, then intD is a convex set (see, e.g., [8, Lemma
2.1]. intD here may be empty.

Definition 2.2 [8]. A map F : D → Y is called nearly S-convexlike on D if
there exists α ∈ (0, 1) such that for every x1, x2 ∈ D, there is x3 ∈ D such
that

αF (x1) + (1− α)F (x2)− F (x3) ∈ S.

Note that such a nearly S-convexlike map is simply called S-convexlike in [8].
A special case of nearly S-convexlike maps is nearly S-convex one.

Definition 2.3. Let D be a convex subset of X. A map F : D → Y is
said to be nearly S-convex on D if there exists α ∈ (0, 1) such that for every
x1, x2 ∈ D,

αF (x1) + (1− α)F (x2)− F (αx1 + (1− α)x2) ∈ S.

Recall that the directional derivative of f at x, with respect to a direction
d, is the following limit

f ′(x; d) = lim
t↓0

f(x + td)− f(x)
t

,

if it exists. Throughout this paper, we suppose that f , g, h are directionally
differentiable at x in all directions.

Following [2, 14], the map g is called S-invex at x if there exists a map ω
from X into C(x) such that for all x ∈ X,

g(x)− g(x)− g′(x; ω(x)) ∈ S.

Such a map ω is called a scale. When S = {0} we get the notion of {0}-
invexity.

A sufficient condition for invexity of constraints in Problem (P) without
equality constraints can be formulated as follows.

Theorem 2.1. Assume that h = 0 and g′(x; .) is nearly S-convexlike on
C(x). Suppose also that there exists d0 ∈ C(x) such that

−g′(x; d0) ∈ intS (1)
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Then there exists a map ω : X → C(x) such that g is S-invex at x with respect
to ω.

Proof. Put A := g′(x;C(x)) + S, where g′(x;C(x)) := {g′(x; d) : d ∈ C(x)}.
We first begin with showing that A is nearly convex.

For y1, y2 ∈ A, there exist di ∈ C(x) and si ∈ S (i = 1, 2) such that

yi = g′(x; di) + si (i = 1, 2). (2)

Since g′(x; .) is nearly S-convexlike on C(x), there exist α ∈ (0, 1) and d3 ∈
C(x) such that

αg′(x; d1) + (1− α)g′(x; d2)− g′(x; d3) ∈ S. (3)

Combining (2) and (3) yields that

αy1 + (1− α)y2 = αg′(x; d1) + (1− α)g′(x; d2) + αs1 + (1− α)s2

∈ g′(x; d3) + S + S

⊂ g′(x;C(x)) + S = A,

which means that the set A is nearly convex. We invoke Lemma 2.1 in [8] to
deduce that intA is convex. Note that intA 6= ∅, since intS 6= ∅.

We now show that A = Y . Assume the contrary, that A ⊂
6=

Y . Then there

exists y0 ∈ Y \ A, and so y0 6∈ intA. Applying a separation theorem for the
disjoint convex sets {y0} and int A in Y (see, e.g., [3, Theorem 3.3]) yields the
existence of 0 6= y∗ ∈ Y ∗ such that

〈y∗, y0〉 ≤ 〈y∗, y〉 (∀ y ∈ intA).

Since y∗ is continuous on Y and intA 6= ∅, we obtain

〈y∗, y0〉 ≤ 〈y∗, y〉 (∀ y ∈ intA = A),

which implies that
〈y∗, y0〉 ≤ 〈y∗, y〉 (∀ y ∈ A). (4)

Since g′(x; .) is positively homogeneous, C(x) and S are cones, it follows
that A is cone. Making use of Lemma 5.1 in [3], it follows from (4) that

〈y∗, y0〉 ≤ 0 ≤ 〈y∗, y〉 (∀ y ∈ A). (5)
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Observing that 0 ∈ S, we have

〈y∗, y〉 ≥ 0 (∀ y ∈ g′(x; C(x))). (6)

Moreover, since g′(x; .) is positively homogeneous, it follows from (5) that

〈y∗, y〉 ≥ 0 (∀ y ∈ S)

which means that y∗ ∈ S∗.
On the other hand, it follows readily from (6) that

〈y∗, g′(x; d)〉 ≥ 0 (∀d ∈ C(x)),

which leads to the following

〈y∗, g′(x; d0)〉 ≥ 0,

which contradicts (1). Consequently, A = Y , i.e.,

g′(x;C(x)) + S = Y. (7)

It follows from (7) that for all x ∈ X,

g(x)− g(x) ∈ g′(x; C(x)) + S,

which implies that there exists d ∈ C(x) such that

g(x)− g(x) ∈ g′(x; d) + S.

Defining a map ω : x 7→ ω(x) = d, we obtain

g(x)− g(x)− g′(x; ω(x)) ∈ S.

The proof is complete.
Denote by B(x; δ) the open ball of radius δ around x.
The following result shows that a generalized constraint qualification of

Mangasarian-Fromovitz [12] type for infinite dimensional cases is a sufficient
condition ensuring g to be S-invex and h is {0}-invex at x with respect to the
same scale.

Theorem 2.2. Assume that h is Fréchet differentiable at x with Fréchet
derivative h′(x) and g′(x; .) is nearly S-convex on C(x). Suppose, in addition,
that there exists d0 ∈ C(x) such that
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(i) −g′(x; d0) ∈ intS, h′(x)d0 = 0;
(ii) h′(x) is a surjective map from X onto Z;
(iii) there exists δ > 0 such that B(d0; δ) ⊂ C(x), and for every z ∈

h′(x)(B(d0; δ)), there exists d ∈ B(d0; δ) satisfying

−g′(x; d) ∈ S, h′(x)d = z.

Then, there exists a map ω : X → C(x) such that g is S-invex and h is {0}-
invex at x with respect to the same scale ω, which means that for all x ∈ X,

g(x)− g(x)− g′(x, ω(x)) ∈ S,

h(x)− h(x) = h′(x)ω(x).

Note that the condition on existence of interior point like condition (iii)
was introduced by Tamminen [17].

Proof of Theorem 2.2. We invoke assumption (i) to deduce that for all
µ ∈ S∗ \ {0}, and ν ∈ Z∗,

〈µ, g′(x, d0)〉+ 〈ν, h′(x)d0〉 < 0. (8)

In view of the differentiability of h at x, putting G = (g, h), one gets G′(x; .) =
(g′(x; .), h′(x)(·)).

We now show that

G′(x; C(x)) + S × {Oz} = Y × Z. (9)

Assume the contrary, that

G′(x; C(x)) + S × {Oz} ⊂6= Y × Z.

This leads to the existence of a point u := (u1, u2) ∈ Y × Z, but u 6∈
G′(x; C(x)) + S × {Oz}. Setting B := G′(x;C(x)) + S × {Oz}, we shall
prove that B is nearly convex.

It is easy to see that

B =
{
(y, z) ∈ Y × Z : ∃ d ∈ C(x),

y − g′(x; d) ∈ S, h′(x)d = z
}
.

Hence, taking (yi, zi) ∈ B (i = 1, 2), there exist di ∈ C(x) (i = 1, 2) such that

yi − g′(x; di) ∈ S, h′(x)di = zi (i = 1, 2). (10)
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Since g′(x; .) is nearly S-convex, there exists α ∈ (0, 1) such that

αg′(x; d1) + (1− α)g′(x; d2)− g′(x; αd1 + (1− α)d2) ∈ S. (11)

Moreover, it follows from (10) that

αy1 + (1− α)y2 − αg′(x; d1)− (1− α)g′(x; d2) ∈ S. (12)

Combining (11) and (12) yields that

αy1 + (1− α)y2 ∈ g′(x; αd1 + (1− α)d2) + S + S

⊂ g′(x; αd1 + (1− α)d2 + S,

which means that

αy1 + (1− α)y2 − g′(x; αd1 + (1− α)d2) ∈ S (13)

On the other hand,

αz1 + (1− α)z2 = h′(x)(αd1 + (1− α)d2),

which along with (13) yields that

α(y1, z1) + (1− α)(y2, z2) ∈ B

Consequently, B is nearly convex. Due to Lemma 2.1 in [8], intB is convex.
Next we shall prove that intB 6= ∅.
According to assumption (ii), h′(x) is a surjective linear map from X onto

Z, and hence h′(x) is an open map. Therefore, h′(x)(B(d0; δ)) is an open
nonempty subset of Z.

Taking (y, z) ∈ (int S) × h′(x)(B(d0; δ)) yields that (y, z) is an interior
point of B. Indeed, since y ∈ intS and z ∈ h′(x)(B(d0; δ)), there exist
neighborhoods U1 of y and U2 of z such that U1 ⊂ S and U2 ⊂ h′(x)(B(d0; δ)),
respectively. Taking any (y, z) ∈ U1×U2, due to assumption (iii), there exists
d ∈ B(d0; δ) such that

−g′(x; d) ∈ S, h′(x)d = z,

which implies that
y − g′(x; d) ∈ S + S ⊂ S,
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whence, (y, z) ∈ B. Consequently, U1×U2 ⊂ B and (y, z) is an interior point
of B, which means that intB 6= ∅.

Applying a separation theorem for the nonempty disjoint convex sets {u}
and intB in Y ×Z (see, e.g., [3, Theorem 3.3]) yields the existence of (µ∗, ν∗) ∈
Y ∗ × Z∗ \ {0} satisfying

〈µ∗, u1〉+ 〈ν∗, u2〉 ≤ 〈µ∗, y〉+ 〈ν∗, z〉 (∀ (y, z) ∈ intB)

Since B is a cone, making use of Lemma 5.1 in [3], we obtain

〈µ∗, u1〉+ 〈ν∗u2〉 ≤ 0 ≤ 〈µ∗, y〉+ 〈ν∗, z〉 (∀(y, z) ∈ intB).

Since intB 6= ∅, it follows that

〈µ∗, y〉+ 〈ν∗, z〉 ≥ 0 (∀(y, z) ∈ intB = B),

where B is the closure of B in normed topology. Hence,

〈µ∗, y〉+ 〈ν∗, z〉 ≥ 0 (∀(y, z) ∈ B),

which leads to the following

〈µ∗, y〉+ 〈ν∗, z〉 ≥ 0 (∀(y, z) ∈ G′(x;C(x)), (14)

〈µ∗, y〉 ≥ 0 (∀ y ∈ S), (15)

It follows from (14) that

〈µ∗, g′(x; d)〉+ 〈ν∗, h′(x)d〉 ≥ 0 (∀ d ∈ C(x)). (16)

By (15) we get µ∗ ∈ S∗. We have to show that µ∗ 6= 0.
If it were not so, i.e. µ∗ = 0, then from (14) we should have

〈ν∗, h′(x)d〉 ≥ 0 (∀ d ∈ C(x)).

Due to assumption (iii), B(d0; δ) ⊂ C(x), and hence,

〈ν∗, h′(x)d〉 ≥ 0 (∀ d ∈ B(d0; δ)) (17)

For any 0 6= d ∈ X, since B(d0; δ) − d0 is an open ball of radius δ centered

at 0, it follows that td ∈ B(d0; δ) − d0

(
∀ t ∈

(
0,

δ

‖d‖
))

. Hence, d0 + td ∈
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B(d0; δ)
(
∀ t ∈

(
0,

δ

‖d‖
))

. It follows from this and assumption (i) that for all

t ∈
(
0,

δ

‖d‖
)
,

〈ν∗, h′(x)(d0 + td)〉 = t〈ν∗, h′(x)d〉 ≥ 0.

Consequently,
〈ν∗, h′(x)d〉 ≥ 0 for all d ∈ X, d 6= 0.

This inequality holds trivially if d = 0. Hence,

〈ν∗, h′(x)d〉 = 0 for all d ∈ X. (18)

Since h′(x) is surjective, it follows from (18) that ν∗ = 0, which conflicts
with (µ∗, ν∗) 6= 0. Therefore µ∗ 6= 0. Thus we have proved that there exist
µ∗ ∈ S∗ \ {0} and ν∗ ∈ Z∗ such that (16) holds. But this contradicts (8), and
hence, (9) holds.

Taking account of (9) yields that for any x ∈ X,

G(x)−G(x) ∈ G′(x,C(x)) + S × {Oz},

which implies that there exists d ∈ C(x) such that

G(x)−G(x) ∈ G′(x; d) + S × {Oz}.

Setting ω(x) = d, we obtain

G(x)−G(x)−G′(x;ω(x)) ∈ S × {Oz},

which means that
g(x)− g(x)− g′(x; ω(x)) ∈ S,

h(x)− h(x) = h′(x)ω(x)

This concludes the proof.
In case Y and Z are finite - dimensional, we have the following

Theorem 2.3. Assume that dim Y < +∞ and dim Z < +∞. Suppose,
furthermore, that h is Fréchet differentiable at x, g′(x; .) is nearly S-convex
and there exists d0 ∈ C(x) such that

(i’) −g′(x; d0) ∈ intS, h′(x)d0 = 0;
(ii’) h′(x) is a surjective map from X onto Z.
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Then, there exists a map ω : X → C(x) such that g is S-invex and h is
{0}-invex at x with respect to the same scale ω.

Proof. By an argument analogous to that used for the proof of Theorem 2.2,
we get the conclusion. But it should be noted here that, in the case of the
finite-dimensional spaces Y and Z, to separate nonempty disjoint convex sets
{u} and B := G′(x; C(x)) + S ×{Oz} in the finite - dimensional space Y ×Z
it is not necessarily to require that intB is nonempty (see, for example, [16,
Theorem 11.3]). Hence assumption (iii) in Theorem 2.2 can be omitted.

In case h is not Fréchet differentiable, we have the following sufficient con-
dition for invexity.

Theorem 2.4. Assume that G′(x; .) is nearly S × {Oz}-convexlike on C(x),
and the following conditions hold

(a) for all (µ, ν) ∈ S∗ × Z∗ \ {0}, there exists d ∈ C(x) such that

〈µ, g′(x; d)〉+ 〈ν, h′(x; d)〉 < 0, (19)

(b) inth′(x; C(x)) 6= ∅, and there is an open set U ⊂ inth′(x; C(x)) such
that for every z ∈ U , there exists d ∈ C(x) satisfying

−g′(x; d) ∈ S, h′(x; d) = z.

Then, there exists a map ω : X → C(x) such that for every x ∈ X,

g(x)− g(x)− g′(x; ω(x)) ∈ S,

h(x)− h(x) = h′(x;ω(x)).

Proof. We shall begin with showing that

G′(x; C(x)) + S × {Oz} = Y × Z. (20)

Contrary to this, suppose that

G′(x; C(x)) + S × {Oz} ⊂6= Y × Z.

Then, there exists u := (u1, u2) ∈ Y × Z \ [G′(x; C(x)) + S × {Oz}]. Putting
B := G′(x; C(x)) + S × {Oz}, we prove that B is nearly convex. Obviously,

B =
{
(y, z) ∈Y × Z : ∃ d ∈ C(x),

y − g′(x; d) ∈ S, h′(x; d) = z
}
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So taking (y1, z1) and (y2, z2) ∈ B, there are d1 and d2 ∈ C(x), respectively,
such that for i = 1, 2,

yi − g′(x; di) ∈ S, (21)

h′(x; di) = zi. (22)

Since G′(x; .) is nearly S × {Oz}-convexlike, there exist α ∈ (0, 1) and d3 ∈
C(x) such that

αg′(x; d1) + (1− α)g′(x; d2)− g′(x; d3) ∈ S, (23)

αh′(x; d1) + (1− α)h′(x; d2) = h′(x; d3). (24)

By virtue of (21) and (22), it follows that

αy1 + (1− α)y2 − αg′(x; d1)− (1− α)g′(x; d2) ∈ S, (25)

αz1 + (1− α)z2 = αh′(x; d1) + (1− α)h′(x, d2). (26)

Combining (23) - (26) yields that

αy1 + (1− α)y2 ∈ αg′(x; d1) + (1− α)g′(x; d2) + S

⊂ g′(x; d3) + S + S

⊂ g′(x; d3) + S, (27)

αz1 + (1− α)z2 = h′(x; d3). (28)

It follows from (27) and (28) that α(y1, z1) + (1− α)(y2, z2) ∈ B. Hence B is
nearly convex.

We now show that int B 6= ∅. To do this, we take (y, z) ∈ (intS)× U and
show that (y, z) is an interior point of B. Since y ∈ intS and z ∈ U , there
exists neighborhoods W1 of y and W2 of z such that W1 ⊂ S and W2 ⊂ U .
Taking any (y, z) ∈ W1×W2, in view of assumption (b), there exists d ∈ C(x)
such that

−g′(x; d) ∈ S, h′(x; d) = z,

whence,
y − g′(x; d) ∈ S + S ⊂ S.

So (y, z) ∈ B, and hence W1 ×W2 ⊂ B and (y, z) is an interior point of B.
Thus intB 6= ∅. Due to Lemma 2.1 in [8], it follows that intB is convex.
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According to the separation theorem 3.3 in [3], there exists (µ∗, ν∗) ∈
Y ∗ × Z∗ \ {0} such that

〈µ∗, u1〉+ 〈ν∗, u2〉 ≤ 〈µ∗, y〉+ 〈ν∗, z〉 (∀ (y, z) ∈ intB),

which implies that

〈µ∗, y〉+ 〈ν∗, z〉 ≥ 0 (∀(y, z) ∈ intB),

since intB is a cone. Hence,

〈µ∗, y〉+ 〈ν∗, z〉 ≥ 0 (∀ (y, z) ∈ intB = B),

which leads to the following

〈µ∗, y〉+ 〈ν∗, z〉 ≥ 0 (∀ (y, z) ∈ B).

Consequently,

〈µ∗, y〉+ 〈ν∗, z〉 ≥ 0 (∀(y, z) ∈ G′(x; C(x))), (29)

〈µ∗, y〉 ≥ 0 (∀ y ∈ S). (30)

By (30) one gets µ∗ ∈ S∗. It follows from (29) that

〈µ∗, g′(x; d)〉+ 〈ν∗, h′(x; d)〉 ≥ 0 (∀ d ∈ C(x)),

which contradicts (19), and hence (20) holds.
Taking account of (20) we deduce that

G(x)−G(x) ∈ G′(x; C(x)) + S × {Oz} (∀x ∈ X).

Hence, there is d ∈ C(x) such that

G(x)−G(x) ∈ G′(x; d) + S × {Oz} (∀x ∈ X).

Defining a map ω : x 7→ ω(x) = d, we obtain

G(x)−G(x)−G′(x;ω(x)) ∈ S × {Oz} (∀x ∈ X),

which leads to the following

g(x)− g(x)− g′(x; ω(x)) ∈ S (∀x ∈ X),

h(x)− h(x) = h′(x; ω(x)) (∀x ∈ X).
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The proof is complete.
In case Y and Z are finite-dimension, the following result shows that con-

dition (b) in Theorem 2.4 can be omitted.

Theorem 2.5. Assume that dim Y < +∞, dim Z < +∞ and G′(x; .) is
nearly S×{Oz}-convexlike on C(x). Suppose, furthermore, that for all (µ, ν) ∈
S∗ × Z∗ \ {0}, there exists d ∈ C(x) such that

〈µ, g′(x; d)〉+ 〈ν, h′(x; d)〉 < 0.

Then, there exists a map ω : X → C(x) such that g is S-invex and h is
{0}-invex at x with respect to the same scale ω.

Proof. By using a separation theorem for nonempty disjoint convex sets in
the finite-dimensional space Y × Z (see. e.g., [16, Theorem 11.3]) and by an
argument similar to that used for the proof of Theorem 2.4, we obtain the
assertion of Theorem 2.5.

3. Optimality conditions

In this section, we show that invexity conditions to g and h with respect
to the same scale can be used as a constraint qualification for Problem (P).

We now recall a Fritz-John necessary condition in [10].
Defining the map F = (f, g, h), we obtain
F ′(x; .) = (f ′(x; .), g′(x; .), h′(x; .)).

Proposition 3.1 (Fritz-John necessary condition [10]). Let x be a local weak
minimum of Problem (P). Assume that f and g are continuous and direc-
tionally differentiable at x in any direction d ∈ X, h is continuously Fréchet
differentiable at x with Fréchet derivative h′(x) is a surjective. Suppose, in
addition, that f ′(x; .) is nearly Q-convex on C(x), g′(x; .) is nearly S-convex
on C(x), intC(x) 6= ∅, and

int
[
F ′(x; C(x)) + Q× S × {Oz}

] 6= ∅.

Then, there exist λ ∈ Q∗, µ ∈ S∗ and ν ∈ Z∗ with (λ, µ, ν) 6= 0 such that

〈λ, f ′(x; d)〉+ 〈µ, g′(x; d)〉+ 〈ν, h′(x)d〉 ≥ 0 (∀ d ∈ C(x)),

〈µ, g(x)〉 = 0.

A Kuhn-Tucker necessary condition for (P) can be stated as follows
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Theorem 3.1 (Kuhn-Tucker necessary condition). Assume that all the hy-
potheses of Proposition 3.1 are fulfilled. Then, there exist λ ∈ Q∗, µ ∈ S∗ and
ν ∈ Z∗ with (λ, µ, ν) 6= 0 such that

〈λ, f ′(x; d)〉+ 〈µ, g′(x; d)〉+ 〈ν, h′(x)d〉 ≥ 0 (∀ d ∈ C(x)), (31)

〈µ, g(x)〉 = 0. (32)

Moreover, if the following regularity conditions hold
(i) there exists a map ω : X → C(x) such that g is S-invex and h is

{0}-invex at x with respect to the same scale ω;
(ii) there exists d̂ ∈ X such that

〈µ, g(d̂)〉+ 〈ν, h(d̂)〉 < 0, (33)

then λ 6= 0.

Proof. We invoke Proposition 3.1 to deduce that there exist λ ∈ Q∗, µ ∈ S∗

and ν ∈ Z∗ with (λ, µ, ν) 6= 0 such that (31) and (32) hold.
Suppose now that assumptions (i) and (ii) hold. We have to prove that

λ 6= 0. If this were not so, that is λ = 0, then from (31) we should have

〈µ, g′(x; d)〉+ 〈ν, h′(x)d〉 ≥ 0 (∀ d ∈ C(x)). (34)

Observe that condition (i) means that for all x ∈ X,

g(x)− g(x)− g′(x; ω(x)) ∈ S,

h(x)− h(x)− h′(x)ω(x) = 0,

which leads to the following

G(x)−G(x)−G′(x;ω(x)) ∈ S × {Oz}.

Hence, there is ŝ ∈ S such that

G(d̂)− g(x)−G′(x; ω(d̂)) = (ŝ, 0). (35)

Combining (32), (33) and (35) yields that

〈µ, g(d̂)〉+ 〈ν, h(d̂)〉 = 〈µ, g(x) + g′(x; ω(d̂))〉
+ 〈ν, h(x) + h′(x)ω(d̂)〉+ 〈µ, ŝ〉

= 〈µ, g′(x; ω(d̂))〉+ 〈ν, h′(x)ω(d̂)〉+ 〈µ, ŝ〉 < 0.
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Since 〈µ, ŝ〉 ≥ 0, from this we obtain

〈µ, g′(x;ω(d̂))〉+ 〈ν, h′(x)ω(d̂)〉 < 0. (36)

But ω(d̂) ∈ C(x), so (36) conflicts with (34). Consequently, λ 6= 0, as was to
be shown.

Remark 3.1. The regularity condition (ii), which can be called the gener-
alized Slater condition, together with the invexity of g and h with respect to
the same scale gives a constraint qualification for Problem (P).

The following statement is an immediate consequence of Theorem 3.1.

Corollary 3.1. Assume that h = 0 and all the hypotheses of Proposition 3.1
are fulfilled. Then, there exist λ ∈ Q∗ and µ ∈ S∗ with (λ, µ) 6= 0 such that

〈λ, f ′(x; d)〉+ 〈µ, g′(x; d)〉 ≥ 0 (∀ d ∈ C(x)),

〈µ, g(x)〉 = 0.

Moreover, if the following conditions hold
(i’) there exists a map ω : X → C(x) such that g is S-invex at x;
(ii’) there exists d̂ ∈ X such that

−g(d̂) ∈ intS,

then λ 6= 0.

Remark 3.2. The Slater condition (ii’) in Corollary 3.1 together with the
invexity of g gives a constraint qualification for Problem (P) without equality
constraints.
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