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A B S T R A C T   

Minerals control many soil functions and play a crucial role in addressing global existential issues. Measuring the 
abundance of soil minerals is a laborious, costly, and time-consuming task; however, soil spectroscopy can be a 
useful tool to overcome this issue. This work aimed to map the abundance of major mineralogical components of 
soils in Brazil from surface to 1 m deep and at a spatial resolution of 30 m. Spectral data of the Brazilian Soil 
Spectral Library with Vis-NIR-SWIR was used to estimate the abundance of haematite, goethite, kaolinite, and 
gibbsite. These minerals were spatialized using digital soil mapping techniques. We also developed a novel 
framework to obtain bare soil reflectance for areas without natural or anthropic soil exposure (continuous image) 
and used it as covariate. Soil minerals and their abundances were successfully estimated by Vis-NIR-SWIR 
reflectance. Haematite predictions presented the most accurate results with Random Forest models, followed 
by gibbsite, kaolinite, and goethite. The spatial validation with reference mineralogical data found R2 of 0.64 
(haematite), 0.40 (goethite), 0.20 (kaolinite/Kt), 0.29 (gibbsite/Gbs), and 0.40 (Kt/Kt + Gbs). The resulting 
maps of soil minerals were in accordance with the geology, pedology, climate, and relief of Brazil and revealed 
the spatial distribution of mineral abundances at a finer resolution than existing geological and pedological 
maps, reaching a farm level detail.   

1. Introduction 

Soil minerals are the “gear” of many soil processes, such as carbon 
storage, nutrient and water fluxes, playing a fundamental role for 
humans’ welfare by providing food and fuel, regulating nutrients and 
water cycling as well as contributing to climate change mitigation. Soil 
mineralogy controls the soil cation exchange capacity, soil aggregation, 
and structure, organic matter dynamics, water retention, adsorption of 
phosphorus, among others (de Oliveira et al., 2020; Gilkes and Pra
kongkep, 2016; Hassink, 1997; Heuvelink et al., 2021; Santos et al., 
2017; Zhao et al., 2017). Soil minerals and soil organic carbon (SOC) 
levels have a close relationship with the potential of the soil to sequester 

C by forming organic-mineral complexes (Oades, 1988, Torn et al., 
1997, Baldock and Skjemstad, 2000, Singh et al., 2018). Iron oxides and 
clay minerals, such as haematite, goethite, kaolinite, and gibbsite con
trol C stability and storage in tropical soils (Kirsten et al., 2021). Soil 
mineralogy also influences emission and fixation of nitrous oxides 
(Barrón et al. 2020). Thus, the understanding of soil mineralogy is key to 
soil genesis and geochemical processes (Macías and Camps-Arbestain, 
2020). 

Soil is the result of the interaction of forming factors: climate, or
ganisms, relief, parent material, and time (Jenny, 1941). Several factors 
determine soil formation processes and soil mineralogy composition 
(Heimsath et al., 2012). The extensive Brazilian territory has diverse 
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geology (Gómez et al., 2019), varied climate (Alvares et al., 2013), 
topography and biodiversity (Gomes et al., 2019), resulting in a di
versity of soil types (Santos et al., 2018; Instituto Brasileiro de Geografia 
e Estatística (IBGE), 2021). However, information on soil mineralogy for 
the entire Brazilian territory does not exist. Maps of soil classes available 
for the Brazilian territory are mostly at a coarse scale (Lepsch, 2013; 
Nolasco de Carvalho et al., 2015), while soil maps at the semi-detailed 
scale are almost non-existent, for example, there are no detailed soil 
maps in the Northern region, where the Amazon rainforest is located 
(Mendonça-Santos and dos Santos, 2006). 

Traditional methods for mineralogical characterization using X-ray 
diffraction (XRD) are laborious, expensive, time-consuming, and only 
provide qualitative or semi-quantitative information (Bahia et al., 2015; 
Chipera and Bish, 2001; Fang et al., 2018; McManus, 1991; Viscarra 
Rossel, 2011; Whittig, 1965; Kunze and Dixon, 1986). Consequently, 
mineralogical evaluation is restricted to scientific research and not 
available to direct users, such as farmers (Rosin et al., 2022). Addi
tionally, the mineralogical analysis is not commercially available and 
obtaining mineralogical data for the entire Brazilian territory is even 

more challenging. 
Therefore, a cost-effective method for soil mineralogical assessment 

becomes essential (Fang et al., 2018; Viscarra Rossel, 2011). Remote and 
proximal sensing techniques, specifically diffuse reflectance spectros
copy in the visible, near-infrared, and shortwave infrared (Vis-NIR- 
SWIR) ranges provide a fast, non-destructive, and environmentally 
friendly method for soil characterization (Nocita et al., 2015; Soriano- 
Disla et al., 2014). The 350–2500 nm spectral range is commonly used 
to estimate several soil attributes (Ng et al., 2019; Soriano-Disla et al., 
2014; Viscarra Rossel et al., 2006), such as soil particle size distribution 
(Coblinski et al., 2020; Silva et al., 2019), SOC (Barthès et al., 2019; 
Moura-Bueno et al., 2020) and soil chemical properties (Vaudour et al., 
2018; Wadoux et al., 2019; Zhao et al., 2021). According to Bahia et al. 
(2015), while conventional methods require more than 55 h per sample 
to obtain the iron oxide minerals contents, while Vis-NIR-SWIR spec
troscopy require only about 20 min (time estimated for scanning the 
sample and all data processing procedures). 

The Vis-NIR-SWIR range has specific wavelengths related to over
tone and vibrational transition caused by the interaction of energy with 

Fig. 1. Flowchart of mineral amplitude (MA) and spatialization procedures. Gt = goethite; Hem = haematite; Kt = kaolinite; Gbs = gibbsite; Max = maximum; Min 
= minimum; DEM = digital elevation model; TAGGE = Terrain Analysis in Google Earth Engine; GEOS3 = Geospatial Soil Sensing System; SySI = synthetic soil 
image; SySIc = synthetic soil image full coverage; Uc = uncertainty; RF = Random Forest; XRD = X-ray diffraction. 
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clay minerals and iron and aluminum oxides in the soils (Fang et al., 
2018). The use of the spectral preprocessing method, such as the 
Kubelka-Munk function combined with the second derivative, can 
enhance spectral features related to soil minerals (Barrón and Torrent, 
1986; Scheinost et al., 1998). In general, intensity of the band amplitude 
calculated from derivative values between minima and maxima at spe
cific absorption features is proportional to the mineral amount in the 
sample (Kosmas et al., 1984; Mendes et al., 2021). 

Several studies have investigated the fundamentals of the influence 
of soil mineralogy on the Vis-NIR-SWIR spectra (Barrón and Torrent, 
1986; Clark et al., 1990; Madeira-Neto et al., 1995; Scheinost et al., 
1998; Fernandes et al., 2004; Heller Pearlshtien and Ben-Dor, 2020; 
Sahwan et al., 2021). Some researchers developed equations and models 
to quantify the mineral contents by linking amplitudes or intensities of 
specific wavelengths and XRD data (Bahia et al., 2015; Canton et al., 
2021; Fernandes et al., 2004; Madeira-Neto et al., 1995; Silva et al., 
2020; Fernandes et al., 2020; Mendes et al., 2021). Mineral indices and 
relative mineral abundances derived from infrared spectral bands can 
also be mapped across the region (Fernandes et al., 2020; Mendes et al., 
2021; Poppiel et al., 2020; Ramos et al., 2020; Viscarra Rossel et al., 
2010; Viscarra Rossel, 2011) as well as mineral contents (Silva et al., 
2020). Thus, spectroscopy becomes an important tool to obtain quan
titative and spatial information on soil mineralogy. 

Using the Vis-NIR-SWIR spectra and geostatistical techniques, the 
abundance of iron oxides in the soil were accessed and mapped across 
Australia (Viscarra Rossel et al., 2010). Environmental covariates rep
resenting the soil formation factors were used to digitally map kaolinite, 
illite, and smectite in Australian soils (Viscarra Rossel, 2011). For the 
western region of São Paulo State in Brazil, Silva et al. (2020) mapped 
the contents of haematite and goethite, while Fernandes et al. (2020) 

obtained the kaolinite-gibbsite ratio for the same region. Ramos et al. 
(2020) mapped the haematite-goethite ratio for Rio Grande do Sul State. 
Mulder et al. (2013) mapped mica, kaolinite, smectite, and calcite for an 
area of 15,000 km2 in northern Morocco, combining XRD and Vis-NIR- 
SWIR with ASTER data. 

Remote sensing using infrared spectra has been used to identify 
direct mineral on planet Mars (Bibring et al., 2006; Poulet et al., 2005). 
However, the use of optical remote sensing of Vis-NIR-SWIR bands on 
the earth’s soil surface is challenged by atmospheric conditions, clouds, 
and vegetation cover. Demattê et al. (2018) created a synthetic soil 
image (SySI) to obtain bare soil pixels from a time series of Landsat 
satellites from 1985 to present. The SySI bands can be used as predictors 
of soil minerals. For example, Poppiel et al. (2020) mapped the abun
dances of haematite, goethite, kaolinite, gibbsite, and 2:1 minerals for 
Goiás State in Brazil. Moreover, Mendes et al. (2021) mapped several 
key soil minerals at a regional scale in Brazil. Therefore, bare soil 
reflectance data (Demattê et al. 2018) can be considered an innovative 
and promising covariate, due to its strong correlation with soil attributes 
(Bellinaso et al., 2021; Demattê et al., 2018; Fongaro et al., 2018; Silvero 
et al., 2021). Nevertheless, SySI image can only be used in locations with 
naturally exposed soil or exposed through anthropic activities (cropping 
lands), which is a major limitation of its use. 

This study aimed to map the abundance of soil minerals, such as 
haematite, goethite, kaolinite, and gibbsite for the entire Brazilian ter
ritory. The hypothesis is that soil mineral abundances estimated from 
the Vis-NIR-SWIR spectra can be spatialized to large areas using bare soil 
reflectance plus other covariates. We developed a novel framework to 
obtain a synthetic soil image with full coverage (SySIc) for bare soil 
reflectance as a covariate for the entire land area of Brazil. This study 
mapped the abundances of major soil mineralogical components at soil 
surface and subsurface with a spatial resolution of 30 m, which were 
validated with ground truth observations. 

2. Materials and methods 

The first step of this work consisted of estimating the relative 
abundances of haematite, goethite, kaolinite, and gibbsite using point 
observations of Vis-NIR-SWIR spectra from the Brazilian Soil Spectral 
Library (BSSL) (Demattê et al. 2019). The second step comprised the 
SySIc creation. For the third step, the random forest model was used to 
link estimates of observation points of mineral abundance with SySIc 
and terrain attributes (TA) via the soil spatial prediction function. The 
spatial function was applied to the entire Brazilian territory to obtain 
maps of soil minerals and their uncertainties. Finally, the maps were 
validated with reference mineralogical data and compared with legacy 
soil, geology maps, and climate and terrain conditions at the national, 
regional, and farm levels. The flowchart of mineral amplitude (MA) 
calculation and spatialization procedures are given in Fig. 1. 

2.1. Study site 

The study site covered the entire Brazilian territory, with approxi
mately 8.8 million km2 (Fig. 2), comprising a high diversity of climate, 
relief, geology, and soil types. The climate is divided into tropical 
(81.4%), dry (4.9%), and subtropical (13.7%) zones, according to the 
Köppen classification (Alvares et al., 2013) (Fig. 2). The relief is 
composed mainly of slightly sloping land and altitudes between 200 and 
400 m by low tectonic and volcanic activity and erosion processes (Ross, 
2013). The Brazilian landscapes are composed main by plateaus, plains 
and depressions (Ross, 2013). The geology is composed of several types 
of metamorphic, igneous, and sedimentary rocks (Gómez et al., 2019). 
The main soil classes of the country are Latossolos (Ferralsols) and 
Argissolos (Acrisols/Lixisols/Alisols), which comprise more than 60% of 
the territory (Instituto Brasileiro de Geografia e Estatística (IBGE), 
2021). Maps of the soil, geology, altitude, and slope are available in 
Supplementary Material 1. 

Fig. 2. Study site and soil observation points for 0–0.2 m depth of The Brazilian 
Soil Spectral Library (BSSL) and X-ray diffraction (XRD) dataset. BSSL: SySI =
BSSL points with Synthetic soil image; BSSL: SySIc = BSSL points with predicted 
reflectance bands; A = Tropical zone, without dry season (Af), monsoon (Am), 
dry winter (Aw) or dry summer (As); B = Dry zone with semi-arid climate and 
low latitude and altitude (BSh) C. Subtropical zone with oceanic climate, 
without dry season, with hot summer (Cfa) or with temperate summer (Cfb) or 
subtropical zone with dry winter and hot summer (Cwa) or temperate sum
mer (Cwb). 
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Brazil also has great biodiversity with six distinct biomes (Amazonia, 
Cerrado, Mata Atlântica, Caantinga, Pantanal, and Pampa), with Ama
zonia (49.29%) and Cerrado (22%) covering most of the territory 
(Gomes et al., 2019). The Amazonia biome is a humid tropical forest 
with high biodiversity, mean annual rainfall higher than 3,100 mm, and 
mean annual temperature between 25.9 and 27.7 ◦C. The Cerrado biome 
is a semi-humid savanna with mean annual precipitation between 1,200 
and 1,800 mm and mean annual temperature between 22 and 23 ◦C. The 
Mata Atlântica biome comprises the highest diversity of environments 
under tropical and subtropical climates, with mean annual precipitation 
between 700 and 1,500 mm and mean annual temperature between 11 
and 26 ◦C. The Caatinga biome is a semi-arid savanna, with annual 
average rainfall of about 500 mm and mean annual temperature be
tween 20 and 29 ◦C. The Pantanal has long flooding periods, with mean 
annual precipitation between 1,000 and 1,600 mm and mean annual 
temperature between 22 and 24 ◦C. The Pampa biome has subtropical 
climate and is covered by temperate grasslands, with mean annual 
precipitation between 1,300 and 2,500 mm and mean annual temper
ature between 14 and 20 ◦C (Gomes et al., 2019). 

2.2. Soil observations 

A legacy database with spectral data in the Vis-NIR-SWIR range 
(from 350 to 2500 nm), with spectral resolution of 1 nm, from the BSSL 
(Demattê et al., 2019), accessible at https://besbbr.com.br, was used in 
this study, generating 30,334 soil samples with geographical co
ordinates (Fig. 2) (Supplementary Material 2). Most BSSL observations 
were from 0 to 0.2 m (n = 10,306), 0.4–0.6 m (n = 7,676), and 0.8–1 m 
(n = 7,697) depth intervals and the remaining (n = 7,264) from various 
depths of soil horizons. 

A second legacy database with values of haematite, goethite, 
kaolinite, and Kt/(Kt + Gbs) obtained by X-ray diffraction (XRD) of the 
clay faction was used to validate the digital mineral maps. This database 
comprises 221 samples from 0 to 0.2 m layer with georeferenced points 
in São Paulo State (Fig. 2) obtained by Silva et al. (2020) and Fernandes 
et al. (2020). 

2.3. Calculation of mineral abundances and data harmonization 

The raw reflectance spectra of all 30,334 samples (Supplementary 
Material 2) were transformed to absorbance using the Kubelka-Munk 
function (KM) (Barrón and Torrent, 1986) (Fig. 1). Since the KM 
spectra had overlapping bands, we calculated their 2nd derivative using 
the Savitzky-Golay method (SG) (Savitzky and Golay, 1964) to resolve 
and enhance the spectral features of interest. The parameters used in SG 
were: differentiation order (m) = 2; polynomial order (p) = 3; window 
size (w) = 25 and the output data ranged from 412 to 2478 nm. The 
intervals related to haematite, goethite, kaolinite, and gibbsite were 

defined in the SG spectra based on the literature (Table 1). Thus, the MA 
for each mineral was calculated as: MA = Maxλ - Minλ, where Maxλ and 
Minλ are the maximum (positive) and minimum (negative) values of the 
specific ranges. 

The MA data from various depths of observations were harmonized 
by spline interpolation, due its accuracy (Bishop et al., 1999; Malone 
et al., 2009), using the GSIF R package (Hengl and MacMillan, 2019). 
The output data were divided into five layers by 0.2 m from surface up to 
1 m depth (0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8 and 0.8–1 m). After the 
spline interpolation procedure, we had 12,000 observation points for the 
0–0.2 m layer (about 1.41 × 10− 3 points per km2) to 8,000 for the 0.8–1 
m layer (about 9.41 × 10− 4 points per km2) (Supplementary Material 2). 

2.4. Environmental covariates 

2.4.1. SySI and TA 
The environmental covariates used were SySI and terrain attributes 

(TA), at 30 m of spatial resolution (Fig. 1). SySI represents the following 
SCORPAN factors (McBratney et al., 2003): soil (directly), parent ma
terial (indirectly), and age (indirectly), while TA represents the relief 
(directly) (Poppiel et al., 2020). It is possible to infer soil attributes in the 
subsurface using soil reflectance of surface soils (Mendes et al., 2019). 
Mendes et al. (2021) demonstrated the use of SySI as a predictor for MA 
mapping at soil depths up to 1 m. Thus, we used SySI as a covariate also 
for subsurface layers. 

SySI was obtained using the collection of Landsat images from 1984 
to 2020 (Landsat 5, 6, 7 and 8) through the GEOS3 method (Demattê 
et al., 2018, 2020) in Google Earth Engine (GEE) (Gorelick et al., 2017). 
SySI had the same number of satellite bands used as input data for 
GEOS3, in this case (Landsat), six bands: Blue (450–520 nm), Green 
(520–600 nm), Red (630–690 nm), NIR (760–900 nm), SWIR1 
(1550–1750 nm), and SWIR2 (2080–2350 nm). The GEOS3 uses the soil 
spectral trend and the Normalized Difference Vegetation Index (NDVI) 
and Normalized Burn Ratio 2 (NBR2) to create the soil mask for all 
satellite images (Demattê et al., 2018). Thus, bare soil pixels were 
selected when there was an increase in reflectance from Blue to SWIR1, 
and in NDVI between − 0.15 and 0.25 and in NBR2 between − 0.15 and 
0.15. SySI pixels are the median of all bare soil pixels detected across the 
time series images. 

A total of 13 terrain attributes (TA) were obtained from the digital 
elevation model (DEM) of Advanced Land Observing Satellite (ALOS) 
(Japan Aerospace Exploration Agency, 2021) available in GEE (Golerick 
et al., 2017), using the package terrain analysis in GEE (TAGEE) (Safa
nelli et al., 2020a). 

The SySI and TA values were extracted for the observation points. 
The spatial predictors were selected based on the Spearman correlation 
with MA. The Spearman correlation >0.10 or <− 0.10 was the criterion 
to select covariates for modeling. Thus, the covariates selected were all 
bands from SySI: Blue, Red, Green, NIR, SWIR1, and SWIR2 and four of 
TA: elevation, slope, maximal curvature, and hillshade. Further infor
mation on TA covariates can be found in Safanelli et al. (2020a). The 
results of the Spearman correlation analyses can be found in Table A1. 

2.4.2. SySIc 
SySI is directly related to spectral data obtained at the laboratory 

level and proved to be a powerful tool for spatial prediction of soil at
tributes (Bellinaso et al., 2021; Demattê et al., 2018; Fongaro et al., 
2018; Poppiel et al., 2021, 2020; Safanelli et al., 2021a; 2021b; 2020b; 
Silvero et al., 2021). However, the GEOS3 method is applicable only in 
locations with naturally exposed soil or exposed to anthropic activities 
(i.e., soil tillage). For the Brazilian territory, which has vast areas with 
native vegetation (i.e., Amazon rainforest), SySI covers only roughly 
30% of the entire territory. Therefore, to obtain continuous maps of soil 
mineralogy for the entire Brazilian territory, SySIc was created using 
environmental covariates and machine learning algorithms (Fig. 2). The 
covariates include TA, as mentioned in section 2.4.1 (elevation, slope, 

Table 1 
Selected bands for calculation of mineral amplitude (MA).  

Soil 
mineral 

Minimum 
band in 
literature 
(nm) 

Maximum 
band in 
literature 
(nm) 

Selected 
range (nm) 

Reference 

Haematite ~535 ~580 520–590 Scheinost et al. 
(1998) 

Goethite ~415 ~455 410–460 Scheinost et al. 
(1998) 

Kaolinite 2205 2225 2,190–2,240 Clark et al. 
(1990) and  
Madeira-Neto 
et al. (1995) 

Gibbsite 2265 2295 2,250–2,305 Clark et al. 
(1990) and  
Poppiel et al. 
(2020)  
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maximal curvature, and hillshade) and spectral bands (Blue, Green, Red, 
NIR, SWIR1, and SWIR2) of a median cloud-free mosaic, obtained from a 
time series of Landsat 5 satellite images from 1984, when natural 
vegetation cover was larger in the study site. 

Random sampling was carried out in the extent of SySI intersected 
with TA and Landsat mosaic layers, generating 85,740 points. The cor
relation between covariates (Landsat mosaic and TA) and SySI was ob
tained as described in section 2.4.1 also available in Table A.1. The 
modeling was performed on each SySI band as a dependent variable and 
Landsat mosaic bands and TA as independent variables, resulting in six 
models. The modeling procedure, model evaluation (Table A.2), and 
spatial bootstrap predictions were performed, as described in section 
2.5. Finally, SySI original bands were overlapped with the six bare soil 
predicted bands and then merged in a unique raster file, the SySIc. Thus, 
pixels with bare soils remained, while the “gaps” were filled with the 
predicted bands. Here, we only used observations with the actual bare 
soil reflectance pixels (SySI image) to build the MA models and the SySIc 
image to predict MA for the entire Brazilian territory. 

2.5. Spatial prediction of soil minerals 

The MA models were fitted using only points with SySI, with about 
9,600 observation points for 0–0.2 m layer (about 1.09 × 10− 3 points 

per km2) and with roughly 7,300 points for 0.8–1 m layer (about 8.29 ×
10− 4 points per km2) (Supplementary Material 2). The selected envi
ronmental covariates (SySI and TA) were used as independent variables 
to obtain spatial models for amplitudes of haematite (AHem), goethite 
(AGt), kaolinite (AKt), and gibbsite (AGbs) for 0–0.2, 0.2–0.4, 0.4–0.6, 
0.6–0.8, and 0.8–1 m depths. We used the Random Forest (RF) machine 
learning algorithm (Breiman, 2001), a popular and accurate method for 
soil attribute mapping (Padarian et al., 2020). We used the scikit-learn 
package in Python (Pedregosa et al., 2011) to implement a boot
strapping routine (Efron and Tibshirani, 1993) for training and testing 
the RF model, as described by Safanelli et al. (2021a; b). After this step, 
the spatial prediction was performed in GEE (Gorelick et al., 2017). 

A grid search procedure was performed for each mineral and depth 
to select the best hyperparameters combination, aiming to reduce 
overfitting possibilities. We trialed a range of values for number of trees 
(FS) (30, 60, 100, 200, and 500 trees), number of predictors in tree splits 
(nRP) (3, 5, 8, and 10) and minimum number of observations at leaves 
(minSL) (10, 20, 30, 40, 50, 100, 200, and 500). The optimal combi
nation (FS, nPR, and minSL) with the least root mean square error 
(RMSE) for the validation set was selected for each mineral. However, 
when the RMSE difference between the hyperparameters combination 
was less than 1x10− 5, the combination with lower FS value was chosen 
to make the spatial prediction faster. 

Fig. 3. Boxplot for haematite (AHem) (A), goethite (AGt) (B), kaolinite (AKt) (C), and gibbsite (AGbs) (D) amplitudes after spline procedure.  
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The calibration set was composed of bootstrapped samples randomly 
sampled with replacement (63% of samples) for each regression tree, 
while observations that were not sampled (37% of samples) were used 
for validation. The bootstrapping procedure was performed from 30 to 
500 times in each hyperparameter combination tested, similar to each 
FS tested, because one bootstrapping procedure was performed for each 
regression tree. 

The accuracy parameters evaluated were coefficient of determina
tion (R2), RMSE, relative RMSE (rRMSE), and ratio of performance to 
interquartile distance (RPIQ) of calibration and validation datasets. The 
R2 represents the variance explained, RMSE represents the accuracy, 
while RPIQ evaluates the error over the interquartile range of the data. 
The rRMSE was calculated as follow: rRMSE (%) = RMSE/(MaxMA - 
MinMA)*100, where MaxMA and MinMA are the maximum and mini
mum MA values for each mineral in the dataset after spline 
interpolation. 

The spatial prediction was performed using the bootstrapped models 
in GEE (Gorelick et al., 2017) to obtain the MA maps and their un
certainties. The prediction was carried out using the SySIc image and TA 
to obtain continuous maps for the entire Brazilian territory. The final MA 
maps were obtained by the mean of 50 bootstrap predictions at 30 m 

spatial resolution. The uncertainty maps were obtained from the 90% 
prediction interval (PI90 = 0.95Q – 0.5Q), where Q is the prediction 
quartile. The uncertainty maps were obtained with less detailed spatial 
resolution (250 m), to reduce the computational time. 

The MA maps were also validated in locations without SySI, using 
part of the BSSL dataset with points located outside the areas of soil 
exposure (Supplementary Material 2). The statistics parameters also 
included R2, RMSE, rRMSE, and RPIQ. 

2.6. Data interpretation 

First, the MA maps were stratified in three groups based on their 
percentiles to describe the distribution of MA values in the Brazilian 
territory: 

1) less occurrence = samples with MA value in the lower percentile; 
2) moderate occurrence = samples with MA value in the interme

diary percentile; 
3) high occurrence = sample with MA value in the upper percentile. 
Second, the Hem/(Hem + Gt) and Kt/(Kt + Gbs) ratios were calcu

lated from the MA maps. These ratios were frequently used in soil 
mineralogy studies to infer soil genesis (Schaefer et al., 2008). Further 

Fig. 4. Performance of Random Forest (RF) models for training set (A), validation set (B) and points with only predicted reflectance (synthetic soil image full 
coverage/SySIc) (C). R2 = coefficient of determination; rRMSE = relative root mean square error; RPIQ = ratio of the performance to interquartile distance; AHem =
haematite amplitude; AGt = goethite amplitude; AKt = kaolinite amplitude; AGbs = gibbsite amplitude. 
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information can be found in Supplementary Material 3. 
Third, a spatial ternary plot was made to evaluate the distribution of 

the minerals, which showed in the Red band = iron oxides (Hem + Gt), 
Green = kaolinite, and Blue = gibbsite. Further information also is in 
Supplementary Material 3. 

2.7. Spatial validation and study cases 

The spatial validation was performed using an external georefer
enced soil observation dataset with haematite, goethite, kaolinite, 
gibbsite, and the ratio Kt/(Kt + Gbs) data obtained by conventional 
methods. The values of MA and Kt/(Kt + Gbs) for 0.0–0.2 m were 
extracted for this dataset and the R2, RMSE, and rRMSE were evaluated. 

To assess spatial patterns of the digital maps, we compared MA, ra
tios, and ternary plot maps visually with 1:5 000 000 geology (Gómez 
et al., 2019) and 1:1 000 000 soil (Instituto Brasileiro de Geografia e 
Estatística (IBGE), 2021) maps and with climate (Alvares et al., 2013), 
elevation, and slope (Japan Aerospace Exploration Agency, 2021) pat
terns. Several case studies followed by visual evaluation were carried 
out and detailed information can be found in Supplementary Material 3. 
The legacy geological and pedological maps are available only at small 
scales for the entire Brazilian territory and were used to verify the 
mineralogy patterns at national and regional levels. Soil maps and other 
maps with detailed resolution were used to evaluate the MA maps at the 
finest scale, which is compatible with the degree of mineralogy infor
mation obtained (local and farm level). 

3. Results 

3.1. Descriptive statistics of MA data 

The MA, which reflects the abundance of minerals in soil samples, 
increased with soil depth (Fig. 3) (Supplementary Material 2). The mean 
for AHem and AGt ranged from 318 to 433 (x10− 6) and from 506 to 597 
(x10− 6), respectively, at surface and at 1 m depth. AKt and AGbs showed 
mean values from 211 to 317 (x10− 6) and from 51 to 50 (x10− 6) at 
surface and at 1 m depth, respectively. AGbs values showed stability 
above 0.40 m, while a more pronounced increase in deeper layers was 
verified for AKt, followed by AGt. The variation with depth can be 
related to soil types, because soils in Brazil have uniform profiles, such 
as Ferralsols, Plinthosols, and Nitisols, and with textural gradients, such 
as Acrisols, Lixisols, and Alisols (Supplementary Material 1). 

A large variation in MA was observed (Fig. 3) (Supplementary Ma
terial 2). AGbs and AHem presented high variations, which can be 
related to specific conditions of relief, climate, geology, and pedology 
(Fig. 2) (Supplementary Material 1), with AGt and AKt more stable. 
AGbs has the highest coefficient of variation (CV) with values ranging 
from 116 to 127 %. Iron oxides showed intermediate values of CV 
ranging from 62 to 81% for AHem and from 69 to 82% for AGt. AKt 
showed the smallest values of CV, ranging from 55 to 69 %. Regarding 
soil depth, the highest CV values were verified for 0.0–0.2 m depth, with 
MA values showing lower variations in deep layers. The full summary of 
the statistics can be found in Supplementary Material 2, which also 
shows the raw MA dataset (before spline), points with SySI (modeling 

Fig. 5. Maps of haematite amplitude (AHem) for 0–0.2 m (A) and 0.8–1 m (B) and goethite amplitude (AGt) for 0–0.2 m (C) and 0.8–1 m (D) depths. *10− 6 scale; 
1low occurrence; 2moderate occurrence; 3high occurrence. 
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dataset), and points without soil exposure (only SySIc image). 

3.2. Performance of RF models for MA prediction and SySIc validation 

Higher R2 and smaller error in the validation set were found in the 
upper layers, decreasing accuracy with increasing depth (Fig. 4ab) 
(Supplementary Material 4). AHem reached R2 for the validation set, 
ranging between 0.48 (deeper layer) and 0.56 (upper layer). RMSE 
ranged from 171 to 189 (x10− 6), rRMSE from 13.73 to 15.93 %, and 
RPIQ from 2.23 to 2.34. AGbs had R2 values ranging between 0.41 
(deeper layer) and 0.44 (layer 0.6 – 0.8 m), with RMSE ranging from 41 
to 46 (x10− 6), rRMSE from 12.50 to 13.52%, and RPIQ from 1.03 to 1.18 
in the validation set. Results were less accurate for AKt and AGt with R2 

values from 0.20 and 0.29 and from 0.16 to 0.25 in the validation data 
set, respectively. For AKt, RMSE ranged from 100 to 125 (x10− 6), rRMSE 
from 7.67 to 9.52 %, and RPIQ from 1.32 to 1.50, while for AGt, RMSE 
ranged from 372 to 402 (x10− 6), rRMSE from 12.07 to 15.33 %, and 
RPIQ from 1.03 to 1.19. RMSE values can be found in Supplementary 
Material 4. 

SySIc was predicted with R2 ranging from 0.25 to 0.36 in the vali
dation set (Table A2). When MA in non-bare soils were predicted with 
SySIc, accuracy decreased (Fig. 4c) (Supplementary Material 4). 
Therefore up, R2, RMSE, rRMSE, and RPIQ ranged from 0.03 to 0.19, 
from 40 to 499 (x10− 6), from 9.87 to 38%, and from 0.08 to 0.53, 
respectively. The decrease of accuracy in locations with predicted bands 
was observed for all minerals and depths. 

3.3. Maps of mineralogy and uncertainty 

The maps of iron oxide revealed areas with higher occurrence of 
haematite and goethite at 0–0.2 m depth, in the Central-Western, 
Southwestern, and Southern regions in Brazil (Fig. 5). At this depth, 
87, 11, and 2.1% of the area have low, moderate, and high AHem 
occurrence, respectively. Likewise, 65, 32, and 3% of the area had low, 
moderate, and high AGt occurrence, respectively. 

For the 0.8–1 m depth, there were more areas with greater occur
rence of haematite and goethite when compared with the 0–0.2 m layer 
and this increase was more pronounced for goethite (Fig. 5). In 0.8–1 m 
layer, 71, 22, and 7% of area for AHem and 1, 89, and 10% of area for 
AGt showed values of low, moderate, and high ranges, respectively. 
Thus, nearly all soils in Brazil have considerable levels of goethite in 
deeper layers. 

Only a small part of the area had high gibbsite occurrence up to 1 m 
depth (Fig. 6). The distribution at 0.8–1 m depth showed that Brazilian 
soils had 86, 6, and 8% of the area with low, moderate, and high AGbs 
occurrence, respectively. A significant abundance of kaolinite was 
observed in Brazilian soils for all depths (Fig. 6). The map showed that 0, 
24, and 75% of the area have low, moderate, and high AKt occurrence, 
respectively. Gibbsite and kaolinite abundances in the 0.8–1 m layer 
were higher than in the 0–0.2 m layer. For 0–0-2 m depth, 90, 10, and 
0% of area have AGbs and 23, 72, 5% of the area have AKt of low, 
moderate, and high ranges, respectively. 

Geology greatly influenced the distribution of iron oxide minerals, 
with higher values of AGt and AHem related to mafic volcanic rocks, 
such as basalt (Fig. 5) (Supplementary Material 1). AHem high values 

Fig. 6. Maps of gibbsite amplitude (AGbs) for 0–0.2 m (A) and 0.8–1 m (B) and kaolinite amplitude (AKt) (AGt) for 0–0.2 m (C), and 0.8–1 m (D) depths. *10− 6 scale; 
1low occurrence; 2moderate occurrence; 3high occurrence. 
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were also associated to Ferralsols and Nitosols. AHem high values 
occurred specifically in some locations under tropical and subtropical 
zones, with less abundance in dry environments (Fig. 2), while AGt had 
considerable occurrence in areas with limited drainage conditions 
(Supplementary Material 1). 

High values of AGbs were related to high altitude (greater than 500 
m) and granite and gneisses rocks (Fig. 6) (Supplementary material 1). 
Moderate abundance of gibbsite was observed, associated to iron oxides, 
in soils derived from volcanic rocks. Gibbsite occurrence was associated 
to several types of soils, such as Ferralsols, Acrisols, Lixisols, and Cam
bisols. The mineral map of kaolinite showed considerable abundance in 
all soil types from several parent materials. The complete summary 
statistics of predicted maps can be found in Supplementary Material 2. 

In general, areas with high abundances of minerals showed higher 
uncertainty (90PI) in the 50 bootstrap predictions (Figs. 5, 6, and 7). AKt 
presented higher uncertainty, followed by AGb, AHem, and AGt. The 
Northern region in Brazil showed higher 90PI values for AKt and AGt. 
High altitude regions showed greater uncertainty for AGbs (Supple
mentary material 1), while AHem 90PI values were the most homoge
neous in the entire territory (Fig. 7). 

3.4. Ratios and spatial ternary plot 

The Hem/(Hem + Gt) ratio map is shown in Fig. 8. It shows high 
ratio values in locations with varied parent material and climate con
ditions, except in dry zones (Northeast) and subtropical zones with 
temperate summer (South) (Fig. 8ab and Fig. 2) (Supplementary Mate
rial 1). The map shows dominance of goethite in Brazilian soils with 
similar patterns in the 0–0.2 m and 0.8–1 m layers. However, there were 
some exceptions, such as higher values for locations in the Western re
gion of São Paulo State and lower values in the Amazon basin for 0.8–1 
m compared to 0–0.2 m depths. The Kt/(Kt + Gbs) ratio shows a pre
dominance of kaolinite in relation to gibbsite, with gibbsite occurrence 
concentrated in the South and Southwest, associated to soils from mafic 
volcanic rocks (Fig. 8cd) (Supplementary material 1). The ternary plot 
followed the patterns of each mineral map and showed predominance of 
kaolinite in Brazilian soils under several conditions (Fig. 8ef) 

(Supplementary Material 1). The occurrence of iron oxides is located 
mainly in some places in the South, Southwest, and Central-West asso
ciated to the parent material, with predominance in soils from volcanic 
mafic rocks, while gibbsite occurred mainly in the South and Southwest, 
regions at higher altitudes. 

3.5. Spatial validation with reference mineralogy data 

The MA and Kt/(Kt + Gbs) maps were in accordance with reference 
values of mineralogy obtained by XRD (Table 2). Results were more 
accurate for haematite, with R2 of 0.64, RMSE of 8.72 g kg− 1 and rRMSE 
of 13.7 %, followed by goethite with R2 of 0.40, RMSE of 4.45 g kg− 1, 
and rRMSE of 12.7 % and Kt/(Kt + Gbs) with R2 of 0.40, RMSE of 0.14, 
and rRMSE of 17.9%. The worst results were for gibbsite and kaolinite, 
with R2 of 0.29, RMSE of 14.41 %, and rRMSE of 19.1% and R2 of 0.20, 
RMSE of 14.81 %, and rRMSE of 21.4%, respectively. 

3.6. Case studies 

The areas with higher iron oxides (haematite and goethite) abun
dance were related to basalt rocks and more weathered soil classes, such 
as red (hue equal to 2.5YR or more reddish) Ferralsols and Nitosols, 
covering the northern region of Rio Grande do Sul State, western region 
of Paraná State, and southern region of Mato Grosso do Sul State 
(Fig. 9a). The western region of Paraná State shows higher abundance of 
haematite and goethite for Ferralsols and Nitosols than for Acrisols, 
Lixisols and Alisols. The western region of Pará State (North Brazil) 
presented moderated haematite abundance and high Hem/(Hem + Gt) 
ratio for red-yellow (hue equals to 5YR) Acrisols, Lixisols and Ferralsols 
and low haematite and Hem/(Hem + Gt) for yellow (hue equals to 
7.5YR or more yellowish) Acrisols, Lixisols, Ferralsols and Gleysol 
(Fig. 9b). The southern region of Goiás State (Central Brazil) presented 
moderate haematite abundance in red and clayey Ferralsols (clay con
tent equal to or more than 350 g kg− 1), high in red, clayey and ferric 
Ferralsols (Fe2O3 equals to or more than 18 g kg− 1) and low content in 
Arenosols and other soil classes. Gibbsite abundance in Goiás State was 
also high in red and clayey Ferralsols, but restricted to flat and elevated 

Fig. 7. Uncertainty of spatial prediction maps for haematite (Hem) (A), goethite (Gt) (B), gibbsite (Gbs) (C), and kaolinite (Kt) (D). *10− 6 scale; PI90 = 90% 
prediction interval. 
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Fig. 8. Hem/(Hem + Gt) ratio for 0–0.2 m (A) and 0.8–1 m (B), Kt/(Kt + Gt) ratio for 0–0.2 m (C) and 0.8–1 m (D), and ternary plot (D) for 0–0.2 m (E) and 0.8–1 m 
(F) layers. Hem = haematite; Gt = goethite; Kt = kaolinite; Gbs = gibbsite. 
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areas (Supplementary Material 1). 
The areas of Ferralsols in the West of São Paulo State showed a small 

increase of haematite and kaolinite from 0 to 0.2 m to 0.8–1 m, while the 
areas of Acrisols, Lixisols and Alisols presented a high increase 
(Fig. 10a). At the farm level, it is also possible to visualize the increase of 
haematite and kaolinite at depth in an area of Alisols. The areas of 
yellow Ferralsols in the southwest of Amazonas State had a significant 
increase in AGt abundance from 0 to 0.2 m to 0.8–1 m, while for red and 
ferric Ferralsols, the haematite abundance was similar in the topsoil and 
1 m of depth (Fig. 10b). 

In the case study in the municipality of Piracicaba, São Paulo Sate, 
more weathered and clayey soil classes, such as Ferralsols, showed high 
values of haematite and moderate values of gibbsite, while less weath
ered and sandy (clay content less than 350 g kg− 1) soil classes showed 
low values for both minerals (Fig. 11a). An area (farm) showed high 
haematite and moderate gibbsite abundance for red and ferric Ferralsols 
and Nitisols derived from basalt rocks, while the other soil classes from 
sandstone and siltstone, such as Gleysols, Plinthosols, Cambisols and 
Leptosols, red Acrisols and red-yellow Acrisols, showed low values for 
both minerals (Fig. 11b). Another area (farm) showed high haematite 
abundance for red and ferric Ferralsols derived from basalt and low 
haematite abundance for red Acrisols, red-yellow Acrisols, Cambisols, 
Leptosols and Gleysols from sandstones and other rocks (Fig. 11c). 

4. Discussion 

4.1. Distribution of minerals 

The Brazilian territory shows the dominance of Ferralsols, Acrisols 
and Lixisols, which altogether cover almost 60% of the entire territory. 
These soils are characterized as highly weathered with intense base 
leaching and predominance of kaolinite, goethite, haematite, and 
gibbsite (in that order) (Macías and Camps-Arbestain, 2020; Schaefer 
et al., 2008). In addition, mineral amounts tend to increase with clay, 
silicon, iron, and aluminum contents, which increase at depth (horizon 
B) due to pedogenetic processes, such as illuviation (Blume and 
Schwertmann, 1969; Buol et al., 2011; Carroll, 1953; Macías and Camps- 
Arbestain, 2020). This knowledge confirmed the increase in AGt, AHem, 
AKt, and AGbs values at depth (Mendes et al., 2021; Poppiel et al., 
2020). 

Haematite and gibbsite variations (Fig. 5ab and Fig. 6ab) are related 
to specific conditions such as relief, climate, geology, and pedology 
(Schaefer et al., 2008). Kaolinite and gibbsite showed less variability 
(Figs. 6 and 8) due to stability in the environment (Fink et al., 2016; 
Schaefer et al., 2008). The greater variability found in the 0–0.2 m layer 
can be explained by the soil types of Brazil. Soil classes with uniform 
profiles have similar amounts of minerals on the surface and subsurface, 
while soil classes with contrasting texture have an accumulation of 
minerals in the B horizon (Lelong et al., 1976; Santos et al., 2018). 

4.2. Prediction models and accuracy of maps 

4.2.1. Predictive MA models 
The use of the SySI as covariates in the digital soil mapping (DSM) 

framework explains the more accurate results for the surface layer than 

for deep layers (Fig. 4) (Supplementary Material 4). SySI is a direct 
measurement of topsoil reflectance, shown by temporal satellite images 
(Demattê et al., 2018), indirectly related to soil sub surface layers 
(Mendes et al., 2019). 

Accurate results of haematite modeling were in accordance with the 
literature (Fig. 4) (Supplementary Material 4) (Bahia et al., 2015; 
Canton et al., 2021; Poppiel et al., 2020; Sellitto et al., 2009; Silva et al., 
2020; Mendes et al., 2021). On the other hand, goethite predictions 
showed the worst results. In the literature, the results for goethite are 
more variable than haematite and almost always reported with low 
accuracy (Canton et al., 2021; Mendes et al., 2021; Poppiel et al., 2020; 
Sellitto et al., 2009; Silva et al., 2020). The electromagnetic transitions 
of haematite in the 535–580 nm and of goethite in the 415–455 nm 
range are well separated, allowing to differ iron forms (Scheinost et al., 
1998). Haematite has a more pronounced and well-defined absorption 
feature than goethite (Demattê and Garcia, 1999; Kosmas et al., 1984). 
Substitution of iron for aluminum in the goethite structure can reach up 
to 40% in Brazilian Ferralsols and can cause less stability in the ab
sorption feature (Jiang et al., 2014, 2022; Kosmas et al., 1984; Scheinost 
et al., 1998). Moreover, the range of goethite detection is near the 
350–400 nm range, which is normally associated to high noise to signal 
ratio in the ASD FieldSpec. 

The second-best result for mineral modeling was gibbsite followed by 
kaolinite (Fig. 4) (Supplementary material 4). The estimation of these 
minerals by spectroscopy has been less explored than iron oxides with 
variable results and gibbsite is more accurately predicted than kaolinite 
(Fernandes et al., 2020; Madeira-Neto et al., 1995; Mendes et al., 2021; 
Poppiel et al., 2020; Viscarra Rossel, 2011). The OH and metal-OH 
groups of these minerals show vibrational activity in the 2,200 to 
2,300 nm range; however, this vibrational activity is also related to 
halloysite and 2:1 minerals, such as montmorillonites, muscovite and 
illite (Clark et al., 1990; Dufréchou et al., 2015). As a result, this spectral 
region cannot accurately detect Al-OH groups in all cases (Clark et al., 
1990). The halloysite and montmorillonite (near 2,200 nm) have similar 
absorption features (Clark et al., 1990; Goetz et al., 2009) and may 
explain the low accuracy for the kaolinite models. 

Few studies use environmental covariates and DSM procedures for 
MA mapping at fine resolution. Poppiel et al. (2020) mapped an area of 
851,000 km2 with spatial resolution of 30 m and found R2 of 0.71, 0.72, 
and 0.72 for AHem, 0.45, 0.45, and 0.24 for AGt, 0.47, 0.55, and 0.59 for 
AKt, and 0.55, 0.64, and 0.65 for AGbs, for 0–0.2, 0.2–0.6, and 0.6–1 m 
layers, using TA, a synthetic vegetation image, SySI, and climate cova
riates. Poppiel et al. (2020) also used the RF algorithm and the models 
were validated by 10-fold cross-validation, which can overestimate the 
accuracy parameters compared to other data split methods (Volkan 
Bilgili et al., 2010), such as bootstrapping, used in this study. Viscarra 
Rossel (2011) used the Cubist method and Landsat bands, TA, climate, 
geological and gamma-ray data to predict AKt in Australia and reached 
R2 ranging from 0.50 to 0.53 for 0–0.2 m layer and from 0.45 to 0.48 for 
0.6–0.8 m layers. In a regional study area (2,274 km2) in Brazil, Mendes 
et al. (2021) obtained mineral maps with 30 m of resolution using the 
SySI and RF algorithms. The authors reported R2 of 0.54, 0.17, and 0.62 
for AHem, 0.16, 0.10, and 0.24 for AGt, 0.32, 0.00, and 0.38 for AKt, and 
0.17, 0.09, and 0.62 for AGbs, for 0–0.2, 0.4–0.6, and 0.8–1 m layers, 
respectively. 

Table 2 
Validation of maps with mineralogy data obtained by traditional methods.  

Soil mineral/index Layer (m) Descriptive statistic Validation 

n Min Max Mean SD CV (%) R2 RMSE rRMSE (%) 

Haematite (g kg − 1) 0.0–0.2 221  3.6 67.3  21.8  14.5 66  0.64  8.72  13.7 
Goethite (g kg − 1) 0.0–0.2 221  1.5 36.5  9.7  5.8 59  0.40  4.45  12.7 
Kaolinite (%) 0.0–0.2 221  30.7 100  89.8  17.2 18  0.20  14.81  21.4 
Gibbsite (%) 0.0–0.2 221  0.0 75.5  10.4  17.2 165  0.29  14.41  19.1 
Kt/Kt+Gbs 0.0–0.2 221  0.22 1.0  0.89  0.18 20  0.40  0.14  17.9  
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In our study, it was not possible to avoid autocorrelation between 
soil observations in the modeling database, which could influence the 
accuracy parameters (Brus et al., 2011; Wadoux et al., 2020); however, 
there was not a strong autocorrelation in the database used. Autocor
relation can occur when legacy databases, without a sampling design, 
are used to predict soil attributes (Wadoux et al., 2020), as in this study. 

To obtain more soil observations or remove some observations close to 
the others to avoid autocorrelation, as proposed by Wadoux et al. 
(2019), were not viable for this study. Besides, the use of spatial based 
calibration–validation sets split promote a pessimistic map accuracy 
assessment (Wadoux et al. 2021). 

Fig. 9. Case studies for amplitude of haematite (AHem) and goethite (AGt) amplitudes, covering the states of Rio Grande do Sul (RS), Santa Catarina (SC), Paraná 
(PR), São Paulo (SP) and Mato Grosso do Sul (MS), with zoom in western Paraná (PR) State (A), for AHem and AHem/(AHem + AGt) ratio covering northeastern Pará 
(PA) State (B) and for AHem and Gbs amplitude (AGbs) covering southern Goiás (GO) State (C). FR = Ferralsol; NT = Nitisol; AC = Acrisol; LX = Lixisol; AL = Alisol. 
The maps of geology (adapted), the first soil, and the second soil were obtained from Gómez et al. (2019), Instituto Brasileiro de Geografia e Estatística (IBGE) (2021), 
and RADAMBRASIL (1983), respectively. Red soils have a hue equals to 2.5YR or more reddish and red-yellow soils have a hue equals to 5YR. Ferric soils had Fe2O3 
equals to or more than 18 g kg− 1 and clayey soil had clay equals or more than 350 g kg− 1. *10− 6 scale. 
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4.2.2. Validation of SySIc 
It was possible to predict bare soil reflectance for locations without 

bare soil exposure with reasonable accuracy (Table A2) and to use these 
estimates to map the soil mineral patterns. Bare soil reflectance showed 
a higher correlation with vegetation reflectance than terrain attributes 
(Table A1), meaning that vegetation spectral data can be used as a 
proxy. Studies have used vegetation reflectance to map soil information, 
such as Takata et al. (2007) and Mahmoudabadi et al. (2017). The 
decrease in accuracy for points without soil exposure (Fig. 4c) can be 
explained by propagation of uncertainty from predicted value of 
reflectance to mineral maps. 

4.2.3. Validation with reference mineralogical data 
The results of spatial validation with mineralogical data obtained by 

XRD showed a coherence of MA values obtained by Vis-NIR-SWIR 
spectra (Table 2). Results were more accurate for haematite and 
goethite predictions than for kaolinite and gibbsite. Higher accuracy for 
haematite than for goethite can be explained by the characteristic of 
spectral features, replacements of Fe for Al in the goethite structure and 
the noise in the spectral ranges (Kosmas et al. 1984; Scheinost et al., 

1998; Demattê and Garcia, 1999; Jiang et al., 2022, 2014; Sun, 2021), as 
discussed in section 4.2.1. For kaolinite and gibbsite, the OH groups in 
the infrared range used in this study are often related to other soil 
constituents (Clark et al., 1990; Dufréchou et al., 2015). 

It is necessary to consider that the reference values of iron oxides 
were obtained with a semi-quantitative method, where standard sam
ples of haematite and goethite were mixed in different proportions to 
access the Hem/(Hem + Gt) ratio. Thus, haematite and goethite con
centrations were calculated based on the difference of free and low 
crystalline iron forms, determined by wet chemistry and the Hem/(Hem 
+ Gt) ratio (Kämpf and Schwertmann, 1983). On the other hand, 
kaolinite and gibbsite were determined by the Rietveld method (Riet
veld, 1969), which is an adjustment of the XRD diffractograms, where 
Kt + Gbs = 100%, disregarding the other minerals in the clay faction. 
Finally, it is necessary consider that, regardless of the method, the 
reference mineralogical information obtained by XRD also contains 
uncertainty (Kahle et al., 2002; Zhou et al., 2018) and the results can be 
considered a rough estimate of reality (Kahle et al., 2002). 

Fig. 10. Examples in 0–0.2 m and 0.8–1 m layers for haematite (AHem) and kaolinite (AKt) amplitudes covering the West São Paulo (SP) State, with a zoom at farm 
level (A), for goethite amplitude (AGt) in the Southwest of Amazonas (AM) and AHem in the South of Goiás (GO) States (B). FR = Ferralsol; AC = Acrisol; LX =
Lixisol; AL = Alisol. Red soils have a hue equals to 2.5YR or more reddish, red-yellow soils have a hue equals to 5YR and yellow soils have hue equals to 7.5YR or 
more yellowish. Ferric soils had Fe2O3 equals to or more than 18 g kg− 1. *10− 6 scale. 
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4.2.4. Spatial uncertainty and quality of maps 
Generally, the MA maps obtained were coherent with the soil class 

and the geological legacy maps at national, regional, and farm levels 
(Figs. 5, 6, 8, 9, 10 and 11) (Supplementary Material 1). However, some 
errors can be observed in some locations, such as in the Northern region 
of Brazil (Amazon rainforest) (Figs. 5 and 6). These errors may be 
associated to: 1) low density of soil observations, and 2) use of SySIc as a 
predictor (locations without any bare soil pixels, as explained in section 
2.4.2). The uncertainty represented by 90PI were higher for areas with 
high predicted MA values (Figs. 5, 6, and 7). Kaolinite, which has higher 
contents, presented expressive uncertainty in almost all the Brazilian 
territory. This can be an indicator of an underestimation of the predicted 
mean values in these areas. Safanelli et al. (2021a) observed over
estimation of predicted values associated to high uncertainty in areas 
with low content for clay mapping. There was a tendency of higher PI90 
values in locations with SySIc and few observation points. Poggio et al. 

(2021) related high PI90 values in areas with low sampling density for 
several soil attributes. 

The entire land area of Brazil had a low density of soil observations 
(Supplementary Material 2) (ranging from 8.41 × 10− 4 to 1.41 × 10− 3 

points per km2) concentrated in the southwestern and central-western 
regions, with few samples in the southern, northwestern, and northern 
regions (Fig. 2). This occurs because the legacy data from BSSL had 
samples located mainly in agricultural areas (Demattê et al., 2019). 

As previously mentioned, SySI is a direct measurement of topsoil 
reflectance, while SySIc is predicted and thus with greater uncertainty. 
The “gaps” of SySI were predicted using a Landsat mosaic of vegetation 
and TA (Table A2). There were also artifacts of longitudinal lines in 
SySIc (Supplementary Material 1) related to clouds that interfered in 
Landsat images used in this mosaic. These artifact lines can also be seen 
in MA maps (Figs. 5 and 6). Fongaro et al. (2018) also reported artifacts 
in clay maps caused by covariates. Some areas with only predicted 

Fig. 11. Case studies in the 0.8–1 m layer for hematite (AHem) and gibbsite (AGt) amplitudes in regional (municipality of Piracicaba, São Paulo Sate) (A) and farm 
(B) (C) levels. The soil maps of 1:100.000 (adapted), 1:10.000, and 1:5.000 were from Oliveira and Prado (1989), Souza (2020), and Demattê et al. (2004), 
respectively. Red soils have a hue equals to 2.5YR or more reddish, red-yellow soils have a hue equals to 5YR and yellow soils have a hue equals to 7.5YR or more 
yellowish. Ferric soils had Fe2O3 equals to or more than 18 g kg− 1. *10–6 scale. SySIc = Soil synthetic image with full coverage. 
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reflectance values showed uncertain MA values, such as in the moun
tainous regions along the coast of the Atlantic Ocean and the Amazon 
rainforest (Figs. 5, 6, and 8). 

4.3. Spatial and depth variation of minerals 

4.3.1. Iron oxides 
Geology has a crucial role in abundance of iron oxide minerals 

(Figs. 5, 8, and 9a) (Supplementary Material 1). Mafic volcanic rocks, 
such as basalt, are rich in iron and magnesium and produce soils with 
great amounts of iron oxide minerals (Schaefer et al., 2008; Cornell and 
Schwertmann, 2003; Long et al., 2011). Among the soil forming factors, 
parent material has a direct influence on soil mineralogy (Buol et al., 
2011). The case studies in the states of Rio Grande do Sul, Santa Cata
rina, Paraná, São Paulo, and Mato Grosso do Sul showed higher influ
ence of geology in the Central-West (Mato Grosso do Sul State) and 
geologic plus climate in the South of Brazil (Rio Grande do Sul and 
Paraná States) in iron oxides abundance, mainly haematite (Fig. 2) 
(Schaefer et al., 2008). Haematite occurrence is related mainly to more 
weathered and red soils, such as Ferralsols and Nitisols (Supplementary 
Material 1) characterized as clayey with high iron content (Fig. 9c, 
Fig. 10b, and Fig. 11). 

High haematite abundance occurred in some locations under tropical 
and subtropical zones, with lower abundance in dry environments. 
(Figs. 2 and 5) (Supplementary Material 1). Occurrences of iron oxides 
are characteristic of warm and humid climates (Long et al., 2011; Macías 
and Camps-Arbestain, 2020; Cornell and Schwertmann, 2003; Schaefer 
et al., 2008). Haematite is commonly found in well-drained soils and less 
common in flat areas with poor drainage, such as the Pantanal biome in 
the western region of Mato Grosso do Sul State and in the Amazon basin 
(northern Brazil). On the other hand, goethite occurs mostly under 
limited drainage conditions (Figs. 5 and 10b) (Supplementary Material 
1). Goethite is more stable than haematite and present in more variable 
environments (Macedo and Bryant, 1989; Resende et al., 1986; Cornell 
and Schwertmann, 2003; Schaefer et al., 2008). 

Soils with homogeneous profiles have similar mineral distribution at 
depth, as the case of Ferralsols, originated from basalt rocks (Figs. 5 and 
10a) (Supplementary Material 1). Conversely, soil types with textural 
gradients have higher iron oxides concentration at deeper layers. The 
increase in haematite at depth can be associated to the occurrence of red 
Acrisols, Lixisols, and Alisols. Higher predominance of goethite than 
haematite in the 0.8–1 m layer can be related to intermediate weathered 
soil types, such as red-yellow and yellow Acrisols, Lixisols, and Alisols. 

Goethite abundance was more pronounced in the Amazon region 
(northern Brazil), which has a predominance of soils with 5YR or more 
yellowish (Fig. 5). However, areas with yellow Ferralsols also showed 
increased goethite abundance at depth, while it did not occur for 
haematite in red Ferralsols (Fig. 10b). This phenomenon is possibly 
explained by the masking of iron oxides by SOC in the 0–0.2 m layer 
(Croft et al., 2012; Heller Pearlshtien and Ben-Dor, 2020). This effect is 
more pronounced for goethite than for haematite, as haematite 
pigmentation directly affects the spectral response of the visible region. 
Additionally, goethite has a higher affinity to organic matter than 
haematite (Kaiser and Guggenberger, 2000). 

The variation of Hem/(Hem + Gt) ratio verified in Fig. 8ab is directly 
related to soil color (Kosmas et al., 1984; Scheinost et al., 1998). A 
mixture of one part of haematite for four parts of goethite is enough to 
confer to the soil a hue of 5YR (Kosmas et al., 1984). Therefore, 
haematite is almost absent in yellow soils, while a small amount of 

Table A1 
Spearman correlation between the Amplitude of minerals (AM), terrain attributes (TA), Synthetic soil image (SySI) bands and Landsat mosaic of 1984.  

Covariate Amplitude of minerals SYSI bands 

AHem AGt AKt AGbs blue green red NIR SWIR1 SWIR2 

Elevation ¡0.19 0.07 0.02 0.43 ¡0.23 ¡0.20 ¡0.10 ¡0.10 − 0.07 − 0.09 
Slope ¡0.12 − 0.02 0.01 0.05 ¡0.18 ¡0.14 ¡0.20 ¡0.07 − 0.08 ¡0.15 
Aspect − 0.02 − 0.01 − 0.02 − 0.06 − 0.03 0.00 − 0.08 0.00 0.00 − 0.03 
Hillshade 0.12 0.00 0.02 0.00 0.19 0.20 0.18 0.14 0.16 0.19 
Northness − 0.03 − 0.06 − 0.04 0.00 0.03 0.05 0.02 0.07 0.07 0.05 
Eastness 0.02 0.02 0.01 0.07 0.03 0.01 0.09 0.01 0.00 0.03 
Horizontal curvature − 0.07 − 0.05 − 0.07 − 0.09 − 0.04 − 0.05 − 0.03 − 0.03 − 0.02 − 0.02 
Vertical curvature − 0.01 − 0.02 0.01 − 0.02 − 0.06 − 0.06 − 0.02 − 0.02 − 0.01 0.00 
Mean curvature − 0.05 − 0.05 − 0.04 − 0.07 − 0.06 − 0.06 − 0.02 − 0.02 − 0.01 0.00 
Minimal curvature 0.07 0.01 0.02 0.00 0.02 0.00 0.07 0.01 0.04 0.09 
Maximal curvature ¡0.14 − 0.08 − 0.08 ¡0.12 − 0.06 − 0.06 − 0.02 − 0.02 − 0.01 0.00 
Gaussian curvature 0.00 − 0.01 0.00 − 0.03 0.00 0.00 0.01 0.00 0.00 0.01 
Shape index 0.04 0.00 0.01 − 0.01 − 0.08 − 0.07 − 0.02 − 0.02 − 0.01 0.00 
SySI blue ¡0.63 ¡0.40 ¡0.36 ¡0.38       
SySI green ¡0.60 ¡0.40 ¡0.36 ¡0.40       
SySI red ¡0.47 ¡0.37 ¡0.33 ¡0.42       
SySI NIR ¡0.48 ¡0.39 ¡0.36 ¡0.44       
SySI SWIR1 ¡0.51 ¡0.43 ¡0.36 ¡0.42       
SySI SWIR2 ¡0.49 ¡0.42 ¡0.36 ¡0.43       
Mosaic blue     0.33 0.29 0.28 0.18 0.18 0.20 
Mosaic green     0.26 0.24 0.26 0.16 0.14 0.17 
Mosaic red     0.18 0.16 0.21 0.11 0.11 0.12 
Mosaic NIR     0.05 0.11 0.18 0.23 0.19 0.22 
Mosaic SWIR1     0.26 0.24 0.30 0.29 0.34 0.32 
Mosaic SWIR2     0.20 0.17 0.24 0.20 0.24 0.25 

Where: Min = minimum value; Max = maximum value; SD = standard deviation; CV = coefficient of variation; R2 = coefficient of determination; RMSE = root mean 
square error; rRMSE = relative root mean square error. 

Table A2 
Accuracy parameters for Synthetic soil image with full coverage (SYSIc) 
modelling.  

SySI band Calibration set Validation set 

R2 RMSE RPIQ R2 RMSE RPIQ 

blue 0.35 174.2 1.54 0.28 181.6 1.48 
green 0.36 202.6 1.55 0.29 211.3 1.49 
red 0.32 229.1 1.52 0.25 239.2 1.49 
NIR 0.32 333.6 1.62 0.25 348.7 1.56 
SWIR1 0.46 511.0 1.72 0.36 557.3 1.58 
SWIR2 0.38 429.3 1.49 0.32 450.1 1.42 

Where: R2 = coefficient of determination; RMSE = root mean square error; RPIQ 
= ratio of the performance to interquartile distance. 
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haematite is enough to mask the presence of goethite (Schaefer et al., 
2008; Kosmas et al., 1984). In southern Brazil, Hem/Gt + Hem is driven 
mainly by climatic conditions, while in the central region, the parent 
material, climatic conditions, and drainage are the main driving factors 
(Schaefer et al., 2008). 

A higher Hem/(Gt + Hem) ratio was observed in locations with 
middle elevation and slope (Fig. 8ab) (Supplementary Material 1). The 
areas with flat relief promoted the occurrence of goethite due to poor 
drainage, while areas with high slope had larger haematite occurrence 
(Breemen and Buurman, 2002; Macías and Camps-Arbestain, 2020). 
Generally, there was no variation in the Hem/(Gt + Hem) ratio at depth, 
except for the Amazon basin (North region) due to the increase of 
goethite abundance related to the occurrence of soils with hue 5YR or 
more yellow in the subsurface layer or because of the masking of 
goethite in the surface layer, as mentioned above. 

4.3.2. Gibbsite 
Gibbsite occurrence in the Brazilian territory was related to the high 

altitude (>500 m) and felsic plutonic and metamorphic rocks (Figs. 6 
and 8) (Supplementary Material 1). Gibbsite can occur in different 
parent materials; nevertheless, there is propensity of gibbsite occurrence 
in metamorphic rocks (Buol et al., 2011). Flat and elevated locations in 
the southern region of Goiás State is an example of a high gibbsite 
occurrence (Fig. 9c). Poppiel et al. (2020) also verified this condition 
using a combined proximal and remote sensing approach in the central- 
western region in Brazil. Several studies also related gibbsite occurrence 
with altitude and more weathered soils in Brazil (Gomes et al., 2004; 
Poppiel et al., 2020; Reatto et al., 2008; Schaefer et al., 2008). 

Gibbsite occurrence was associated to several soil types, such as 
highly weathered Ferralsols, intermediate weathered Acrisols and Lix
isols, and less weathered Cambisols (Figs. 6 and 8) (Supplementary 
Material 1). Moderate gibbsite abundance occurred in soils derived from 
mafic rocks, associated to iron oxides (Figs. 5 and 6). This partially 
contrasts with the literature that attributes gibbsite abundance in highly 
weathered soils from mafic rocks, due to the small amount of silicon that 
favors its formation (Schaefer et al., 2008). However, gibbsite occur
rence is not related exclusively to high-weathered soils formed under 
humid tropical climate (Macías Vazquez, 1981). Two processes that 
occur under free drainage conditions, low silica activity and few base 
contents can explain gibbsite occurrence in the soil, in the neo formation 
in the initial phases of Al-silicates weathering, and in the intense 
weathering process with dissolution of kaolinite (Macías Vazquez, 1981; 
Schaefer et al., 2008; Tardy et al., 1973). 

According to the literature, gibbsite can increase, decrease, or stay 
the same at depth (Buol et al., 2011; Macedo and Bryant, 1989) and 
gibbsite showed the smallest increases at depth when compared to other 
minerals (Fig. 6). 

4.3.3. Kaolinite 
The map of kaolinite shows considerable abundance in all soil types 

from different parent materials and generally increased with depth 
(Fig. 6). The literature does not mention a widespread occurrence of 
kaolinite in Brazilian soils, occurring mainly in Ferralsols, Nitisols, 
Acrisols, Lixisols, and Plinthosols (Schwertmann and Kämpf, 1985). 
Kaolinite can occur in several conditions, mainly in humid and warmer 
climates, with free drainage conditions, low pH, and non-excessive Si 
leaching (Schaefer et al., 2008). The regions with moderate values of 
kaolinite have sedimentary parent material or dry climate conditions, 
such as some regions in Northeast Brazil (Figs. 2, 6, and 8) (Supple
mentary Material 1). In the western region of São Paulo State, there was 
an increase in kaolinite content from topsoil to 0.8–1 m due to illuvia
tion in Acrisols, Lixisols, and Alisols and the low variation at depth in 
Ferralsols (Fig. 10a). 

5. Conclusion 

The relative abundances of major soil minerals goethite, haematite, 
kaolinite, and gibbsite were successfully identified and estimated by Vis- 
NIR-SWIR reflectance using samples from the Brazilian Soil Spectral 
Library (BSSL). These soil minerals presented a significant correlation 
with spectral data of synthetic soil image (SySI) with bare soil pixels 
obtained from Landsat time series images. Haematite presented more 
accurate results in spatial prediction with R2 ranging from 0.48 to 0.56, 
followed by gibbsite (0.42 to 0.44), kaolinite (0.20 to 0.31), and goethite 
(0.16 to 0.26). 

The spatial distribution of minerals was predicted for the entire 
Brazilian territory. For that purpose, a novel modeling procedure was 
implemented to obtain a bare soil reflectance with full coverage (SySIc), 
even for areas without soil exposure for the time period between 1984 
and 2020. However, this estimated bare soil reflectance had lower ac
curacy in the prediction of soil minerals. Therefore, future studies should 
be carried out to improve SySIc accuracy. 

The mineral maps were validated with reference mineralogical data 
and showed R2 of 0.64 (haematite), 0.40 (goethite), 0.20 (kaolinite), 
0.29 (gibbsite), and 0.40 (Kt/Kt + Gbs). The maps were in accordance 
with legacy maps of geology and pedology as well as with climate and 
terrain conditions. Moreover, the maps revealed the spatial distribution 
of mineral abundance at a finer scale than geological and pedology maps 
available in Brazil, reaching the farm level. 

The proposed approach reveals the distribution of mineral abun
dances in the Brazilian territory and provides an efficient method to 
obtain information on soil mineralogy for large areas. 
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Mangold, N., Pinet, P., Douté, S., Schmitt, B., Sotin, C., Hauber, E., Hoffmann, H., 
Jaumann, R., Keller, U., Arvidson, R., Mustard, J.F., Duxbury, T., Forget, F., 
Neukum, G., 2006. Global Mineralogical and Aqueous Mars History Derived from 
OMEGA/Mars Express Data. Science (80-. ). 312, 400–404. https://doi.org/ 
10.1126/science.1122659. 

Bishop, T.F.A., McBratney, A.B., Laslett, G.M., 1999. Modelling soil attribute depth 
functions with equal-area quadratic smoothing splines. Geoderma 91, 27–45. 
https://doi.org/10.1016/S0016-7061(99)00003-8. 

Blume, H.P., Schwertmann, U., 1969. Genetic Evaluation of Profile Distribution of 
Aluminum, Iron, and Manganese Oxides. Soil Sci. Soc. Am. J. 33, 438. 

Breemen, N.V., Buurman, P., 2002. Soil Formation, 2nd ed. Springer, Amsterdam.  
Breiman, L., 2001. Random Forests. Mach. Learn. 5–32 https://doi.org/10.1023/A: 

1010933404324. 
Brus, D.J., Kempen, B., Heuvelink, G.B.M., 2011. Sampling for validation of digital soil 

maps. Eur. J. Soil Sci. 62, 394–407. https://doi.org/10.1111/j.1365- 
2389.2011.01364.x. 

Buol, S.W., Southard, R.J., Graham, R.C., McDaniel, P.A., 2011. Soil Genesis and 
Classification, 6a. ed. John Wiley & Sons Ltd, Chichester, UK.  

Canton, L.C., de Souza Júnior, I.G., Silva, L.S., Marques Júnior, J., da Costa, A.C.S., 2021. 
Identification and quantification of iron oxides by diffuse reflectance spectroscopy 
with Praying Mantis accessory and integration sphere. Catena. https://doi.org/ 
10.1016/j.catena.2020.104899. 

Carroll, D., 1953. Clay Minerals in a Limestone Soil Profile1. Clays Clay Miner. 2, 
171–182. https://doi.org/10.1346/CCMN.1953.0020115. 

Chipera, S.J., Bish, D.L., 2001. Baseline Studies of the Clay Minerals Society Source Clays 
Powder X-ray Diffraction Analyses. Clays Clay Miner. 49, 398–409. https://doi.org/ 
10.1346/CCMN.2001.0490507. 

Clark, R.N., King, T.V.V., Klejwa, M., Swayze, G.A., Vergo, N., 1990. High spectral 
resolution reflectance spectroscopy of minerals. J. Geophys. Res. 95 https://doi.org/ 
10.1029/jb095ib08p12653. 
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Demattê, J.A., Campos, R.C., Alves, M.C., Fiorio, P.R., Nanni, M.R., 2004. Visible–NIR 
reflectance: a new approach on soil evaluation. Geoderma 121, 95–112. https://doi. 
org/10.1016/j.geoderma.2003.09.012. 
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Terrain Analysis in Google Earth Engine: A Method Adapted for High-Performance 
Global-Scale Analysis. ISPRS Int. J. Geo-Information 9, 400. https://doi.org/ 
10.3390/ijgi9060400. 

Sahwan, W., Lucke, B., Sprafke, T., Vanselow, K.A., Bäumler, R., 2021. Relationships 
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Veiga, M., 2019. A Regional Legacy Soil Dataset for Prediction of Sand and Clay 
Content with Vis-Nir-Swir, in Southern Brazil. Rev. Bras. Ciência do Solo 43. https:// 
doi.org/10.1590/18069657rbcs20180174. 

Silva, L.S., Marques Júnior, J., Barrón, V., Gomes, R.P., Teixeira, D.D.B., Siqueira, D.S., 
Vasconcelos, V., 2020. Spatial variability of iron oxides in soils from Brazilian 
sandstone and basalt. Catena. https://doi.org/10.1016/j.catena.2019.104258. 
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