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Abstract – Population estimation implies considering the biology of the species, but also the constraints of
logistic aspects such as cost. While common methods based on individual counts can provide precise
estimates, they require an extensive sampling effort. An alternative to these methods is using cues linked to
the species abundance. In that case, producing absolute estimates requires assessing the relationship
between the individuals and these cues. In this paper, we propose a model based on data on spawning
behaviour and Approximate Bayesian Computation to estimate the number of sea lamprey spawners using
nest counts data. By counting the daily number of occupied nests and using parameters from a behavioural
study, we set up a model simulating a spawning season and returning a population estimate by comparison
with field data. Our model gives realistic estimates and we discuss the parameters on which to prioritize data
collection with a sensitivity analysis, and show that halving the sample size provides a still satisfactory
accuracy. We made an easily parametrizable application to run the model for any people interested in sea
lamprey population estimation, and believe this framework to be a good way to increase data collection for
both endangered and invasive sea lamprey.

Keywords: Management / anadromous species / endangered species / nesting behaviour / mechanistic model
1 Introduction

Population estimation implies taking into account biologi-
cal aspects of the focused species, but also the constraints
depending on more logistic aspects such as cost, material
possibilities or number of people involved. A common
population estimation method is Capture-Mark-Recapture
(CMR), which consists in marking all individuals during a first
capture and then using the ratios of already marked versus new
individuals captured on further occasions to estimate the
population size. The CMR method allows to estimate a
population when a direct count is not possible, gives a
relatively precise estimate of its size (Funk et al., 2003) and has
high power to detect its decline (Funk et al., 2003; Pace III
et al., 2017). The method is highly flexible, as models have
been developed to take into account characteristics such as the
closure or not of the population (Schwarz and Seber, 1999), or
resight instead of recapture (McClintock and White, 2009).
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However, obtaining precise population estimation using CMR
methods requires the capture of a large proportion of the
population, which may lead to a high sampling effort
(McClintock and White, 2009), hence important financial
and logistic costs. Such costs are not always affordable by
agencies in charge of long-term monitoring programs.

Instead of directly counting or detecting the individuals,
the use of methods based on cues characteristic of one species
presence may be a way to limit the problems in detection or
marking. For example, beaver colonies can be indirectly
detected and counted using their dams (Johnston and Windels,
2015). Birds can be detected using a large panel of indicators
such as their auditory signals, feeding and dusting sites, roost,
fecal, and nest counts (Morgan et al., 1983). While the latter is
mainly used for birds (Rodgers et al., 1995) or primates
(Kouakou et al., 2009), population size of nest-building fishes
may also be estimated using nest counts (Al-Chokhachy et al.,
2005; Hamstreet, 2012). Nonetheless, many of these indirect
methods do not produce absolute estimates but only relative
ones. Indeed, producing absolute estimates requires the
assessment of the relationship between number of individuals
se CC-BY-ND (https://creativecommons.org/licenses/by-nd/4.0/), which permits unrestricted use,
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and these indirect cues. The classical procedure consists in the
calibration (usually through regression) of the relationship
between population size and the indirect cue. This is done on a
set of observations in which both are available, and later using
inverse prediction to infer population size from the indirect cue
in the usual case where only the cue is quantified (Southwood,
1978). However, the relationship can depend on environmental
conditions (e.g. birds singing more or less intensely depending
on the moment of the day) or on the characteristics of
individuals in the population (e.g. unpaired male birds singing
more or less than paired males depending on the moment of the
day and of the breeding cycle, Amrhein et al., 2002).
Accounting for these additional sources of variation in the
relationship between actual population size and the measurable
cue would require calibrating the relationship on a very large
number of observations where all variables are available,
which is often not possible.

An alternative, proposed in this paper, is to (1) collect
information on the behavioural processes leading to cue
production by individuals, thus accounting for variability in
these processes; (2) build a model that simulates cues produced
by a population composed of a number of such individuals; and
(3) compare the number of cues simulated by the model to the
amount actually observed during a survey. Steps (1) and (2)
correspond to model calibration by the modelers, and step (3)
belongs to users. The model is therefore both mechanistic, as it
implements individual behaviour explicitly, and statistic, as it
produces an estimate and its uncertainty. The flexibility of
Bayesian modelling (Kruschke, 2010) makes it a good tool for
this task. However, when the measured variables are generated
by complex mechanisms including, for example, interactions
between individuals, deriving the likelihood may be problem-
atic. This is where Approximate Bayesian Computation (ABC)
comes in handy.

Approximate Bayesian Computation framework is a
particularly accurate methodology when it is difficult to
sample parameter values from the posterior distribution, as
there is no need to compute the likelihood function (Beaumont,
2010; Csilléry et al., 2010; Turner and Van Zandt, 2012).
Instead, the model returns summary statistics calculated from a
hypothetical dataset and which are compared to the observed
values. This framework allows a simulation of complex
processes behind an observed outcome and is particularly used
in population genetics (Estoup et al., 2001; Nielsen and
Beaumont, 2009) or epidemiology (McKinley et al., 2018). In
ecology, the method was used to infer speciation rates and
immigration of species under a neutral ecological model (Jabot
and Chave, 2009), to test the existence of a socially induced
reproductive synchrony (Koizumi and Shimatani, 2016), or to
determine the species richness (Solow and Smith, 2009).

The sea lamprey, Petromyzon marinus, is an anadromous
jawless fish. Both males and females build nests, often in pair
but sometimes as groups of several individuals. This species is
considered endangered in the most important part of its native
area in Europe and North America, where the largest sea
lamprey fisheries occur (Beaulaton et al., 2008) while being
considered invasive in the Laurentian Great Lakes (Hume
et al., 2021), where the invasive populations affect fisheries by
killing salmonids (Farmer et al., 1975). Those opposite
concerns lead to the need for an accurate estimation of sea
lamprey populations to monitor the efficiency of either
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conservation or control policies. Captures from fisheries,
where they exist, may be used to provide an annual indication
of the adults returning to their spawning grounds (Beaulaton
et al., 2008). However, the data provided usually correspond to
a relative number of migrants and not a number of spawners, as
the individuals are caught during their upstream migration and
susceptible to be predated (Boulêtreau et al., 2020) or to be
unable to reach their spawning grounds due to impassable
barriers (Lasne et al., 2015). Furthermore, fishery catches
highly depend on environmental conditions. Fish passes
equipped with a counting device are useful as theymay provide
an exhaustive count near the spawning areas. However, it is
impeded as most of the dams are not totally impassable, with
individuals going upstream without using the pass. Further-
more, the number of equipped rivers is most often limited.
Based on the limits of the current methods, sea lamprey nests
seem to be an interesting cue of the sea lamprey spawners
abundance, as they directly reflect the spawners activity and
can be counted in spawning sites easily, as they are built in
shallow and identifiable zones (Johnson et al., 2015).
Nonetheless, it is necessary to take into account the polygamy
of the species which causes the nests to be built by more than
one male and one female (Applegate, 1950; Migradour, 2010).
Furthermore, individuals may build several nests, with
differences between males and females (Dhamelincourt
et al., 2021a). To include these constraints while allowing
an easy monitoring, the Approximate Bayesian Computation
framework (ABC) was selected.

This paper presents a model based on this ABC framework
and uses it to estimate the number of sea lamprey spawners
from nest counts data. Our model aims to produce sea lamprey
spawners abundance estimates (including uncertainty) from
simple and cost-efficient nest counts performed repeatedly
throughout a spawning season (Fig. 1). To assess the
relationship between individuals and their nests, our model
was based on a previous CMR model and behavioural study
from Dhamelincourt et al. (2021a) conducted over an entire
spawning season and used to estimate the parameters. After
presenting the model structure, its performance and its
sensitivity to parameter magnitudes and sampling design,
we discuss its implication from a user perspective, recom-
mending sampling schemes and highlighting the evolvability
of the model as more information on lamprey nesting
behaviour will become available for different river systems.

2 Material and methods

2.1 ABC framework

Our model was built using the Approximate Bayesian
Computation (ABC) framework (Beaumont, 2010; Csilléry
et al., 2010) and the ABC_sequential function within the
EasyABC package (Jabot et al., 2015) for R (version 4.1.2; R
Core Team, 2021) that implements the sequential algorithm
from Lenormand et al. (2013). ABC framework was chosen as
it allows to infer the posterior distribution of key parameters�
here population size � of a model whose likelihood is too
complicated to derive, here an individual-based model of a sea
lamprey spawning season. Using a set of values for individual
parameters, we simulated the individual nesting history of
males and females spawning lamprey, which may build, or not,
f 13



Fig. 1. Scheme of the process behind the ABC model implemented to estimate the sea lamprey spawner abundance with nest counts.
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a nest each day d of the season, depending on their parameters
and their previous spawning activity on day 1 to d-1. Those
sex-dependent parameters were the maximal number of
frequented nests, the number of individuals in each nest, the
delay of arrival on the spawning ground, and the residence
time. The occupation duration of a nest was also considered. At
the end of the simulation, the model produces some summary
statistics (i.e., the maximum, median, mean, Q25 and Q75 of the
number of nests built on each day of the season). After k
simulations of spawning seasons, each with a different number
of individuals N, the model returns a posterior distribution of
the most likely number of individuals Nestimate depending on
the summary statistics really observed during the spawning
season.

An ABC model initially generates a sample of model
parameter values (often also called particles) from the prior
distribution and selects the values leading to model outputs
(resumed as summary statistics) satisfying a proximity
criterion with the target data (data observed on the field for
example). The selected sample of parameter values approx-
imates the posterior distribution of parameters, leading to
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model outputs with the expected quality of approximation.
Inside this general framework, the sequential Lenormand
algorithm (Lenormand et al., 2013) was selected as it
minimizes the number of runs and automatically determines
its stopping criterion. This algorithm determines the final
tolerance level in order to ensure a good quality while avoiding
too many simulations and computation time. These character-
istics are of interest for our model, as they are intended to be
implemented in a user-friendly application. We set nb_simul =
400, corresponding to 200 simulations below each tolerance
level (see Jabot et al. (2015) for parametrization details in R
and Lenormand et al. (2013) for an overview of the algorithm)
and did not indicate a tolerance level as the Lenormand’s
algorithm automatically determines its decreasing sequence of
tolerance levels.

2.2 Parameter distributions and priors

All parameter distributions were determined using data
from Dhamelincourt et al. (2021a), available in Data INRAE
(clickable link). These parameters are all needed to run the
f 13
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Table 1. Parameter estimates obtained from Dhamelincourt et al., 2021a and Dhamelincourt, 2021b; m=males, f = females. With
Variance ¼ meanþ mean2

size for negative binomial distributions and Variance = sd2 for normal distributions.

Variables Distribution Value Mean Variance Prior

Sex ratio – 0.5 – – –

Nb of individuals on nest (m) Zero-truncated negative binomial – 1.25 1.25 –
Nb of individuals on nest (f) Zero-truncated negative binomial – 1.15 1.44 –
Nb of nests per individual (m) Zero-truncated negative binomial – 2.38 2.65 –
Nb of nests per individual (f) Zero-truncated negative binomial – 1.70 1.71 –
Delay (m) Zero-truncated and skewed normal – 27.25 121.9 –
Delay (f) Zero-truncated and skewed normal – 30.45 106.3 –
Residence time (m) Zero-truncated normal – 8.33 1.04 –
Residence time (f) Zero-truncated normal – 3.57 1.08 –
Nest duration Zero-truncated normal – 1.0 0.25 –
Spawner abundance Uniform – – – X ∼ U (100, 250)
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model as they are the basis of the realistic arrangement of
individuals in the nests, simulated by the model. Briefly, these
data were obtained from a daily survey of a 1 km long stretch of
the Nive river (France) on which 202 nests were found over a
47-days long spawning season. The number of males and
females was counted on 69 nests. A total of 114 individuals
were captured with a fishing net when first observed on a nest,
marked and observed again (for 60 of them) on either the same
or subsequent nests. Number of nests and number of
individuals per nest followed a zero-truncated negative
binomial distribution (generated using the rztnbinom function
of the countreg package which generates values according to
the distribution of the observed data; see Zeileis et al., 2008) to
prevent zero values. Delay and residence time were both
obtained using the daily survival probability ’d,t of an
individual d at a day t estimated by the CMR model in
Dhamelincourt et al. (2021a). Delay followed a truncated and
skewed normal distribution (rsnorm function of the fGarch
package;Wuertz et al., 2016) to avoid zero values and take into
account the observed skewness of the real delay. Residence
time (and nest duration) followed a zero-truncated normal
distribution without skewness (rtnorm function of the msm
package; Jackson, 2011). Sex ratio was initially fixed to 0.5 as
we observed an equal number of males and females. A
uniform, non-informative prior, was used for simulations as the
a priori number of individuals was supposed unknown and
should fit with spawners abundance from other sites. This prior
is likely to be modified according to the number of spawners
expected in a given site. Table 1 indicates all distributions and
prior.
2.3 Individual-based model processes

In our individual-based model, each individual has a
continuous set of days during which it may build nests and
encounter other individuals, depending on its own delay and
residence time. Since individuals reach a given spawning
ground sequentially, we set up an individual delay of arrival, as
the number of days since the arrival of the first spawner. Each
day d, an individual builds a nest with other individuals if it and
the other individuals are active and satisfy the following
conditions: first, an individual cannot exceed a maximum
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number of nests built during the season. Second, an individual
can only be involved in the building of one nest at a time.
Third, a nest cannot be built by more males and females than a
random limit, specific to each sex. Finally, if an individual is
active but finds no partner, it can initiate a nest on its own, as
can be observed for both males and females. Figure 2 describes
these successive conditions and their consequences on whether
a nest is built or not.

This process is repeated each day until the end of the
season, when all individuals reach either their maximum
number of nests or their maximum residence time on the
spawning ground (linked to the rapid senescence associated to
semelparity). The model then returns a daily number of active
nests (i.e., occupied nests), but not the total number of nests
detectable on the spawning ground, which includes nests that
have been completed on previous days. Indeed, depending on
hydrological conditions, nests can be detected a few days to
several weeks after they have been built, but it is easier for
operators to count the number of active nests, which does not
require labelling the nests each day to avoid double counting
from one day to the other, that may complicate a protocol that
was intended to be simple. Figure 3 shows the process through
the example of a hypothetical individual spawning season.

Model code is freely available at Data INRAE (clickable
link).

2.4 Model validation

The estimates produced by our model were compared to
the estimates from a CMR model fitted to the data obtained on
the individuals marked in the Nive in 2019 (Dhamelincourt
et al., 2021a).

2.5 Sensitivity analysis

Sensitivity of our model to parameter variations was
assessed using the default parametrization but changing one
parameter value for each run. Twenty values were tested for
each parameter and its variability (standard deviation or
dispersion depending on the distribution), from 0.1� observed
value to 2� observed value with a step of 0.1. The nest
duration varied only between four values due to the need to use
f 13
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Fig. 2. Decision tree synthesizing the actions of the individual depending on the conditions implemented in the model. This decision tree is
repeated for each individual i each day d.
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integer values, and a relatively limited range of realistic
variations (a nest built during more than four days was not
observed or indicated elsewhere). Deviation from the
estimated spawner abundance with CMR was then quantified
using the mean ± sd of this deviation.

2.6 Sampling schemes simulation

To test how the accuracy of the estimated number of
spawners varied with the way field data are collected, we
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simulated a variety of sampling schemes, in terms of both
frequency and regularity of field work. Four frequencies were
simulated: (a) every day of the season, (b) half of the days, (c)
once a week, (d) once in two weeks. For each the last three
frequencies, two regularities were simulated: (1) regular: every
other day, every seven days, or every 14 days, or (2)
randomized across the season (e.g., possibly two days in a row
followed by 12 days off, for the weekly frequency). This
combination of frequency and regularity therefore resulted in
seven sampling schemes. First, a full spawning season was
f 13



Fig. 3. Spawning season of a hypothetical individual i generated by the individual-based ABCmodel. This individual (either a male or a female)
firstly met two available partners (either males, females or both) on day d. On day dþ 1, the individual was still on the nest built the previous day,
but one partner left the nest, possibly joining or building another one. Then, at dþ 2, the individual built a new nest and was joined solely by one
of the two partners available this day. Indeed, available partners may join or build another nest with other individuals. At dþ 3, the individual i
built a nest on its own, as no other partner was available. Finally, from dþ 4 until the residence time was reached, the individual did not build or
join more nests, as its maximum number of nests was reached at dþ3. It finally disappeared from the pool of individuals at dþ residence
timeþ 1, simulating its death. The table indicates the number of active nests belonging to this individual. Each day this individual was observed
on a nest, þ1 was added to the count of “active” nests. For this reason, four nests appear in the count but three nests were built.
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simulated and served as a basis. For all sampling schemes, the
summary statistics were calculated on a subset of this full
spawning season according to the sampling scheme consid-
ered. A single set of statistics was calculated for the full
sampling scheme, but for the nest count every other day we
used the two possibilities of simulated field samplings (starting
either the first or the second day of the season). For all other
Page 6 o
sampling schemes, we calculated seven summary statistic sets
corresponding to all the different possibilities of field
campaigns (count every other week and weekly count with
a fixed 7 days step) for non-random sampling schemes. For
random ones and to be consistent across the sampling schemes,
we kept the same number of sets (seven) even if there were
many more possible combinations. For each instance of each
f 13



Fig. 4. Median and 95% confidence interval of spawner abundance estimate obtained with (1) the ABC model (blue and dashed lines) using the
set of parameters described in Table 1 and (2) the Capture-Mark-Recapture model (orange and dotted lines) from Dhamelincourt et al. (2021a).
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sampling scheme, the ABC model estimated a spawner
abundance. The bias, or inaccuracy, associated to each
sampling scheme was computed as the difference between
the medians of the estimates obtained from the sampling
scheme of the median of the estimates obtained with the full
data. The imprecision associated to each sampling scheme was
reflected by the differences among the estimates obtained from
that sampling scheme.

3 Results

3.1 Spawner abundance estimate

After k= 4600 simulations (depending on the decreasing
sequence of tolerance levels automatically determined by the
Lenormand’s algorithm), the model estimated a mean value of
148 ± 18 individuals, including males and females. It
corresponds to a 25% under-estimation compared to the
CMRmodel (197 ± 17 individuals). The distributions estimated
are indicated in Figure 4. However, the distribution is
narrower for the ABC model if we consider the confidence
intervals.
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3.2 Sensitivity analysis

Sensitivity analysis indicated an important variability
considering the effects of parameter values on both median
(Fig. 2) and standard deviation (Fig. 3) of the spawners
abundance estimate. In each table, the parameters whose
variation affected the model output the most are the ones with
the most contrasting rows. The further the value moves from
green to either yellow or blue, the further the estimated
abundance is from the one obtained with the default
parameters.

For the median, a lower standard deviation of the delay of
arrival for males and females induced an underestimation from
1 to 70%, while higher values caused an overestimation from 3
to 21%. The mean parameter (mu) of the zero-truncated
binomial distribution, assigning a number of nests per
individual, caused an underestimation from 2% to 27% when
higher than the initial value, while increasing the estimated
spawners abundance until 31%when set to 90% lower than the
initial values. The sex-ratio is another parameter which highly
influenced the median estimate when set to high values,
corresponding to a high number of males. A sex-ratio set up to
f 13



Fig. 5. Values of summary statistics calculated with the distribution of active nests, obtained assuming different sampling schemes (maximum,
median, mean, Q25 and Q75), then used for ABC computation.
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0.95 decreased by 55% the spawners abundance estimate while
a decrease of similar magnitude (sex-ratio = 0.05) only
decreased the estimate by 7%. A longer duration in a nest
tended to underestimate spawners abundance, with values
corresponding to a decrease of 30% with nests occupied for
three days.

The standard deviation of the spawners abundance
estimate followed less progressive trends from low to high
parameter values. However, the model was again highly
sensitive to standard deviation of the delay. Roughly, low
values decreased the uncertainty (down to 58%) while high
values increased it (up to 25%). As observed for the median,
the mean parameter (mu) of the number of nests per individual
highly influenced the final standard deviation of the estimate,
with lower uncertainty with high values. The mean parameter
of the number of females per nest showed an opposite trend:
low values decreased the standard deviation down to 30%. The
nest duration reduced the uncertainty down to 23% with high
values. It appears difficult to highlight trends for other
parameters, which can both increase or decrease the standard
deviation while increasing or decreasing.

3.3 Sampling schemes simulation

The summary statistics obtained from the different
sampling schemes (Fig. 5) indicated a general increase in
variability with a decreasing sampling effort, showing the
difficulty to obtain the same statistics for a scheme when a
reduced field sampling frequency was repeated. This is
especially evident for the maximal number of active nests on a
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given day, ranging from 6 to 15 for the four least intensive
sampling schemes, without the real value (17 nests) included.
To a lesser extent, the tendency was the same for the other
statistics. The “once in two weeks” random sampling was the
worst, with the highest variability among all schemes.

The spawners abundance estimates (Fig. 6) reflected the
results of the summary statistics. Sampling schemes with the
most variable summaries also had the most variable estimates.
While the “every other day” scheme provided an estimate
between �12% and þ5% when compared to “full sampling”
estimate, and the “once in two days” random scheme having an
estimate between �6% and þ13%, the less intensive schemes
were more variable. The estimates of the “weekly count” lied
between �44% and þ27% compared to the full effort. The
same sampling intensity, but applied randomly, gave an
estimate between �52% and þ11%. Finally, the “every two
weeks” sampling scheme provided estimates between �29%
and þ40%, while its randomly applied version provided
estimates between �55% and þ42%. As the model always
uses the same number of statistics, being more or less
representative of the spawning season, the uncertainty did not
increase between simulations. Decreasing the sampling effort
seems to affect the accuracy more than the precision of the
estimates.

4 Discussion

The objectives of the study were to (1) build an individual-
based model simulating a daily number of active nests
produced by lamprey spawners; (2) evaluate the model
f 13



Fig. 6. Comparison of the spawner abundance estimated by ABC models for the different sampling schemes studied, each sampling scheme
being repeated several times. Each point corresponds to one of the 100 values provided by the model to calculate the estimate as a distribution,
presented here as a boxplot. The horizontal red line corresponds to the estimate obtained with a daily sampling scheme. For all sampling schemes
(except the daily nest count and the "every other day" scheme which only has two possibilities) we calculated seven summary statistic sets
corresponding to all the different possibilities of field campaigns (count every other week and weekly count with a fixed 7 days step) for non-
random sampling schemes. For random ones, we kept the same number of sets (seven) even if they have many more possible combinations, in
order to be consistent across the sampling schemes. Coloured boxes correspond to the range of spawner’s abundance estimated within each
sampling scheme and allow to visualize the interval between the lowest and highest estimate.
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performance by comparing the estimate with those of a
previous CMR model using the same data; (3) determine the
sensitivity to parameter magnitudes; (4) assess the effects of
several sampling designs on the estimates; and (5) discuss the
implications and evolvability of the model from a management
perspective. After building the model, we managed to estimate
a spawner abundance 25% below that of the estimate given by
the CMRmethod. We identified delay of arrival, sex ratio, nest
duration, number of nests per individual and number of
individuals per nest as the most sensitive parameters. In
addition, we showed that a sampling scheme “every other day”
or “once in two days” decreased the accuracy to a lower extent
than less intensive sampling schemes. We will now discuss the
implications and evolvability of our approach.

The spawners abundance estimated with the ABC model
was 25% below that of the CMR method. This result suggests
that our model may produce a biased estimate, possibly caused
by two factors. First, even if we simulated a realistic nest-
building process using the knowledge available for sea
lamprey based on some previous works realized on the sea
lamprey spawning season (e.g., Applegate, 1950; Hardisty and
Potter, 1971; Johnson et al., 2015; Dhamelincourt et al.,
2021a), we may have missed important behaviours
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determining nest-building. A hypothesis is that some other
parameters determine the individual arrangement within nests.
In the model, the individuals can begin or join a nest solely
depending on the number of individuals they may spawn with
or the number of nests they should visit. However, no
information is provided on the influence of environmental
parameters such as the water temperature or the density of
individuals in the spawning ground. Water temperature is
known to influence the spawning activity of sea lamprey, with
a threshold for nest-building behaviour set to 15 °C (Manion
and Hanson, 1980) and an important sensitivity to sudden
drops of 1 or 2 °C (Applegate, 1950; Manion and McLain,
1971). During the 2019 spawning season, the mean tempera-
ture was below 15 °C during 26 days, and even if we observed a
spawning activity, we possibly overestimated the capacity of
individuals to build nests on these days. However, little
information exists to define a continuous nest digging
probability depending on temperature, making it difficult to
implement this variable in our model. Furthermore, density of
individuals may increase the competition for favourable
nesting habitat and increase the number of individuals per nest,
therefore modifying the individual parameters throughout the
spawning season. During some days we observed a peak of
f 13



Table 2. Percentage of over- or underestimation of the median of the spawner abundance estimate obtained with the default values, from 0.1 to
twice the default value regarding our field data and CMR model; m= males, f= females.

Table 3. Percentage of over- or underestimation of the standard deviation of the spawner abundance estimate obtained with the default values,
from 0.1 to twice the default value regarding our field data and CMR model; m= males, f= females.
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active nests (15 active nests observed on June 3rd, 2019), with
a possible increased nest building cooperation compared to
days with lower activity and/or density. Another hypothesis
concerning the model underestimation is the lack of precision
of some of our parameters. Regarding the most sensitive
parameters, the delay of arrival, the sex-ratio, the number of
nests and the nest duration influenced the most the spawners
abundance estimate.We determined these parameters using the
protocol described in (Dhamelincourt et al., 2021a), with no
continuous monitoring of the spawning site, especially by
night. Consequently, we possibly missed part or all of the
breeding activity of some individuals, explaining the
uncertainty of our parameters. For that reason, we recommend
that future studies should primarily estimate these parameters.
The model code being freely available and the dedicated
application allowing an easy modification of the parameters,
we think our model as being a baseline to be improved by
complementary studies. Although, even if some parameters
(obtained from Dhamelincourt et al., 2021a) used in our model
are consistent with observations made in other populations
(e.g., Applegate, 1950 for the number of individuals per nest in
the Ocqueoc river, MI, USA; Gardner et al., 2012 for the
duration of individual activity in the Sedgeunkedunc stream,
ME, USA), some parameters may vary across populations,
depending on the genetic background of the population, habitat
features, or the local density of lamprey. Additional studies
describing lamprey spawning behaviour in different localities
will therefore be welcome to refine our model and possibly
adapt it to local situation. In this perspective, our sensitivity
analysis should help users to prioritize which parameters they
should get information on, depending on both their effect on
the estimate of the number of spawners and the intuition that
they may locally differ fromwhat Dhamelincourt et al. (2021a)
observed in their study site. For example, a user working in a
site situated upstream an obstacle whose permeability varies a
lot with flowmay want to design a telemetry-based experiment
to assess the mean and standard deviation of the delay of
individual arrival on the spawning ground of interest.
Likewise, if local conditions are suspected to bias the adult
sex ratio, sexing migrating adults caught by a nearby fishery
may help adapt this parameter in the model. Since all
parameters are needed to run the model, users must either use
the parameters collected from their population or abide by the
default values.

Sensitivity analysis showed that some parameters highly
influenced the spawners abundance estimate. The standard
deviation values of our parameter “delay” led to an
underestimation of the spawners abundance when low, while
leading to an overestimation of the spawners abundance when
high. This result is consistent with the individuals’ behaviour.
Indeed, when many individuals arrive on the spawning ground
at the same time (low standard deviation values), they should
build fewer nests but with more individuals, due to the space
limit (Ostfeld, 1986; Harris et al., 1995) or the attractiveness of
already built nests for opportunistic individuals with poor body
condition (Harris, 2008). In contrast, when individuals arrive
sequentially, they have less opportunity to join or be joined by
other spawners within a nest and are therefore more likely to
build nests with few individuals. The mean number of nests per
individual is another parameter of great influence for the
spawners abundance estimate. This is an expected result since
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it is a parameter directly influencing the nesting process.
A high number of nests per individual decreased the final
estimate while a low digging capacity implied that more
individuals were at the base of a given number of nests. The
sex ratio is another important parameter as it decreased the
spawners abundance estimate for high values, indicating a sex
ratio largely in favour of males. Here again, this result
indicates a consistent functioning of the model, as a high
number of males means a high number of nests per individual
(because the maximal number of males allowed per nest is
lower than the maximal number of females), therefore
decreasing the number of individuals having built the number
of active nests observed on a given day. Our sensitivity
analysis points at the parameters on which future studies may
focus on in order to improve the performance of our model.
Moreover, the parameters which our model’s output was the
most sensitive to are also likely to vary across populations, or
across years for a given population. Our results therefore also
highlight the parameters that a user of our model may need to
determine for his own system in order to parametrize the
model accordingly, and get an accurate estimate of his own
population of interest.

The simulation of several sampling schemes from a daily
nest count to a count once in two weeks showed an important
decrease of the accuracy of the spawners abundance
estimate for least intensive samplings. The summary
statistics being biased compared to the reality of the nest-
building process and highly depending on the days
monitored, these estimates were largely over or under the
reference value. Determining a trade-off between cost and
accuracy requires thinking about the limit one would like to
set on the bias of the estimate. According to our results, it
appeared necessary to count the nests at least half the days of
a spawning season, days randomly chosen or with a regular
once in two days step. For both of them, the bias did not
exceed 13%, while it reached up to 50% on a weekly basis.
However, the operator is not constrained by the day to
choose as long as he surveys half of the spawning season.
To illustrate the sensitivity of our model’s performance to
sampling design, we only simulated six sampling schemes
according to frequency and evenness of nest counts.
However, a potential user of our model could also simulate
a raw dataset inspired by the probable magnitude of
spawners abundance, apply several custom sampling
schemes based on his constrains (e.g., operator availability,
upper limit on total number of days in the field), and run our
model on each generated dataset. This would allow
assessing the accuracy and precision of the estimate
associated to each considered sampling, and schedule field
season accordingly.

In order to make the model easily usable by any people
interested in sea lamprey population management, even
without R coding knowledge, we developed a user-friendly
web application (https://mdhamelincourt.shinyapps.io/Lamp
roie_tracker/; Chang et al., 2015). The simplest way to use it is
to upload a dataset and launch the analysis, using the default
parameter values given in the present article. A .csv dataset
with a first column corresponding to the days of monitoring
and a second column indicating the number of active nests
counted each day is required. Column names do not matter but
it is necessary to write ’NA’ for the non-monitored days if they
of 13
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appear in the dataset. The 0 value is considered as a day
without active nest. This dataset must be loaded in the tab
“Chargement des données” where the user can control the
correct form of the data (some options are helpful in the
loading of the dataset when necessary). Then, one just
launches the analysis in the tab “Lancement de l’analyse”
and waits a few minutes until the end of the computation.
A plot of the posterior distribution of spawners abundance is
then displayed and the user can save it or simply note the
median and 95% confidence interval of the spawners
abundance estimate. As we wanted the model to be
adjustable to the study site and the characteristics of the
population studied, the user can modify all the parameters of
the model in the tab "Paramètres". However, as the estimates
can drastically change depending on these values, the user
must have reliable information in order to change them. If
supplementary information needs to be included in the
model, the code is freely available at (https://github.com/
Marius-Dhamelincourt/Lamproie-tracker; license CC BY-
NC-SA) and can be used outside of the application. We did
not include this possibility inside the application as it would
have complicated the ease of use. In addition, it may be
possible to infer more parameters than solely spawners
abundance. For example, the model could estimate any other
parameter used to simulate the spawning behaviour (see
Tab. 1), such as the residence time. However, the objective
of our model is to specifically estimate the abundance.
Furthermore, the addition of parameters to estimate may
require more computation time while providing information
that would not be of interest to managers. Although the
model was used in this study to estimate spawners
abundance at the scale of a single river section, the time
required to build a nest and the brevity of the spawning
season (residence time estimated to 8.33 ± 1.02 days for
males and 3.57 ± 1.04 days for females) make it unlikely that
individuals will be highly mobile once spawning has begun.
Thus, implementing this model on all the spawning sites of a
system, or at least on the main sites, may allow obtaining a
spawners abundance estimate at the watershed scale by
simply summing the estimates provided by the model.
However, if additional data revealed high mobility of
lamprey across spawning sites, the model could be
complexified accordingly, with parameters such as the rate
of inter-site migration. We believe our model to be adaptable
to any nest building fish such as salmonids, only by changing
the parameter values or adding some other biological
features. Nest-building being a behaviour widely spread
among fish species (Bessa et al., 2022), this model may be an
interesting tool when no practical method exists to
accurately estimate the populations.

The model described in this paper aimed to provide sea
lamprey population managers an easy-to-use, accurate and
economical way to encompass the limits of actual methods
estimating sea lamprey populations. Even if our model needs
adapting the parameter values depending on the population
considered, we believe this framework to be a good way to
facilitate and increase data collection for this both endangered
and invasive species. The flexibility of the model architecture
also allows for adaptation to other nest-building fish species
with minor modifications.
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