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ABSTRACT Positive and unlabelled (PU) learning for multi-variate time series classification refers to build
a binary classification model when only a small set of positive and a large set of unlabelled samples are
accessible at training stage. Different from binary semi-supervised scenario in which the training set contains
labelled samples from both positive and negative classes, in the PU learning setting, only positive samples
are labelled due to cost-restriction or issues related to defining what belongs to the negative class. With the
objective to deal with this challenging task, here, we propose a new deep learning framework, referred as
DMTS-PUL. Our method has two different steps: firstly, it selects a set of reliable negative samples from the
set of unlabelled data and, successively, it iteratively enriches the training data by selecting pseudo-labels to
train a binary classification model via self-training. Experimental evaluations on several benchmarks have
highlighted the quality of DMTS-PUL w.r.t. competing approaches and the obtained findings have pointed
out the suitability of our proposal when only small amounts of positive labelled samples are available.

INDEX TERMS Positive unlabeled learning, multi-variate time series, self-training, recurrent neural
network.

I. INTRODUCTION
Nowadays, huge amount of data is being produced by a
large and diverse family of sensors (e.g., remote sensors, bio-
chemical sensors, wearable devices and IoT). These sensors
typically gather multiple variables over time, resulting in an
information flow that can be profitably structured as multi-
variate time series.

Standard supervised classification methods for multi-
variate time series classification make the assumption that
the training data is fully annotated thus requiring an apriori
labelling process which is both costly and time-consuming.
Nevertheless, in practical scenarios the speed at which time
series are collected often makes unfeasible and unrealistic
obtaining labels for both positive and negative classes [6].

On the other hand, when experts are required to pro-
vide positive and negative labels for a binary classification
task, it can happen that the concept of positive sample is
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clearly defined while the idea of negative sample is not well-
established [38]. As a consequence, only a small portion of a
so-constituted training set is labelled.

In such scenarios, the available training data is constituted
by a set of positive samples together with a set of unla-
belled ones spanning both positive and negative concepts.
Such a setting is known as learning from positive and unla-
belled (PU) data [2]. More precisely, this setting differs from
standard supervised or semi-supervised classification by the
absence of labelled negative samples in the training set.

The concept of learning from PU data fits within the
increasing interest in developing weakly supervised learn-
ing frameworks [39], such as learning from positive-only or
one-class data [16] and semi-supervised learning [14], that
relax the strict requirement related to the access of fully
annotated datasets. Learning from PU data differs from one-
class classification since it explicitly involves unlabelled data
in the learning process while, it specialises semi-supervised
learning dealing with the case in which label information
for all the classes is not available. In literature, different
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approaches were already proposed to deal with PU learning
for tabular/propositional data defining the problem as a cost-
sensitive task [7], [21], conceiving two-step strategies where
reliable negative samples are first selected and then used to
train a traditional binary classifier [10] with self-training [1]
or model the unlabeled data as negative samples with label
noise [26].

Focusing on time series data, PU learning can model real
world problems coming from application domains like mul-
timedia, medicine, aerospace, finance, manufacturing, enter-
tainment and remote sensing [27]. Reference [27] introduces
a learning approach to deal with time series information
under the lens of learning from PU data setting. The pro-
posed method is based on a clustering-based solution to
identify reliable negative samples. The clustering procedure
is coupled with euclidean distance. Finally, once positive
and reliable negative samples are available, the classification
is performed by means of one nearest neighbours classifier
(1NN). Another framework based on 1NN classifier is pre-
sented in [6]. Here, the authors propose a framework in which
the positive set is incrementally expanded by means of a
similarity measure combining both euclidean distance and
dynamic time warping [25]. Recently, [5] and [22] still high-
light the 1NN classifier, coupled with dynamic time warping,
as main solution to deal with time series classification under
the learning from PU data setting. Unfortunately, all such
approaches are mainly devoted to deal with univariate time
series while there is a lack of dedicated research studies to
cope with the complexity of multi-variate time series even
if they are becoming predominant in everyday scenarios.
Despite several research works [3], [13], [33] have high-
lighted the suitability of deep learning based techniques for
multi-variate time series, to the best of our literature survey,
no research study is yet conducted to address themulti-variate
time series classification task when only positive and unla-
belled data is available through deep learning approaches.

To tackle this point, here, we propose a new strat-
egy, named DMTS-PUL (Deep neural network-based Multi-
variate Time Series framework for Positive and Unlabelled
Learning) to cope with multi-variate time series classifica-
tion when only positive and unlabelled data is available.
DMTS-PUL is a two stage framework where, firstly, a deep
autoencoder, based on Recurrent Neural Networks (RNN),
selects and identifies reliable negative time series samples
and, secondly, an iterative pseudo labelling procedure is con-
ceived to learn a binary classification model via self-training.
The contributions of this work are: i) a new framework,
named DMTS-PUL to deal with multi-variate time series
classification in presence of only positive and unlabelled data
and; ii) a strategy to incrementally exploit unlabelled samples
to enrich the training set (both positive and reliable negative
data) via a self-training and pseudo-labelling procedure.

The rest of the paper is structured as follows: the
DMTS-PUL framework is introduced in Section II, exper-
imental settings as well as experimental evaluations are

detailed in Section III while Section IV concludes and draws
future works.

II. METHODOLOGY
In this section, we introduce DMTS-PUL (Deep neural
network-based Multi-variate Time Series framework for Pos-
itive and Unlabelled Learning), a framework to deal with
multi-variate time series classification from only positive
and unlabelled data. Figure 1 provides an overview of
DMTS-PUL.

Our framework is composed by two steps. A first step (Top
of Figure 1) dedicated to select reliable negative samples that
highly differ from those belonging to the positive set. This
step is addressed via a Recurrent Neural Network (RNN)
autoencoder that is used to model the set of positive samples.
In the second step (Bottom of Figure 1), DMTS-PUL learns a
multivariate time series classifier, based on one dimensional
convolutional neural network [9], to deal with the binary clas-
sification problem. In this stage, an iterative pseudo labelling
(IPL) procedure based on self-training is designed to enrich
the labelled data on which the model is trained on.

A. RELIABLE NEGATIVE SAMPLES SELECTION
The first step of DMTS-PUL copes with the identification of
a set of reliable negative (RN) samples. To this end, we first
model the positive set of multivariate time series via an RNN
autoencoder then, we use the learnt neural network to rank the
samples from the unlabelled set and select reliable negative
multi-variate time series data. To rank unlabelled samples, the
reconstruction error is used as measure. Samples associated
with a low reconstruction error probably belong to the posi-
tive class while, samples related to high reconstruction error
are likely to belong to the negative class. Finally, multivariate
time series with the highest reconstruction errors, coming
from the unlabelled set, are identified as reliable negative
samples.

The use of Recurrent Neural Network naturally fits our
setting since this model is especially adapted to manage
sequential data [23] and, in particular, compressing sequen-
tial information to extract useful multi-variate time series
representations [13], [17]. Themost well-known type of RNN
is the Long-Short TermMemory (LSTM) [12] model that was
introduced to learn long term dependencies as well as cope
with the vanishing and exploding gradient issues characteriz-
ing previous RNN architectures [12].

In our framework, we use the LSTM neural network to
encode and, subsequently, decode the set of positive multi-
variate time series samples with the aim to build an (autoen-
coder) model especially tailored to compress and reconstruct
multi-variate time series coming from the positive set.

Figure 2 sketches the structure of the LSTM autoencoder.
For an element at timestamps t returned by the LSTM autoen-
coder, we perform an extra linear transformation to generate
the reconstructed element x̂t , since, for regression tasks, the
softmax layer is replaced with a fully connected layer without
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FIGURE 1. The DMTS-PUL framework. It has two stages: (a) the selection of reliable negative multi-variate
time series samples and (b) the iterative pseudo labelling procedure. The former stage allows to extract a
set of reliable negative samples that are intrinsically different from the samples belonging to the positive
class. The latter stage incrementally trains a classifier from the sets of positive and reliable negative
multi-variate time series data via self-training to deal with the underlying binary classification problem.

FIGURE 2. The LSTM autoencoder structure. The model takes as input the
original time series (TS) and tries to reconstruct the same signal
(reconstructed TS). The reconstruction error is computed via the Huber
Loss.

any activation function [20]. Finally, the autoencoder model
is trained in a end-to-end manner through a reconstruction
loss computed only considering the set of positive labelled

multivariate time series:

LOSS =

∑
TS∈PHLoss(TS,Linear(LSTM − AE(TS)))

|P|
(1)

where (Linear(LSTM − AE(TS))) is the LSTM autoencoder
followed by linear transformation and HLoss is the Huber
Loss [20].

defined as follows:

HLoss(y, ŷ) =

{
1
2 (y− ŷ)

2 if |y− ŷ| < 1

1|y− ŷ| − 1
21

2 otherwise
(2)

The Huber loss exhibits the same behaviour of the mean
squared error (MSE) loss when the error is lower than a spec-
ified threshold 1 while it behaves as the mean absolute error
(MAE) loss otherwise. Additionally, it is differentiable at 0.
The Huber loss allows to avoid standard limitations related to
MAE andMSE functions as well as retains good properties of
the two standard regression losses. More in detail, differently
to MAE, it circumvents large gradient backpropagation when
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the estimated quantity is getting closer to the real value and,
conversely from the MSE loss, it is more robust to possible
outliers. In our scenario we set 1 equals to 1 for the Huber
Loss.

Once the LSTM autoencoder is trained on the set of pos-
itive multivariate time series, then, it is used on the set U
of unlabelled time series. For each multi-variate time series
TS ∈ U , a reconstruction error is computed and the samples
with the highest reconstruction errors are selected to build
the Reliable Negative set (RN ). The reconstruction error is
computed by means of the Huber Loss in order to be coherent
with the way in which the LSTM autoencoder was learnt.
Finally, we impose that the RN set size is equal to the size
of the positive sample set P.

B. ITERATIVE PSEUDO LABELLING PROCEDURE
Once both P and RN sets are available, we train a classifica-
tion model to deal with the underlying binary classification
task. More precisely, the classification model is learnt via
an iterative pseudo labelling (IPL) procedure, reported in
Algorithm 1. The objective is to iteratively enrich the set
of positive P and reliable negative RN samples exploiting
the set of unlabelled multi-variate time series data U , via
self-training.

The procedure depicted in Algorithm 1 takes as input the
set of positive samples (P), the set of reliable negative samples
(RN ), the set of unlabelled multi-variate time series (U ),
the number of iterations (K ) and the amount of samples to
be added to the positive (resp. reliable negative) set at each
iteration (l). The output of the algorithm is a binary multi-
variate time series classification model that is trained over the
enriched set of positive and reliable negative samples.

At the beginning, the classification model (Classifier) is
initialized and then trained on the set of positive P and reli-
able negative RN samples (Line 1-2). Then, the incremental
process starts (Line 4-13). At each iteration, the classification
model is applied on the set of unlabelled multi-variate time
series U and, for each TS ∈ U , a binary class distribu-
tion is obtained (Line 5). Subsequently, the class distribu-
tion jointly with the unlabelled set U , the amount of new
samples to enrich the current training dataset l and the infor-
mation about the current iteration i are taken as inputs from
the SampleSel procedure. This procedure (Line 6) selects
a bunch of new positive multi-variate time series (newP)
and the new set of reliable negative samples (RN ). Then,
the positive set of training data as well as the set of unla-
belled samples is updated (Line 7-8) and a new binary clas-
sification model is trained over the current set of positive
and reliable negative multi-variate time series samples from
scratch (Line 9-10). We underline that, at each iteration,
the set of reliable negative sample RN is completely updated
(Line 6). This is done with the objective to recover possible
mistakes done in the early rounds of the iterative pseudo
labelling procedure thus, reducing possible confirmation
bias [31].

Algorithm 1 Incremental Pseudo Labeling Procedure
Require: P (set of positive samples), RN (set of reliable neg-

ative samples), U (unlabelled multi-variate time series),
K (number of iterations), l (samples to be added at each
iteration).

Ensure: Classifier .
1: Classifier ← initModel()
2: Classifier ← TrainModel( Classifier , P, RN )
3: i← 0
4: while i < K do
5: classDistrib← Classify(Classifier , U )
6: newP, RN ← SampleSel(U , classDistrib, l, i)
7: P← P ∪ newP
8: U ← U \ newP
9: Classifier ← initModel()

10: Classifier ← TrainModel(Classifier , P, RN )
11: i← i+ 1
12: end while
13: return Classifier

Concerning Algorithm 1, two points must be defined:
firstly, the classificationmodel and, secondly, how the sample
selection procedure is implemented.

For the classification model, we base our choice on the
recent findings reported by [9]. Among several deep learn-
ing architectures for multi-variate time series classification,
the Convolutional Residual Network ResNet model proposed
in [36] has been pointed out as the best current model to cope
with the complexity of time series information through one
dimensional convolutions. Due to this fact, we choose such
model as classification backbone in our work.

The second point involves the definition of a sample selec-
tion strategy. Such a strategy, (SampleSel(·)), is mainly based
on the analysis of the class distribution outputted by the
classification model. More in detail, for each sample TS we
exploit the class distribution pd(TS) outputted by the classi-
fication model. pd(TS) is the probability distribution over the
two possible classes that corresponds to the softmax output
of the classification model regarding the sample TS. Our
strategy selects unlabelled samples on which the classifier
has the highest confidence. To this purpose, we consider
as surrogate of the confidence measure the entropy on the
classifier output. The entropy measure is defined as:

H (TS) = −
∑

c∈(P,RN )

pdc(TS)× log(pdc(TS)) (3)

This measure has already demonstrated its quality in pseudo
labelling strategies to select valuable samples in the context
of image analysis and semantic segmentation [29].

Samples with low entropy values correspond to time series
on which the classifier has high confidence in its prediction.
At each iteration of the Algorithm 1, the entropy measure is
employed to select l new positive samples (newP) and the
l × i reliable negative samples. The former will be added to
the current set of positive labelled samples while the latter
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will replace the current set of reliable negative (RN ) samples
on which the classification model will be trained.

III. EXPERIMENTS
In this section we present and discuss the experimental
evaluation we have designed to assess the performance of
DMTS-PUL. To this end, we compare DMTS-PUL with dif-
ferent competing methods over several benchmarks and we
quantitatively and qualitative inspect the behaviour of our
proposal.

A. COMPETITORS
As competitor, we consider the following methods:
• The widely-adopted PU learning approach for time
series data based on the 1NN classifier [6]. We con-
sider two variants: one based on Dynamic Time Warp-
ing [25], namely 1NN−DTW , and another one based on
Euclidean distance, referred as 1NN−EUCL.

• The probabilistic PUmethod proposed in [8]. We couple
the probabilistic framework with the Random Forest
classifier [4] with a number of internal trees equals to
300. We name this approach RF−PUL.

• The non-negative risk estimator for positive unlabelled
learning introduced in [19]. We couple the non-negative
risk estimator with the Convolutional Residual Network
ResNet model proposed in [36]. We refer to this method
as nnPU .

• A recent framework, proposed in [15], for positive and
unlabelled learning classification that leverages non-
negative risk estimator and it explicitly captures the exis-
tence of possible selection bias in the labelling process.
We refer to this approach as nnPUSB.

• The One-Class Support Vector Machine methods.
Learning from PU data can be addressed considering
only positive labelled samples. We name this approach
OCSVM .

• An ablation of our framework, where the incremental
pseudo labelling procedure is discarded. We name this
approach DMTS-PULNoIPL .

B. DATA AND EXPERIMENTAL SETTINGS
The evaluation has been carried out on seven benchmarks [9]
coming from disparate application domains and characterized
by contrasted features in terms of number of samples, number
of attributes (dimensions) and time series lengths: ArabDig-
its,1 Dordogne, ECG5000 1, HAR,2 PenDigits 1, seqMNIST3

and SpeechCom.4 All datasets, exceptDordogne – which was
obtained contacting the authors of [11], are available online.
To have a fair comparison among the different methods and
with the aim to provide a controlled scenario for the positive

1http://www.timeseriesclassification.com/index.php
2https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+

using+smartphones
3https://paperswithcode.com/sota/sequential-image-classification-on-

sequential
4https://www.tensorflow.org/datasets/catalog/speech_commands

TABLE 1. Benchmarks Characteristics.

unlabelled task evaluation, for each benchmark, we only
consider the two majority classes (the two classes with the
highest number of samples) to set up an underlying binary
classification task. The majority class is considered as posi-
tive while the second more represented class is considered as
negative class. Table 1 reports the benchmark characteristics
after the selection of the two majority classes.

For each dataset, we split the sample set in two partitions:
training and test. Each partition involves 50% of the origi-
nal benchmark. After that, the training partition is divided
again in two: the positive and the unlabelled partitions. While
the former is composed of only positive samples, the latter
contains samples coming from both the positive and the
negative classes. Due to the fact that the quantity of positive
samples can influence the behaviour of the machine learning
model, we consider increasing amount of positive samples
ranging in the set {30, 60, 90, 120, 150}. This means that,
when 120 samples are considered as positive, the rest of the
train data is treated as the unlabeled set. Varying the amount
of positive samples also permits to assess the stability of the
approaches w.r.t. the amount of (positive) knowledge it can
access. Once a model is trained, the independent test set is
used to evaluate the prediction performances.

As evaluation metric we choose the F-Measure [30]. The
F-Measure is defined as the harmonic mean between the
Precision and Recall measures and it supplies a general infor-
mation summarizing both true and false positive rates. Due to
the non deterministic nature of the sample selection process,
the obtained results are averaged over five different trials for
each method and benchmark.
DMTS-PUL is based on two different stages: (a) the selec-

tion of reliable negative multi-variate time series samples
and (b) the iterative pseudo labelling procedure. For the
former stage, the LSTM autoencoder model is trained for
300 epochs with a batch size equals to 8 and a learning rate
of 5 × 10−3 through the RMSprop optimizer.5 The LSTM
autoencoder has a number of unit equals to 128. In addi-
tion, the autoencoder model is trained via a denoising strat-
egy [24] to boost its robustness (noise is injected via a
Gaussian multiplicative noise with mean equals to 1 and
standard deviation equals to 0.05). For the second stage,
we exploit the ResNet-based classification described in [9].
To this end, we use its public available implementation.6

5http://www.cs.toronto.edu/ tijmen/csc321/slides/lecture_slides_lec6.pdf
6https://github.com/hfawaz/dl-4-tsc
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The multi-variate time series ResNet classifier is trained for
300 epochs via the Adam optimizer [18] with a learning rate
of× 10−3 and a batch size equals to 4. The same settings are
employed to training the ResNet classifiers associated to the
nnPU and nnPUSB competing methods. Furthermore, since
we exploit an iterative pseudo labelling procedure, we have
to set the number of iteration (K ) as well as the number of
samples to integrate at each step (l). In the main experiments,
we set the number of iterations equals to 3 and the number of
samples to integrate at each round (for both the positive and
the reliable negative classes) equal to 30.

Regarding the competing methods, except for 1NN −
DTW that naturally manages time series with varying length,
we perform zero padding for the ArabDigits and the Speech-
Com benchmarks. Concerning the methods based on the
one nearest neighbour classifier, following the procedure
proposed in [5], [6], and [22] where positive examples are
integrated as the process going on, we integrate the same
amount of positive samples as the one that is integrated in
the incremental pseudo labelling procedure associated to our
approach. This result in 90 new samples that are integrated
by the 1NN based methods. DMTS-PUL is implemented
via the Tensorflow 2 python library while the implementa-
tion of competing methods is based on TSLEARN [32] and
SCIKIT-learn python libraries [28].

C. QUANTITATIVE RESULTS
Figure 3 reports the results obtained on the different bench-
marks by the competing methods varying the amount of pos-
itive labelled data. We can observe that DMTS-PUL always
outperforms all the competing approaches over all the seven
involved datasets.

Considering the competitors, they almost share a similar
behaviour over all the datasets. The least effective approaches
are the ones based on the one nearest neighboors classi-
fier and the one based on the non-negative risk estimation
principle with selection bias, nnPUSB. Regarding the former
group, the ones based on the 1NN classifier, despite the high
level performances of such approach for univariate time series
classification task [5], [6], [22], they have serious issues
when multi-variate time series are considered. The nnPU
method, differently from all the other approaches, exhibits a
varying behaviour depending to the dataset. While it shows
interesting performances on ArabDigits and SpeechCom,
it achieves poor results over all the other benchamrks. The
OCSVM method, that only leverages positive labelled sam-
ples, generally exhibits a good average performance in terms
of F-Measure. Finally, on six over seven cases, the best
competing approach is represented by the Random Forest
classification method coupled with the positive and unla-
belled learning framework proposed in [8]. This approach
also shown competitive performances on the ArabDigits
dataset while it is largely far from the performances obtained
by DMTS-PUL on all the remaining multi-variate time series
datasets. Regarding the direct comparison between DMTS-
PUL and its ablation (DMTS-PULNoIPL), we can note that

FIGURE 3. Average F-Measure of the different approaches, varying the
amount of labelled data, on: (a) ArabDigits (b) Dordogne (c) ECG5000
(d) HAR (e) PenDigits (f) seqMNIST and (g) SpeechCom.

DMTS-PUL achieves general better performances than its
ablation for small amount of positive labelled data (between
30 and 90). This is particularly evident on the ArabDigits,
Dordogne and SpeechCommand benchmarks. When the size
of the available positive multi-variate time series set is above
90, the performances of the two approaches are comparable
butDMTS-PUL behaves slightly better than its ablation on the
majority of the benchmarks. In addition, we can also observe
that DMTS-PUL achieves quite stable performances no mat-
ter the amount of positive labelled data it can access. This is
not the case for the majority of the competing approaches.

The comparison between DMTS-PUL and DMTS-
PULNoIPL highlights the quality of the IPL procedure
involved in our framework. The iterative pseudo labelling
procedure makesDMTS-PULwell suited for low-data regime
when only a small amount of labelled data is available. More-
over, the obtained findings also suggested that our framework
does not require enormous volume of data to obtain com-
petitive results thus positively impacting the time-consuming
and human-effort labelling task prior to any classification
scenario.
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FIGURE 4. Sensitivity analysis of DMTS-PUL w.r.t. the K parameter with
30 positive labelled samples.

FIGURE 5. Sensitivity analysis of DMTS-PUL w.r.t. the l parameter with
30 positive labelled samples and a total of 3 iterations (K = 3).

Figure 4 depicts a sensibility analysis of our framework
varying the number of iterations in the IPL procedure.
We vary such value from 0 (no IPL procedure is performed,
these results are equivalent to the ones obtained by the
DMTS-PULNoIPL) to 7. For this experiment, a set of posi-
tive samples with a size equal to 30 is considered. Gener-
ally, as we can expect, we observe that as the number of
iterations increases, the F-Measure performances ameliorate.
The involved benchmarks are characterized by two distinct
behaviours. A first one shared by ArabDigits, ECG5000,
HAR and PenDigits. Here, the performances stack and remain
stables after three or four iterations of the IPL procedure.
Conversely, for Dordgone, seqMNIST and SpeechCommand
we see that the performances are still growing as the number
of iterations increases. This is probably due to the fact that,
while on the former bunch of datasets DMTS-PUL already
obtains high level performances (more than 95 points of
F-Measure), the second set of test cases exhibit higher com-
plexity/difficulty thus, resulting in general lower absolute
performances of DMTS-PUL with room for improvement.

Figure 5 depicts a sensibility analysis of our framework
varying the amount of samples to be added to the positive
(resp. reliable negative) set at each iteration. We vary such a
value from 10 to 50. For this experiment, we set the parameter

FIGURE 6. T-SNE features visualization of the test samples belonging to
SpeechCom considering the representation learnt from (a) the original
training data (P and RN) obtained after the first stage of our framework
(K=0) (b) after three rounds (K=3) and (c) after seven rounds (K=7) of
the IPL procedure. The initial positive labelled set contains 30 samples.

K equal to 3. We can observe two different kind of behaviour.
The first one, shared by PenDigits, HAR, ECG5000, Arab-
digits and SpeechCommand, where stable performances are
achieved starting from a value of the l parameter equals or
greater than 30. Conversely, for the remaining benchmarks,
Dordogne and seqMNIST, our framework achieves better
performances as the value of the parameter l increases.

D. VISUAL INSPECTION
Figure 6 depicts the visualization of the embeddings obtained
by the binary classification model on the SpeechCom
benchmark varying the number of iterations (K ) of the
iterative pseudo labelling procedure: no IPL procedure
(Figure 6(a)), K = 3 (Figure 6(b)), and K = 7 (Figure 6(c)).
Also in this case, the initial set P involves 30 multi-variate
time series samples.

The embeddings are obtained considering the output of the
last convolutional layer. We visualize the whole set of test
data by means of the two dimensional projection supplied by
the T-SNE method [34]. Each colour represents a different
class.

We clearly see that as the number of iterations K increases,
the cluster structure associated to the underlying data distri-
bution emerges. While the embedding visualisation related to
the classification model learnt on the P and RN sets directly
coming from the first stage of DMTS-PUL (Figure 6(a))
exhibits visual confusion among the positive and negative
classes, we can observe that the IPL procedure allows to
reduce confusions and to recover a more clear cluster struc-
ture. More precisely, we can note that, when a value of
K = 3 (Figure 6(b)) is considered, the cluster structure is
more visible. Such visual and qualitative inspection confirms
the quantitative findings we have reported in the previous
section.

IV. CONCLUSION
In this paper, we have proposed DMTS-PUL, a framework to
deal with multi-variate time series classification tasks when
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only positive and unlabelled data is available. Our framework,
named DMTS-PUL, involves two different stages: (a) the
selection of reliable negative multi-variate time series and
(b) an iterative pseudo labelling procedure to build a binary
classification model based on self-training. The evaluation on
seven real-world benchmarks has demonstrated the effective-
ness ofDMTS-PUL especially when only a limited amount of
(positive) labelled data is considered. Possible future works
can be related to: i) assess the proposed framework in more
challenging classification tasks where positive and negative
concepts are loosely separated from each other, ii) evalu-
ate recent Transformer [35] models as replacement for the
ResNet backbone and iii) adapt the proposed framework to
cope with a multi-positive unlabelled learning setting [37]
where the binary setting is extended to a multi-class scenario.
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