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How Well Do EO-Based Food Security Warning
Systems for Food Security Agree? Comparison of

NDVI-Based Vegetation Anomaly
Maps in West Africa

Agnès Bégué , Simon Madec , Louise Lemettais, Louise Leroux , Roberto Interdonato ,
Inbal Becker-Reshef , Brian Barker , Christina Justice , Hervé Kerdilés , and Michele Meroni

Abstract—The GEOGLAM crop monitor for early warning is
based on the integration of the crop conditions assessments pro-
duced by regional systems. Discrepancies between these assess-
ments can occur and are generally attributed to the interpretation
of the vegetation and climate data. The premise of this article is
that other sources of discrepancy related to the data themselves
must also be considered. We conducted a comparative experiment
of the growth vegetation anomalies routinely produced by four
operational crop monitoring systems in West Africa [FEWSNET,
GIEWS, ASAP, VAM] for the 2010–2020 period. We collected a
set of normalized differences vegetation index-based indicators (%
mean, % median, and Z-score) and proposed original methods to
analyze and compare the spatio-temporal variations of these indices
using Hovmöller representation, statistics, and spatial analysis. To
facilitate systems comparison, a classification scheme based on the
percentile rank values of anomaly indicators was applied to pro-
duce 3-class alarm maps (negative, absence, and positive anoma-
lies). Results show that, on an annual basis, the per-pixel similarity
is relatively low between the four systems [24.5%–34.1%], and that
VAM and ASAP are the most similar (70%). The reasons of the
products discrepancies come mainly from different preprocessing
methods, especially the choice of the reference period used to cal-
culate the anomaly. The negative alarm agreement classes show no
eco-climatic zoning influence, but negative alarms hot-spots were
locally observed. The negative alarm agreement maps can be a
useful tool for early warning as they synthesize the information
provided by the different systems, with a confidence level.
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I. INTRODUCTION

W ITH 15% of the total population affected by under-
nourishment, food insecurity issues remain prevalent

in West Africa [1]. High population growth, household food,
and livelihoods-based primarily on low agricultural production
due to low use of external inputs and rainfed conditions, and
high rainfall variability are among the principal drivers of food
insecurity. In addition to these factors, the security and health
risks experienced by the region, have been exacerbated in recent
times by the COVID-19 pandemic [2], making the agricultural
production systems particularly fragile and fluctuating. Thus, the
conjunctural aspects of agricultural production are combined
with the structural aspects of the inherent vulnerability of the
populations. Since the major droughts of the early 1970s, several
global early warning systems (EWSs) for food security have
been developed in the region to enable decision-makers to antic-
ipate crises and to assist in planning emergency measures by tar-
geting populations and/or areas at risk [3]. Since 2016, the Group
on Earth observations, global agricultural monitoring [4] has
published monthly GEOGLAM crop monitor for early warning1

(CM4EW) bulletins that reflect an expert consensus among the
main EWSs on crop growing status and conditions for the main
crops in countries considered most at risk of food insecurity. To
reach a consensus, the international organizations in charge of
the various EWSs meet monthly to share their analyzes of crop
conditions based primarily on EO data, agro-meteorological
model outputs in addition to national reports field data and
their own expertise, and discuss assessment discrepancies to
ultimately reach a final conclusion on crop conditions [5]. The
final consensus assessment is based on the CM4EW classifi-
cation system comparing current crop conditions to the 5-year
average. Classifications include exceptional, favorable, watch,
poor, and failure. While there is often agreement in crop condi-
tions assessments between organizations, discrepancies between

1[Online]. Available: https://cropmonitor.org/
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Fig. 1. Example of discrepancy map on the maize crop conditions in West
Africa, as reported by two EWSs (FEWS NET and GIEWS); Source: Courtesy
of GEOGLAM Crop Monitor.

organizations can occur when there is conflicting information
from differing sources [5] (see Fig. 1); in areas where little
reliable information is available from the field, priority is given to
information that comes from converging remote sensing-based
sources.

In these EWSs, satellite information is mainly used to derive
vegetation index anomalies from low spatial resolution image
time series to serve as proxies of crop health and status. The
normalized differences vegetation index (NDVI) is the primary
vegetation index for monitoring crop conditions. To this end,
the NDVI value of the current compositing period (8-day or
10-day generally) is compared to the average NDVI value of the
same period calculated over the previous years, or to what is
assumed to be a normal situation, to provide an NDVI anomaly
that can be used to track crop growing conditions throughout the
season. These NDVI anomalies are used to draw conclusions on
the vegetation status and potential impacts on agricultural yields
and production.

In their review of the current operational global and regional
agricultural monitoring systems, Fritz et al. [6] identified differ-
ent gaps in data and methods. Because knowing which product
to use in an environment where an increasing number of prod-
ucts are available remains a challenge, they recommend better
understanding of the differences between different input datasets
(precipitation and vegetation indices), in particular where these
datasets have discrepancies, and to develop tools for automated
comparison. The study presented in this article is in line with
this recommendation and proposes, as a preliminary analysis,
a comparative experiment of the growth vegetation anomalies
produced by the crop monitors of the main EWSs in West Africa
for the 2010–2020 period. To this end:

1) we collect a set of NDVI-based vegetation growth anomaly
indicators (one per EWS) and develop a spatio-temporal
approach to compare the extreme values;

2) we analyze and compare the spatio-temporal variations of
these indices through space (with and without a cropland
mask) and time (with and without a crop calendar masks),
using statistics and spatial analysis tools.

The rest of this article is organized as follows. In the following
section, we present the background of our study through a
short review of the crop monitoring systems in West Africa. In
Section III, we present the study area, the datasets used, and the

outlines of the methodology adopted. In Section IV, we present
the statistical comparison between the systems and the systems
agreement maps, which are then discussed in Section V. Finally,
Section VI concludes this article.

II. SHORT REVIEW OF THE CROP CONDITIONS MONITORING IN

THE EWSS IN WEST AFRICA

A. Agricultural Monitoring Systems in West Africa

In a recent study, Nakalembe et al. [7] reviewed the
application-ready satellite-based agricultural monitoring sys-
tems covering West Africa. Four of these systems are partners of
the GEOGLAM CM4EW [5], and are included in this study. The
famine early warning systems network (FEWS NET) developed
by USAID, the global information and early warning systems
(GIEWS) of FAO, the Seasonal Monitor of the World Food
Program (VAM), and the European anomaly hot spots of agri-
cultural production (ASAP) system of the joint research center
(JRC). However, because of their importance for West Africa,
it is worth mentioning three other crop monitoring systems in
the region: global agricultural monitoring (GLAM) of NASA,
the University of Maryland, and the USDA Foreign Agriculture
Service [8], the AGRHYMET system [9] of the permanent
interstate committee for drought control in the Sahel (CILSS)
that relies mainly on precipitation data and agrometeorological
modeling, and CROPWATCH [10] of the RADI (Chinese In-
stitute of Remote Sensing and Digital Earth) that reports crop
(maize, rice, wheat, and soybean) conditions for Nigeria. These
systems are not included in the study because, they either provide
incomplete regional coverage, or the remote sensing data they
use are shared with the previously mentioned systems.

B. Crop Conditions/Anomaly Indicators

The EWSs crop monitors use different data sources, but they
all use optical data (NDVI-based) that provide information
on crop development and vigor. The NDVI time series are
used to calculate vegetation growth anomaly indicators that
are then classified to produce vegetation anomaly maps that
are published in regular bulletins and geoportals. These
vegetation anomalies, in conjunction with other data sources
(meteorological data, crop model simulations, field information,
national/regional information) are used to provide a basis
for the convergence of evidence of agricultural conditions
that comprise the consensus based assessments under the
GEOGLAM CM4EW [5], [11]. In some systems, additional
data such as conflicts, market prices, and implementation of
policies are used together with the agricultural conditions to alert
national and international decision-makers on developing food
security concerns impending food crises. Table I summarizes
the characteristics of the main vegetation growth anomaly
products used in the crop monitors of the main EWS of West
Africa. In this article, only one NDVI-based anomaly indicator
per system is used for analysis and comparison.

III. MATERIAL AND METHODS

Fig. 2 shows the flowchart of the data processing and analysis.
Our work starts with the collection of the datasets of NDVI
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TABLE I
DETAILS OF THE EO-DERIVED VEGETATION ANOMALY PRODUCTS USED IN THE CROP MONITORS OF THE EWSS IN WEST AFRICA; ONLY THE NDVI-BASED

ANOMALY INDICATORS IN BOLD ARE USED IN THIS STUDY

Fig. 2. Flowchart of the approach.

anomaly indicators of four EWSs, for the West Africa region
over the 2010–2020 period. Then, to make values comparable in
space and time, the anomaly values of the different products are
harmonized over the whole area and period through percentile
calculation to produce anomaly maps (nine classes) and alarm
maps (three classes). These maps are then analyzed and com-
pared at different spatial (national and regional) and temporal
scales (annual and 11-year period), using statistics and spatial
analysis tools.

A. Study Area

The study area is between 4.4◦N and 18◦N (the North Sahel
limit) and 19◦W–24.5◦E, including 17 West African countries
(see Fig. 3). West Africa’s climate is controlled by the north-
south movement of the Intertropical Convergence Zone (ITCZ).
As a result, West Africa’s precipitation regime is characterized
by latitudinal belts of decreasing rainfall and wet season length.
In the Guinean region, precipitation is abundant year-round with
a bimodal pattern. As latitude increases, the amount of precipi-
tation decreases, as well as the duration of the monomodal wet
season. However, this latitudinal pattern is somewhat modified

Fig. 3. Climate [23] and farming system [24] zone maps in West Africa.

by altitude, with higher mountain elevations (e.g., the Guinean
Highlands and the Jos Plateau in central Nigeria), receiving more
precipitation. The annual precipitation variability also becomes
more significant with latitude, with a coefficient of variation
around 0.3 in the Guinean region, to over 1.4 in the Sahel [21].
As throughout West Africa crops are mainly rainfed, the farming
systems broadly follow the rainfall latitudinal gradient, with a
system dominated by agro-pastoral millet and sorghum crops in
the semiarid Sahel, by cereal-root crop mixed in the Soudanian
part, by root crops in the Soudano-Guinean part, and by humid
low-land tree crop in the Guinean part. According to Dixon [22],
ten farming systems among the 16 possible over the continent
are present in West Africa, illustrating the high diversity of the
agro-environments in the study area.

Over the last decades, the study area experienced many en-
vironmental changes. In the Sahelo-Soudanian zones, since the
drought period of the 1980s, an alternation of dry and wet years
in the mid-1990s, followed by a rain resumption, is observed
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Fig. 4. Z-score of the annual precipitation (blue bars) calculated for the
Soudano-Sahelian part (11.25◦N and 13.75◦N) of the study site (Source
of data: GPCPMON v3.1.), and fraction of forest loss (orange line) calcu-
lated for the Guinean part (0◦ and 10◦N) of the study site (Source of data:
Hansen/UMD/Google/USGS/NASA). The colored horizontal lines indicate, for
each system, the period of reference used to calculate the NDVI anomalies. The
light blue area corresponds to the studied period (2010–2020).

(see Fig. 4); these variations seem to be linked to the surface
temperature of the North Atlantic Ocean [25]. All over the study
area, land-use changes are also observed [26], [27], in particular
in the Guinean part characterized by an increasing deforestation
rate since the 2010s (see Fig. 4).

B. Datasets Collection

1) Anomaly Indicator Datasets: Among the anomaly indi-
cator datasets available for each system (see Table I), we chose
only one anomaly indicator per system to simplify the analysis.
Similarly, we restricted the study period to 2010–2020, which
we felt was a good compromise between the amount of data
to be processed and the inclusion of varied climatic conditions.
The indicators were collected for the entire study area at their
original spatial and temporal resolution (see Table I).

1) The anomaly indicators for the ASAP (NDVI z-score from
the consolidated archive) and VAM (% of mean NDVI)
systems were provided, respectively, by JRC and WFP.

2) FEWS NET anomaly indicators (% of median NDVI) were
downloaded directly from the FEWS NET website.

3) GIEWS anomaly classes (9 classes built on % of mean
NDVI) were downloaded from the GIEWS website. The
anomaly values are not available, only the classes can be
downloaded.

2) Other Crop Datasets: To focus the analysis on agricultural
production, we constrained the data analysis in space and time,
by using a cropland mask and a crop growing season mask,
respectively. Among the readily accessible global, continental,
and West African cropland masks [7], we used the Global
Land Cover—SHARE [28] released in 2014 and composed
of land cover datasets produced with satellite data acquired
between 2008 and 2012. GLC-SHARE provides a set of 11
major thematic land cover classes among which the cropland
cover class was used in this study. The spatial resolution of this
dataset is 1 km, and the pixel value indicates the percentage
of cropland within the area. We use a threshold of 10% to
transform the dataset to a boolean cropland map (i.e., cropland
= 1 if pixel > 10%, cropland = 0 else). The crop growing
season was calculated from the phenological indices provided

by ASAP [17], which used an approach based on thresholds
on the green-up and decay phases [29]. The start and end of
a season was estimated through the historical average of the
smoothed NDVI over the period 2002–2016 [18]. Two growing
seasons were considered and maps were provided at a 1 km
spatial resolution.

C. Dataset Processing

Data processing consists of the following:
1) anomaly data spatial aggregation at a common scale;
2) harmonization of the anomaly indicators;
3) classification of the harmonized anomalies.
Anomaly products are at different spatial resolutions (see

Table I). To this end, all maps used in this study were resampled
to a 1 km spatial resolution according to the ASAP product grid.
To preserve the original anomaly values in the unaltered scene,
the nearest neighbor resampling method was applied. Then, to
ease the comparison and analysis of the different NDVI anomaly
indicators used in the four crop monitoring systems (% mean,
% median, and Z-score), a classification scheme was applied in
two steps.

1) First, to harmonize the indicators, for each system the per-
centile rank values of anomaly indicators were computed
from the entire dataset (all pixels of the study area, and all
dates over the 2010–2020 period).

2) Then, 9-class (for qualitative comparison) and 3-class (for
quantitative analysis) maps were produced.

a) The 9-class (referred hereafter as the Anomaly classes)
correspond to seven 10-percentile classes between the
15th and 85th percentiles, plus two extreme classes (cor-
responding to the 15th percentile or less, and to the 85th
percentile or more), and is close to GIEWS nomenclature.

b) The 3-class (referred hereafter as the Alarm classes) cor-
respond to the two extreme percentile classes plus one
median class (15th–85th percentiles); these three classes
are labeled “negative alarms,” “positive alarms,” and “no
alarm,” respectively. All the processing was performed
using GDAL and Rasterio libraries with Python 3.9.

D. Dataset Comparison and Analysis

1) Spatio-Temporal Representation of the Anomaly Classes:
Because of the marked latitudinal gradient of the vegetation
in the West African region, a latitude-time Hovmöller diagram
representation [30] was adopted to plot the 9 classes of NDVI
anomalies. Furthermore, in order to be more consistent with
agricultural production, we also produced spatially and tempo-
rally constrained Hovmöller diagrams using the cropland mask
and the crop growing season mask.

2) Statistical Comparison of the Alarm Maps: For the spatial
and temporal comparison of the anomaly products, a similarity
metric is used. It corresponds to the proportion of pixels assigned
to the same alarm class (i.e., for negative, positive, and absence
of alarm) between systems. Similarity metrics were computed
for different time steps (year, and 11-year period), and different
system sets (pairwise, and 4 × 4). To synchronize the 8-day
VAM product with the 10-day products (see Table I), we used the
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Fig. 5. Workflow of the production of the alarm agreement maps.

closest date (leading to a maximal shift of 2 days between VAM
and the other products). In addition, Spearman’s rank correla-
tion was calculated for pairwise systems comparison. Finally,
the yearly percentage of the negative and positive alarms was
computed, and the 2010–2020 trends of the different products
were compared.

3) Production of Alarm Agreement Maps: Complementing
the statistical comparison of the products, we produced agree-
ment maps of alarm classes between the four systems at the
regional and national scales. This was conducted in the following
three steps.

a) We computed annual and 2010–2020 aggregated alarm
maps for each system, by calculating first the occurrences
of the positive and negative alarm classes over each sq.
km cropland and over the considered period, and then by
applying a top 15% classification scheme on the number
of occurrences.

b) To reduce and filter out the errors related to georeferencing
and rescaling the products from different spatial resolu-
tions, a 3 × 3 majority filter was applied to the aggregated
maps of the four systems.

c) Finally, the filtered maps were merged to produce the
agreement maps. These latter were prepared according to
a classification scheme [6], [31] in which three levels of
alarm class agreement are distinguished: Low agreement
(pixels where two of the four systems are in agreement; it
is possible that the other two pixels are identical to each
other, no distinction was made); high agreement (pixels
where three of the four systems are in agreement) and full
agreement.

This process summarized in the Fig. 5 allows us to enhance
spatial patterns of the level of agreement.

IV. RESULTS

A. General View

The spatial and seasonal variations of the harmonized
crop growth anomalies are represented by the time-latitude
Hovmöller diagrams in Fig. 6(a) (all data considered) and

Fig. 6. Hovmöller (latitude-time) 2010–2020 plots for the study area (longi-
tudes 19◦W to 24.5◦E), and (a) four crop monitors (1 km resolution) for all pixels
and dates, and (b) for the cropland pixels and the growing season dates only.
The colors represent the classes of harmonized vegetation growth anomalies.

Fig. 6(b) (after application of a cropland and a crop calendar
masks) for the four crop monitors.

For the whole area and years [see Fig. 6(a)], we notice:
a) large spatio-temporal discrepancies, with the extreme

classes being strongly represented for FEWS and VAM,
and less represented for ASAP and GIEWS;

b) in terms of spatial patterns, we observe that the strong
negative anomalies are concentrated in the Guinean and
Soudano-Guinean regions (<11◦N) for FEWS NET, in
the Soudano-Guinean and Soudanian regions (between
11◦N and 14◦N) for VAM. Positive anomalies are also
particularly present in the Soudanian region for VAM;

c) in terms of temporal patterns, GIEWS displays higher
frequency of intermediate classes (25%–75% percentiles)
than the other systems.

After masking the cropland and growing season masks [see
Fig. 6(b)], we notice:

a) the spatio-temporal discrepancies between the systems
are less marked than when all the pixels and dates are
considered. The global spatio-temporal variability of the
NDVI anomalies is rather consistent between the systems
(in particular the VAM and ASAP systems), even if the
intermediate classes seem to be more represented in the
GIEWS system compared to the others;

b) as expected, we observe a monomodal annual cropping
season in the Sahel and Soudanian regions, and a bimodal
season in the Soudano-Guinean and Guinean regions. This
Hovmöller representation permits to better analyze the
crop conditions during the growing seasons; for instance,
in the North of the study area, 2012 and 2020 present
good conditions all along the season, while 2017 presents
a good start and a bad end of the season. In the South
of the study area, the two cropping seasons can display
very different conditions within the same year—such as
observed in 2012 for VAM, and 2018 for GIEWS—with
bad conditions during the first season, and good conditions
during the second.
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TABLE II
ANNUAL SIMILARITY INDICES (EXPRESSED IN PERCENTAGE) OF THE 3-CLASS

ALARM MAPS OF THE FOUR SYSTEMS; THE SIMILARITY INDICES ARE

COMPUTED FOR THE WHOLE STUDY AREA AND ALL COMPOSITING DATES

(“ALL PIXELS”), FOR CROPLAND AND ALL DATES (“CROPLAND PIXELS”), AND

FOR CROPLAND AND CROP GROWING DATES (“CROPPED PIXELS”)

TABLE III
ANNUAL SIMILARITY INDICES (EXPRESSED IN PERCENTAGE) PER ALARM

CLASS IN THE FOUR SYSTEMS; ONLY CROPLAND PIXELS AND THE CROP

GROWING SEASON ARE CONSIDERED

TABLE IV
PAIRWISE ALARM CLASSES SIMILARITY BETWEEN THE FOUR SYSTEMS

(EXPRESSED IN PERCENTAGE), CALCULATED FOR THE 2010–2020 PERIOD, FOR

CROPLAND PIXELS, AND DURING THE CROP GROWING SEASON

B. Statistical Comparison of the Alarm Maps

1) Four Systems Comparison: The similarity measure indi-
cates the percentage of pixels with the same alarm class in the
four systems (either positive, negative, or absence of alarm).
Results in Table II show that, on an annual basis, the per-pixel
similarity is relatively low, between 19.6% and 34%. This agree-
ment increases when a cropland mask is used (5.7% average
gain), and when a cropland and a crop calendar masks are used
(3.1% average gain).

A deeper analysis of the four systems similarity (see Table
III) indicates that the similarity percentage is mainly due to the
“no alarm” class (between 19.60% and 32.33%), while only
0.28%–3.60% of the pixels are similar in terms of negative
alarms, and 0.67%–5.02% are similar in terms of positive alarms.
These low alarm similarity values must be brought back to the
mean percentage of the positive and negative alarms proportions,
which are each around 15% by construction.

In the following sections, only the cropland pixels and the
growing season dates will be considered for analysis and com-
parison.

2) Pairwise System Comparison: The pairwise comparison
conducted over the 2010–2020 period (see Table IV) indicates
that the most similar systems in terms of alarm classes are
the VAM and ASAP with around 70% similarity, followed
by the ASAP-FEWS NET pair (around 61% similarity). The
most divergent systems are FEWS NET and GIEWS (around
52% similarity). The conclusions are identical when using a
Spearman rank correlation test (see Table V).

3) Temporal Comparison: Fig. 7 indicates the mean annual
percentage of negative [see Fig. 7(a)] and positive [see Fig. 7(b)]
alarms over the study area. As expected, the values are around

TABLE V
PAIRWISE SPEARMAN RANK CORRELATION BETWEEN THE FOUR SYSTEMS,
CALCULATED FOR THE 2010–2020 PERIOD, FOR CROPLAND PIXELS, AND

DURING THE CROP GROWING SEASON

Fig. 7. Annual evolution of the percentage of (a) negative and (b) positive
alarms calculated for the four EWSs, over West Africa and the 2010–2020 period;
only cropland pixels and values during the crop growing season are considered.
See text for more explanations.

15%—due to the methodology used to define the alarm classes—
but the annual variability appears to be rather high, between 6.4%
and 28.1% for the negative alarms, and between 5.1% and 33.3%
for the positive alarms. Overall, VAM and ASAP show similar
interannual patterns with close values of negative and positive
alarm percentages and high interannual variability. FEWS NET
and GIEWS, on the other hand, follow similar temporal patterns
characterized by low interannual variations.

Considering the trends, the Pearson statistical test indicates a
significant increase of the negative alarms for FEWS NET (p-
value = 0.015), and a significant increase of the positive alarms
for ASAP (p-value = 0.038). All other trends are not significant
at a 95% confidence level. However, we observe for all systems
an increase of the positive alarms for the last 3 years (2018,
2019, 2020) that was already visible on the Hovmöller diagrams
(see Fig. 6).

C. Agreement Maps

1) 3-Alarm Classes: Agreement maps between the alarm
products derived from the four systems were produced for each
year (see example of the year 2010 in Fig. 8(a); maps for the other
years are provided in Appendix A), and for the whole 2010–2020
period [see Fig. 8(b)]. For the whole period, we observe about
28% of low agreements, and 72% of high and full agreements.

We then calculated the distribution of the anomaly classes
agreement per country (see Fig. 9). Surprisingly, we observed
no clear geographic pattern. High and full agreements are found
in both some Sahelian (Senegal and Mali; >75%) and Guinean
(Guinea and Gambia; >85%) countries, and, at the opposite,
low and no agreement are found in other Sahelian (Mauritania;
39.7%) and Guinean (Sierra Leone; 46.7%) countries.

2) Negative Alarm Classes: We then focus on the negative
alarm class, as it corresponds to areas that would require special
attention for potential negative cropping outcomes and food
security concerns. Fig. 10(a) shows the example of the 2010
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Fig. 8. Agreement map of the alarm classes (no alarm, negative and positive
alarms) between the four systems, calculated for the cropland and the crop
growing season only (see text for methodology) (a) for 2010 and (b) for the
2010–2020 period.

Fig. 9. Distribution of the agreement classes (low, high, and full agreement)
between the four systems, calculated by West African country for the 2010–2020
period. The countries are ranked in (high + full) agreements descending order.

negative anomaly agreement map between the four systems
(maps for the other years are provided in Appendix B). The
negative class represents a small percentage of the area (by
construction, around 15% of the area), but with clear spatial
patterns. When integrated over the 2010–2020 period [see Fig.
10(b)], the spatial patterns of the negative alarms appear more
clearly, with a score of 60% of high and full agreements between
the systems (and 40% of low agreement).

When the 2010–2020 negative alarm agreement classes are
calculated per country (see Fig. 11), we observe that Nigeria is
the most consistent country, with 67.3% of full and high agree-
ment, while Liberia and Sierra Leone are the least consistent
countries with 100% and 96% of low agreement, respectively.
It is also worth noticing that Guinea–Bissau shows no negative
anomalies.

Fig. 10. Agreement map of the negative alarm class between the four systems,
calculated for the cropland and the crop growing season only (see text for
methodology), and (a) for 2010, and (b) 2010–2020 period. The grey area
corresponds to the cropland.

Fig. 11. Distribution of the negative alarm class agreement (low, high, and
full agreement) between the four systems, calculated by West African country
for the 2010–2020 period. The countries are ranked in (high + full) agreements
descending order.

V. DISCUSSION

A. Comparison of the Anomaly Products

1) Unexpected Discrepancies Between the Systems: Because
of the use of the same EO data (except for GIEWS), one would
expect large similarities between the NDVI anomaly maps. The
different results obtained show that it is not the case, both in
space and time. The Hovmöller representation and the statistical
analysis are the two tools used to characterize and quantify the
discrepancies between systems.

Thanks to the north-south eco-climatic gradient in the re-
gion, the Hovmöller diagram has proven to be an interesting
tool to illustrate the spatio-temporal variability of the NDVI
anomalies in the region. It indicates a contrasted spatio-temporal
distribution of the anomaly classes according to the systems,
with extreme anomaly classes largely present for FEWS NET
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(negative classes in the Guinean region) and VAM (both positive
and negative classes in the Soudanian region). However, after
filtering the pixels and dates that are outside the cropland and
the growing season, respectively, the Hovmöller diagrams of
the different systems seem more comparable. This effect is
confirmed by the statistical comparison of the 3-alarm classes
that show a similarity increase between the four products (from
27% to 30% on annual average).

The statistical comparison of pairwise systems also confirms
the interpretation of the Hovmöller diagrams, with about 70%
of similarity between the alarm classes of ASAP and VAM
(Spearman correlation of 0.25), and only 52% of similarity
between the alarm classes of GIEWS and FEWS (Spearman
correlation close to 0).

2) Potential Sources of Discrepancies: Despite the fact that
NDVI time-series data forms the core of all systems, we showed
that the NDVI anomalies’ spatial and temporal patterns show
strong discrepancies that need to be understood. The anomaly
products processing chains of the different systems can give el-
ements to explain the differences. First, the NDVI data were cal-
culated from reflectance data acquired by different EO satellites,
MODIS for three systems, and NOAA-AVHRR and METOP
data for GIEWS. This could partly explain the low similarities
and correlations obtained between the products of GIEWS and
those of other systems. Second, the algorithms used to smooth
the NDVI time series differ between the crop monitoring sys-
tems. ASAP and VAM use the same algorithm, which could
explain why they are quite similar, while the other systems use
different preprocessing methods (see [32] for details about the
eMODIS products used in FEWS NET).

It is easy to understand the importance of such algorithms, as
cloud cover is still an important issue in the region. This point
is particularly important for the analysis conducted during the
crop growing season (the use of a crop calendar mask decreases
the EWSs similarity measure calculated for the cropland; Table
II), and in the coastal area of the Guinean countries, where large
discrepancies are observed.

Third, to compare the systems, the anomaly indicators were
spatially aggregated at a common resolution, which can con-
tribute to noise in the information. However, the proximity of
the ASAP (1 km) and VAM (5 km) systems indicates that the
native spatial resolution of the products is not a major source
of discrepancy. Finally, the vegetation anomaly indicator could
play an important part in the system discrepancies. It is not so
much the formula used to calculate the indicator, but rather the
period chosen for the reference. Thanks to the harmonization
carried out, the formula of the indicator, although different
(z-score for ASAP and percentage deviation to the mean for
VAM), should not have an important weight, while, on the
contrary, the reference period can have an important impact on
the value of the anomaly.

The reference period varies between 12 years, for VAM, to
30 years, for GIEWS. Yet, considering the high demographic
growth and the rainfall variations in West Africa, important land
use and vegetation conditions changes have occurred over the
last decades [26], [33], in particular an increase of vegetation
cover in the Northern part of the area, due to increasing annual
rainfall [34], [35], and a decrease of vegetation cover in the

Southern part, mainly due to the deforestation [27]. These land
processes occur at different time periods and places, introducing
variations in the NDVI reference used to calculate the anomalies,
and consequently in the anomaly values.

B. Agreement Maps, a Decision Support Product?

In addition to the quantification of the similarity between
products for the extreme anomaly classes, this study aimed
to provide alarm maps at regional and country scales that are
qualified by the agreement score (full, high, and low). We
produced agreement maps for the 3 alarm classes confounded,
and for only the negative alarm class that, a priori, is the most
important class for food security and early warning. The maps
were postprocessed with a 3 × 3 majority filter. This smoothing
strategy allows for a more general overview of spatial trends
and eases visual interpretation. This also filters out the noise
due to the resampling of the products with varying resolutions
and errors in georeferencing.

Regarding the alarm maps (3 classes), 28% of low agree-
ment were observed in contrast to the 72% of high and full
agreements for the whole considered period (2010–2020) and
cropped pixels. As previously mentioned, these agreements are
higher than the scores of the pixel-per-pixel similarity. This is
explained by the classification scheme used to aggregate the
10-day period alarm maps. Indeed, classifying the pixels with
the top 15% occurrence of negative and positive anomalies as,
respectively, negative and positive alarm classes increases the
similarity between the products for a given period. We observed
on the maps that low agreements are mainly located in the coastal
area of the Guinean countries (Sierra Leone, Ivory Coast, Ghana,
Benin, Togo, and Nigeria). The high presence of clouds in this
area may bring some differences in the vegetation alarm maps
computed from the different products, with different temporal
filtering.

For the negative alarm maps, the agreement between systems
is less with about 40% of low agreement class, and 60% of
cumulated high and full agreement class, for the whole pe-
riod and area. This result was expected as the no-alarm class
represents a large percentage of the total similarity between
systems. The negative alarm agreement results show no eco-
climatic zoning influence at the country level, but we observed a
spatial pattern of negative alarms with hot-spots in the Tillabery
(South West Niger), East and Center-East (Burkina Faso), and
Alibori (North Benin) regions, and two large areas in Central
and North-East Nigeria, for the 2010–2020 period. The annual
and decadal negative alarm agreement maps can be a useful
tool for early warning, by helping to prioritize the emergency
measures. These maps synthesize the information provided by
the different crop monitoring systems and provide information
on the confidence level associated with the negative anomaly
through the agreement class. However, we should keep in mind
that negative alarms are not always synonyms of a decrease in
agricultural production. Land cover changes inside a pixel, such
as deforestation in the southern part of the study area, can result
in a decrease of NDVI without necessarily being linked to a
decline of crops conditions in the area. At the opposite, pixels
classified as positive alarms can correspond to a decrease of
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agricultural production in particular in the Sahel region where
the abandonment of cultivated land results in an increase of
NDVI because natural vegetation has higher NDVI than crops
in this region [36]. So, it is important to keep in mind that land
cover or land use changes can induce NDVI anomalies that are
not linked to crop conditions anomalies. Data on land cover
dynamics, such as the forest cover change [37] or the cropland
change [38] maps, should, thus, be included in the assessment
of crop conditions.

C. Study Limitations

Despite important methodological and thematic contribu-
tions, we are aware that the study has certain limitations related
to both the datasets and the comparison method used.

In terms of datasets, the first limitation is that only one type of
NDVI-based anomaly products was considered, while other crop
conditions indicators exist (see Table I). NDVI shortcomings
are well known (atmospheric noise, saturation for high levels
of biomass, etc.), but NDVI remains a robust index [39], well
correlated to the active vegetation amount, and available on
all (optical) satellite platforms from the beginning of EO. The
second limitation is that the NDVI-based anomaly products used
in the study are different in nature (anomaly classes for GIEWS,
and anomaly values for the other systems).

In terms of data processing, the spatial and temporal re-
sampling of the initial products could have introduced some
bias. Likewise, the alarm classes are defined using an arbitrary
threshold of 15% of the extreme percentiles, and the results
could have been different with another threshold value. Another
method limitation is the use of a unique cropland map for the
whole period of analysis (11 years); it is well known that for the
last four decades, West Africa has experienced large land use
changes fueled by high demographic growth, with an increase
of cropland, replacing and fragmenting savannas, woodlands
and forests [27]. In the same way, the use of a unique grow-
ing season calendar for the whole study period is problematic
because West Africa is well known for the high variability of
its rainfall pattern and therefore crop phenology; Furthermore,
this calendar is derived from land surface phenology metrics,
and even when considering only cropland pixels (that are in
reality mixed cropland-natural vegetation pixels), it is improper
to consider it as a crop calendar.

Finally, the main limitation of the study remains that we only
compare, not order, the NDVI anomaly products. The product
hierarchization was not part of the study, but should be a priority
for the next studies. Research perspectives on this topic are
presented in Section VI.

D. Future of EO-Based Crop Monitors

While NDVI anomalies are the focus of this article, the EWSs
use other types of remote sensing variables to assess the crop and
rangeland conditions, such as thermal infrared data to compute
the temperature conditions index, brightness temperature to
derive soil moisture or precipitation data to compute the water
requirement satisfaction index (GWSI). Likewise, high spatial
resolution satellite time series (Sentinel 1 and 2, and Landsat)

are already used in some EWSs to focus on particular areas. For
example, ASAP2 offers the possibility to access and analyze
these high resolution data at the field level, but the full capacity
offered by such data is not fully and systematically exploited.
The arrival of new data in the field of Earth observation and the
enormous progress in data processing pave the way for a new
generation of EWS. At short-term, for national and regional early
warning products based on vegetation anomalies, improvements
are expected to come mainly from the methods, more than from
new Earth observation mission, because the new EO systems
are too recent to offer sufficiently long reference periods (5
years of data available so far for Sentinel-2 constellation, for
example). Because of NDVI limitations (atmospheric noise,
saturation for high levels of biomass, etc.), other spectral indices
could be tested such as EVI that is thought to have a greater
sensitivity to high density canopies, and a lower sensitivity to the
atmosphere, but whose benefits compared to the NDVI are ques-
tioned in the literature (e.g., [40], [39]). Other spectral indices
including short-wave infrared band (e.g., NDWI, NDMI), for
estimating vegetation water content, or green band (e.g., GCVI,
GNDVI) for estimating the vegetation nutrient concentration,
could also be tested in West Africa where water and nutrients
are limiting factors of crop productivity. Another short-term
improvement of the crop monitors, could be the use of agro-
ecological zones (e.g., GAEZ; [41]) to calculate and classify
the anomalies percentiles. Zone-specific alarm class maps could
be more meaningful to assess potential impacts on agricultural
yields.

At mid-term, significant advances are expected from the fol-
lowing.

a) The ancillary products, such as more accurate cropland
and crop group masks using Sentinel data, and more
accurate detection of the growing season (start and end
of season)

b) Data processing, in particular improved image time series
preprocessing (NDVI smoothing or gap-filling), real-time
processing, and cloud-computing.

c) Improved data and products access (cf. new opportunities
offered by initiatives such as the africa regional data
cube/digital earth africa).

d) Improved decision support products, more readable by
decision makers (cf. GEOGLAM).

Coarse-resolution crop monitoring systems are essential for
decision-makers, and we are not convinced that vegetation
anomaly maps produced at a higher spatial resolution would be
better for national or regional crop monitoring as, to cite [20],
it is very difficult for a government to take actions at a granular
level lower than the district or municipality, such as a farm or
commune. The future for EO crop monitoring will certainly
include data from the next generation of hyperspectral and
thermal satellites with higher spatial resolution and revisit time.
Finally, all these improvements will benefit from advancements
in computer science that will help to combine heterogeneous
data, such as EO data, crop model simulations, numeric media

2[Online]. Available: https://mars.jrc.ec.europa.eu/asap/hresolution

https://mars.jrc.ec.europa.eu/asap/hresolution
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data, and crowd-sourced data in order to support regional and
national EWSs.

VI. CONCLUSION

GEOGLAM, the GLAM system of systems, ensures the
coordination and information sharing of the regional and na-
tional systems [42]. The coordination under the GEOGLAM
CM4EW requires comparing and integrating crop conditions
assessments produced by systems that integrate vegetation and
climate anomalies, ground observations, and other information
sources and synthesizing these efforts into a consensus-based
assessment that represents the agreement of the EWSs involved.
Discrepancies between these assessments can occur, for many
reasons [5]. One source is certainly the interpretation of these
data, which varies with the data source and the expert sensitivity.
Our study reveals that, upstream of the crop conditions mapping,
the different NDVI anomaly maps produced and used by the
different systems are surely another source of discrepancy.

The main contributions of this study are methodological and
thematic. In terms of method, to the best of authors’ knowl-
edge, it is the first study to compare the vegetation anomalies
component of the CM4EW systems. We developed an original
approach to visualize and compare the vegetation anomalies both
in time and space. In terms of thematic, this study reviewed
the crop monitoring systems implemented for West Africa, in
particular the NDVI anomaly products used, and identified po-
tential reasons that could lead to discrepancies in crop conditions
assessments. These reasons are multiple, but seem to come
mainly from different preprocessing methods used, especially
the NDVI smoothing algorithms and the reference period used to
calculate the anomaly. NDVI smoothing is particularly sensitive
in the Guinean part of West Africa, where the satellite image
time series are noisy due to a dense cloud cover, resulting in
a high discrepancy between the systems. However, the issue
of low confidence in the alarm class is somewhat mitigated
by a lower food security risk in this region (the area is less
prone to yield reduction caused by a lack of water) compared
to the other regions of West Africa. We also showed that the
choice of the reference period was particularly important in West
Africa, where the environmental and land use changes are strong.
We therefore recommend careful study of the reference period
selected, and in regions where there have been large changes in
land cover or climatic conditions, we recommend using a shorter
reference period. Another important output of this study is the
production of synthetic decadal and annual alarm agreement
maps. These agreement maps can be a useful tool for early
warning by helping to prioritize the emergency measures in
hot-spot areas displaying negative alarms and a high level of
reliability (expressed in number of concordant systems).

Like any study, this work has certain limitations, but they
are not penalizing considering the objective of comparison of
anomaly products in time and space. However, it is obvious that
the next steps will be to better understand these differences and
to hierarchize the systems for different applications or different
geographic regions. For the first step, we can use the same

reference period for the long term statistics, resample row data at
the same resolution, and compute different anomaly indicators
from the same NDVI dataset. For the second step, we will need
external data to evaluate the temporal and spatial consistency of
the different systems, and thus, make recommendations. For the
first step, we can use the same reference period for the long-term
statistics, resample row data at the same resolution, and compute
different anomaly indicators from the same NDVI dataset. For
the second step, we will need external data to evaluate the
temporal and spatial consistency of the different systems, and
thus make recommendations. Ideally, these data would be crop
yield statistics, provided they are collected following a sound
methodology and not “harmonized” in the aggregation process.
Alternatively, we could use the outputs of agrometeorological
or crop models (such as SARRA-O model, for the West African
region [43]), or the results of automatic language processing
methods applied to media data such as online newspapers [44].

To conclude, this work is a contribution to the upstream
process of the food security data processing chain. Recognizing
the importance of reducing sources of uncertainty for monitoring
food insecure areas, this work shines a light on important sources
of discrepancies between systems that should be considered for
effective agricultural lands monitoring.

APPENDIX A
ANNUAL AND 2010–2020 SYNTHETIC AGREEMENT MAPS FOR

THE 3 ALARM CLASS (NO ALARM, POSITIVE, AND NEGATIVE)
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APPENDIX B
ANNUAL AND 2010–2020 SYNTHETIC AGREEMENT MAPS FOR

THE NEGATIVE ALARM CLASS
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