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Abstract. The hidden Markov models (HMM) are used in many different fields, to study the
dynamics of a process that cannot be directly observed. However, in some cases, the structure
of dependencies of a HMM is too simple to describe the dynamics of the hidden process. In
particular, in some applications in finance or in ecology, the transition probabilities of the hid-
den Markov chain can also depend on the current observation. In this work we are interested
in extending the classical HMM to this situation. We define a new model, referred to as the
Observation Driven - Hidden Markov Model (OD-HMM). We present a complete study of the
general non-parametric OD-HMM with discrete and finite state spaces (hidden and observed
variables). We study its identifiability. Then we study the consistency of the maximum likeli-
hood estimators. We derive the associated forward-backward equations for the E-step of the EM
algorithm. The quality of the procedure is tested on simulated data sets. Finally, we illustrate
the use of the model on an application on the study of annual plants dynamics. This works sets
theoretical and practical foundations for a new framework that could be further extended, on
one hand to the non-parametric context to simplify estimation, and on the other hand to the
hidden semi-Markov models for more realism.

Keywords. non homogeneous HMM, identifiability, consistency, EM algorithm

1 Introduction

The hidden Markov models (HMM, Cappé et al. 2005) are used in many different fields such as,
for example, medicine (Le Strat and Carrat 1999) to analyse epidemiologic surveillance data,
signal processing (Gales and Young 2008) for speech recognition, ecology (McClintock et al. 2020)
to reconstruct hidden or partially observed ecological dynamics, bioinformatics (Yoon 2009) for
the analysis of biological sequences, or finance (Engel and Hamilton 1990) to predict the regime
of a monetary system thanks to the exchange rate. Their interest lies the fact that they allow to
study the dynamic of a process that cannot be directly observed. Indeed, in the above domains,
the only observation available is often an imperfect information of the process (e.g. symptoms of
a disease), or another process driven by the hidden one (e.g. accelerometer data used to classify
animal behavior (Leos-Barajas et al. 2017)). In the field of HMM results have been established on
the model identifiability (Allman et al. 2009; Cappé et al. 2005) and on the asymptotic properties
of the Maximum Likelihood Estimator (MLE, Cappé et al. 2005). In practice, the MLE is
computed using the Baum-Welch algorithm, a special case of the Expectation-Maximisation
algorithm for HMM (Cappé et al. 2005).

The HMM relies on two assumptions: the hidden process is modeled by a Markov chain,
and the observations are independents given the hidden chain. In some cases, this structure
of dependencies is too simple to describe the dynamics of the hidden system. In particular,
the transition probabilities of the hidden Markov chain can also be dependent on the current
observation, as we will see in some examples below. In this work we are interested in extending
the classical HMM to this situation. We refer to the new model as the Observation Driven -
Hidden Markov Model (OD-HMM) exemplified below, which is an adaptation of a HMM where
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the next hidden state depends not only on the current hidden state but also on the current
observation. Theoretical results and inference algorithms for HMM do not apply directly to
the OD-HMM, mainly because in the OD-HMM the transition probabilities are not constant
across time, they depend on the current observation. For this new dependency structure, it is
necessary to study conditions for model identifiability and properties of the MLE. Furthermore,
the forward-backward equations of the Baum-Welch algorithm must be adapted.

To highlight the usefulness of the OD-HMM, we present here two applications where the
hidden process dynamics are driven by the observations, one in ecology and one in finance. The
structure of the classical HMM is not always suitable to study the development of a partially
observable species, in particular when the hidden and the observed processes represent two
different life stage of the species, one dormant and one non dormant. Let us consider the case
of plants. In practice we can only observe the grown plants while the seeds into the soil are
not reachable. The seeds remain in the soil for several years. This make relevant the use of a
model with hidden dynamical state like a HMM. However, in addition new seeds produced by
the grown plants enter the soil each year. A classical HMM does not model this latter event, the
OD-HMM is more suited.

The OD-HMM can also be used in finance as an extension of the Hamilton’s Markov-switching
Model (Hamilton 1989), to study series of financial data that oscillates between two regimes.
The characteristics of the observed financial data (e.g. mean, variance) depends on the hidden
regime. In Engel and Hakkio (1996) the authors propose a study of the exchange rate of the
European monetary system which can be in a ’stable’ or ’volatile’ regime, which is unknown,
from observations of the latter. The dependence structure of this model is similar to that of the
OD-HMM, since the exchange rate observed at time t´ 1 influences the regime it is in at time t.

Extension of HMM to the case where the current observation influences the transition of the
hidden chain has already been considered, on one hand for particular applications and on the
other hand from a theoretical point of view to study the properties of the MLE.

Indeed, the OD-HMM has been used in ecology to model the dynamics of annual plants
(Pluntz et al. 2018; Le Coz et al. 2019). In Pluntz et al. (2018), the proposed model is a
parametric model for presence/absence of seeds as hidden states and the presence/absence of
grown plants as observations. The simplification assumption considers a fixed probability of
seed production equal to 1. Parameter estimation is performed by reformulating the model
into the framework of classical HMM and applying the Baum-Welch algorithm. In Le Coz et
al. (2019), the model takes into account dispersal of seeds from one patch to another, using
multiple interacting chains. The parametric model is still specific to plants dynamics and the
associated estimation method based on EM is proposed. So, these articles present parameterized
OD-HMM dedicated to annual plants dynamics.

From a theoretical point of view, there is a multitude of resources available about the consis-
tency of MLE for the classical HMM (Baum and Petrie 1966; Leroux 1992; Gámiz et al. 2023),
which we could have adapted to the OD-HMM case. However, there exists theoretical works
on the properties of the MLE for more complex dependency structures between observations
and hidden states than in the classical HMM (Ailliot and Pène 2015; Pouzo et al. 2022), in-
cluding the OD-HMM case. In Ailliot and Pène (2015) the authors define the framework of
non-homogeneous Markov-switching models and propose a study of consistency of MLE of a
general model with dependency between the observations themselves at multiple times and be-
tween observations and hidden states and some applications in ecology. In this work the state
spaces can either be continuous or discrete but the results are given in the continuous case. The
dependency structure of the OD-HMM is a particular case of the general framework of Ailliot
and Pène (2015), however they do not consider it in the different particular cases they study.
In Pouzo et al. (2022), the author established sufficient conditions for the consistency and the
local asymptotic normality of the MLE for a Markov regime switching model where transition
probabilities can depend on covariates. Their results are established in the case where the obser-
vations state space is continuous and the hidden state space is discrete. In conclusion, the works
related to the OD-HMM dependency structure are either based on parameter models dedicated
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to a particular application (plants dynamics or finance), or theoretical results for more general
models or with continuous state space for the observed process.

We start in section 2 by defining this model and studying its identifiability. Then, in section 3,
we study the consistency of the MLE. We also provide the necessary modifications, compared to
the EM algorithm for HMM, in the Expectation step and all detailed calculations to obtain the
associated EM algorithm. In section 4 we perform several tests on simulated data in order to
evaluate the quality of the EM estimates. Finally, in section 5, we illustrate how the model can
be used to obtain knowledge on the mechanisms driving the development of an annual plant, in
particular on the survival of seed in the soil.

2 The non parametric OD-HMM

2.1 Model definition

Let us consider two sets of random variables, indexed by (discrete) time: Yt, the observed system
at time t, with state space ΩY “ t1, ..., Du and Zt the hidden state at time t, with state space
ΩZ “ t1, ..., Su. We denote the vector of the observations between t “ 0 and t “ M by Y0:M “

pY0, Y1, Y2, ..., YM q. In the same way, the vector of the hidden states between t “ 0 and t “ M is
denoted Z0:M “ pZ0, Z1, ..., ZM q. In the most common version of a HMM, presented in Figure 1a,

pZtq is a Markov chain and PpY0:M “ y0:M | Z0:M “ z0:M q “
śM

t“0 PpYt “ yt | Zt “ ztq
1.

Here we consider an extension of the classical HMM, where the observation Yt´1 has an
influence on the next hidden variable Zt. This corresponds to the graphical representation of
conditional independencies shown on Figure 1b.

The joint distribution of pZ0:M , Y0:M q is fully determined by the following distributions.
The initial probability is noted πpz0q, where:

@z0 P ΩZ , πpz0q “ PpZ0 “ z0q.

The emission probability is noted Rpzt, ytq, where:

@zt P ΩZ , yt P ΩY , Rpzt, ytq “ PpYt “ yt|Zt “ ztq.

The transition matrix is noted Pyt´1
pzt´1, ztq, where:

@pzt, zt´1q P Ω2
Z , yt´1 P ΩY , Pyt´1pzt´1, ztq “ PpZt “ zt|Zt´1 “ zt´1, Yt´1 “ yt´1q.

Note that due to the influence of observations on hidden states, the transition matrix de-
pends of the observation yt´1. Therefore a specificity of this model is that there are as many
transition matrices as observed states, as opposed to the classical HMM. The OD-HMM is non-
homogeneous.

Eventhough the model is non-parametric, for the sake of simplicity, we will refer to these dis-
tributions as the model parameters. Since they are all probabilities with a constraint to sum up to
one, the set of parameters is θ “ pPypz1, zq, y P ΩY , z

1 P ΩZ , z P ΩZztSuqYpRpy, zq, y P ΩY ztDuq,
in which there is no the initial distribution π because it is not estimated. It takes values in
Θ “ r0, 1s|ΩZ |p|ΩZ |´1q|ΩY |`p|ΩY |´1q|ΩZ |.

Definition 1 (OD-HMM). pZt, Ytq is said to follow an Observation Driven HMM (OD-HMM)
if the conditional independencies between observed variables and hidden states as described in
Figure 1b. The OD-HMM with parameter θ is denoted MODHMM

θ .

1. By convention, we use uppercase letters, Zt or Yt, for the random variables and lowercase letters, zt or yt,
for realizations.
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Zt´1 Zt Zt`1

Yt´1 Yt Yt`1

(a) for an HMM.

Zt´1 Zt Zt`1

Yt´1 Yt Yt`1

(b) for an OD-HMM.

Figure 1: Graphical representation of conditional independencies in the chain pZt, Ytq.

2.2 Generic identifiability

As explained in Allman et al. (2009), the requirement of identifiability may be too strict when
considering statistical parameter estimation. Indeed, for some models, only a subset of param-
eters of measure zero may not be identifiable and in practice estimation will perform well. So
here we consider generic identifiability and we provide sufficient conditions to ensure the generic
identifiability of the parameters of the OD-HMM. We recall first the definition of identifiability
(referred to as strict identifiability in Allman et al. (2009)) and generic identifiability.

Definition 2 (Strict identifiability). Let FpΘq “ tPθ, θ P Θu be a family of probability distri-
butions. We say that the model’s parameters θ are strictly identifiable if Pθ “ Pθ1 implies that
θ “ θ1.

Definition 3 (Generic identifiability). Let FpΘq “ tPθ, θ P Θu be a family of probability distri-
butions. We say that the model’s parameters θ are generically identifiable if the elements of Θ
that do not satisfy Pθ “ Pθ1 ùñ θ “ θ1 are of mesure zero in the parameter space.

It means that any observed data set has probability one of being drawn from a distribution
with identifiable parameters. In Allman et al. (2009) the authors have established the following
proposition on generic identifiability for HMM.

Proposition A (Generic identifiability for HMM (Allman et al. 2009)). The parameters of an
HMM with r hidden states and k observable states are generically identifiable from the marginal
distribution of 2L ` 1 consecutive variables provided L satisfies:

ˆ

L ` k ´ 1
k ´ 1

˙

ě r.

In order to establish sufficient conditions for the generic identifiability of the OD-HMM
parameters θ, we first reformulate the model MODHMM

θ into an equivalent HMM, MHMM
θ ,

with the dimension of the state space of the hidden variable being r “ |ΩZ | ˆ |ΩY | and an
observed state space of dimension k “ |ΩY |, and whose transition and emission probabilities are
functions of θ. Using Proposition A we establish sufficient conditions for the generic identifiability
of the parameters of MHMM

θ . Then we establish that there is a one-to-one map between the
two formulations, i.e. if θ ‰ θ1 then MHMM

θ and MHMM
θ1 are not the same model. Therefore

the condition for generic identifiability holds also for the original OD-HMM model, MODHMM
θ .

Let us first present the reformulation of a OD-HMM model pZt, Ytq as a HMM. The hidden
variable is Ht “ pZt, Ytq P ΩZ ˆ ΩY and the observed variable is a copy of Yt i.e. Ot “ Yt P

ΩY . The couple pHt, Otq satisfies the definition of a HMM since Ht is a Markov chain, and
conditionally to pHtq the Ots are mutually independent and each Ot depends only on Ht. Now,
we express PHMM the transition matrix and RHMM the emission matrix of MHMM

θ , using the
parameters of MODHMM

θ :

PHMM
θ pht´1, htq “ Rpzt, ytqPyt´1pzt´1, ztq,

RHMM
θ pht, otq “ 1pyt“otq.
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Then, using Proposition A, we know that the parameters of MHMM
θ (i.e. the elements of

the transition PHMM
θ and the emission matrices RHMM

θ ) are generically identifiable when the
observed chain is longer than 2L ` 1, where L satisfies

ˆ

L ` |ΩY | ´ 1

|ΩY | ´ 1

˙

ě |ΩZ ||ΩY |.

It is easy to show (see Appendix A) that two different parameters θ and θ1 of an OD-HMM
that lead to the same transition matrix PHMM and the same emission matrix RHMM, are equal
(θ “ θ1). Therefore, generic identifiability also holds for MODHMM

θ

Proposition 1 (Generic identifiability for OD-HMM). The parameters of an ODHMM with |ΩZ |

hidden states and |ΩY | observable states are generically identifiable from the marginal distribution
of 2L ` 1 consecutive variables provided L satisfies:

ˆ

L ` |ΩY | ´ 1

|ΩY | ´ 1

˙

ě |ΩZ ||ΩY |.

Example 1. For ΩZ “ 2 and ΩY “ 2, the parameters θ are identifiable as soon as the chain
has more than 2L ` 1 “ 7 observations. Indeed,

ˆ

L ` 2 ´ 1

2 ´ 1

˙

ě 2 ˆ 2 ô L ě 3.

3 Maximum likelihood estimation

We are interested in the calculation of the Maximum Likelihood Estimator (MLE), noted θ̂,
defined by the following formula:

θ̂ “ argmax
θ

Lpθ; y0:M q,

where Lpθ; y0:M q “ PθpY0:M “ y0:M q is the likelihood.

3.1 Consistency

We work on probability space pΩZ ˆΩY ,PpΩZ ˆΩY q,Pθ, θ P Θq and with a reference measure µ.

As shown in Ailliot and Pène (2015, theorem 2) we can obtain the consistency of the MLE
of a more general model, named Non Homogeneous Markov-Switching Auto-Regressive model
(NHMS-AR model) in which the state spaces can be either continuous or discrete, but the
results are given in the continuous case. The NHMS-AR model is based on the two following
assumptions:

• the distribution of Zt, conditionally to tZt1 “ zt1 ut1ăt and tYt1 “ yt1 ut1ăt, only depends on
yt´s:t´1 and zt´1, where s P t1, ..., tu.

• the distribution of Yt, conditionally to tZt1 “ zt1 ut1ăt and tYt1 “ yt1 ut1ăt, only depends on
yt´s:t´1 and zt.

Thus, the OD-HMM is a particular case of the NHMS-AR model, where s “ 1 and where yt
does not depend on yt´1. Besides the chain pZtq is also non homogeneous with respect to the
time, because Py depends on y.
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So, to adapt the work of Ailliot and Pène (2015) to the case of the OD-HMM MLE, we
consider the transition matrix of the couple pZt, Ytq noted:

@pi, aq, pj, bq P ΩZ ˆ ΩY , P̃θpi, a; j, bq “ Papi, j; θqRpj, b; θq.

Thus, the Markov chain of the couple pZt, Ytq is homogeneous, with the transition matrix P̃θ

and the stationary distribution of the couple π̃θ. Besides, the marginals of π̃θ are noted Pθ and

PY

θ for the observed chain. Finally, Eθ is the expectation taken with respect to Pθ.

The adaptation of the assumptions of the theorem 2 from Ailliot and Pène (2015) to the case
of the OD-HMM MLE, with our notations, takes the following form :

(A1) Θ is a compact space ;

(A2) The chain pZt, Ytq is ergodic with an invariant probability for each θ P Θ denoted π̃θ ;

(A3) The elements of Pθ are absolutely continuous with respect to Pθ for all θ P Θ ;

(A4) The elements of Py and R are continuous in θ, for any y in ΩY .

Under theses assumptions, theorem 2 from Ailliot and Pène 2015 becomes the following propo-
sition.

Proposition B (Consistency of the NHMS-AR model MLE (Ailliot and Pène 2015), in the
particular case of the OD-HMM MLE). If we have :

1. 0 ă Py,´ :“ min
θ,z0,y0,z1

Py0pz0, z1; θq ď Py,` :“ max
θ,z0,y0,z1

Py0pz0, z1; θq ă 8 ;

2. B´ “ Eθ˚ r| lnpmin
θ

ř

z0PΩZ

Rpz0, Y0; θq|s ă 8 ;

3. B` “ Eθ˚ r| lnpmax
θ

ř

z0PΩZ

Rpz0, Y0; θq|s ă 8 ;

4. @θ P Θ,
ř

zPΩZ

Rpz, Y0q ă 8, Pθ˚-a.s. ;

5. @θ P Θ, for µ-a.e., lim
kÝÑ8

||Q˚kp.|pZ0, Y0qq ´ hθ|| “ 0, where Q˚kp.|pZ0, Y0qq is the density

of pZk, Y
k
k q with respect to the measure µ and hθ is the limit density when k tends to 8.

So, for all z0 P ΩZ , the limit values of the MLE θ̂ are Pθ˚-a.s. contained in the space tθ P

Θ;PY

θ “ PY

θ˚ u, where θ˚ is the true value of the parameters.

Now, we focus on the assumptions made on the model to propose a fully adapted version of
the proposition above. Indeed, unlike the general NHMS-AR model, in the OD-HMM we assume
that the elements of P̃θ are all strictly positive. So, this assumption leads us to the intermediate
Proposition 2.

Proposition 2. Let pZt, Ytq follow a OD-HMM model with parameter θ P Θ. There exists an
invariant probability π̃θ for the Markov chain pZt, Ytq.

The above proposition allows us to ensure the existence of a stationary distribution for the
OD-HMM. In the following we will assume that the initial distribution is equal to π̃θ. Therefore,
the process is stationary.

Now, to completely adapt Proposition B to the case of OD-HMM MLE estimators, we first
consider assumptions (A1) to (A4) and we explain why assumptions (A1), (A2) and (A3) are
always satisfied by the OD-HMM.
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(A1) The space of the OD-HMM parameters θ is Θ “ r0, 1s|ΩZ |p|ΩZ |´1q|ΩY |`p|ΩY |´1q|ΩZ |, so it is
compact.

(A2) Since we assume that the elements of P̃θ are all strictly positive, this implies that the chain
pZ, Y q is ergodic.

(A3) In the case of the OD-HMM, the state spaces are finite, so it is possible to free oneself from
the assumptions on the continuity of the fact that the continuity is locally verified.

So only assumption pA4q is necessary.
In a second step we consider assumptions p1q to p5q and we explain why there are all satisfied

by the OD-HMM :

1. Under assumption (A2), min
θ,z0,y0,z1

Py0
pz0, z1; θq ą 0 is satisfied because the elements of Py

are all stricly positives. Besides, since ΩZ and ΩY are finite, max
θ,z0,y0,z1

Py0
pz0, z1; θq ă 8 is

also satisfied.

2. The terms of the matrix R are strictly positives, so | lnRpz, y; θq| ă 8. Also, we have
ř

z0PΩZ

Rpz0, Y0; θq ă 8. Finally, we obtain B´ ă 8.

3. By the same reasoning, we have B` ă 8.

4. Since ΩZ is finite,
ř

zPΩZ

Rpz, Y0; θq is finite.

5. Since ΩZ and ΩY are finite, this assumption is verified when the chain pZt, Ytq is ergodic.

We finally obtain the following proposition concerning the consistency of the maximum like-
lihood estimators of the OD-HMM.

Proposition 3 (Consistency of the OD-HMM MLE). Under the assumption (A4), for all z0 P

ΩZ , the limit values of the MLE θ̂ are Pθ˚-a.s. contained in the space tθ P Θ;PY

θ “ PY

θ˚ u, where
θ˚ is the true value of the parameters.

Note that, since the states spaces are finite, in the non-parametric case, the assumption pA4q

is satisfied and therefore the consistency of the OD-HMM MLE estimator is guaranteed.

3.2 EM algorithm

We compute the MLE of θ using the Expectation-Maximisation (EM) algorithm. To take into
account the dependence between the observations pYtq and the hidden states pZtq, as shown in
Figure 1b, we propose an adaptation of the EM for HMM (Cappé et al. 2005). We could consider
estimating the MHMM

θ model, which would allow us to use the EM algorithm for HMM without
modification. However, the transition matrix describing the hidden states Ht “ pZt, Ytq is too
large to be well estimated.

We consider the situation where we have C realizations pyc,tq of C independent identically
distributed OD-HMM pZc,t, Yc,tq, where c P t1, ..., Cu. In the following, we denote the vector
of hidden state at time t for chain 1 to chain C Z1:C,t “ pZ1,t, Z2,t, ..., ZC,tq. In the same
way we denote Y1:C,t “ pY1,t, Y2,t, ..., YC,tq the vector of the observations at time t for the C
chains. Besides, we denote πpzc,0; θq, Pyc,t´1

pzc,t´1, zc,t; θq and Rpzc,t, yc,t; θq the probabilities
taken conditionally to θ.

With these notations, the complete likelihood is equal to (see Appendix B.1) :

Lpθ; z1:C,0:M , y1:C,0:M q “ PpZ1:C,0:M “ z1:C,0:M , Y1:C,0:M “ y1:C,0:M |θq

“

C
ź

c“1

#

πpzc,0; θqRpzc,0, yc,0; θq

M
ź

t“1

Pyc,t´1
pzc,t´1, zc,t; θqRpzc,t, yc,t; θq

+

.
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The EM algorithm for OD-HMM is an iterative algorithm and each iteration is composed of
two steps. Let us consider θpmq the parameter estimates at iteration m and define Qpθ|θpmqq the
intermediate quantity. The two steps in each iteration are the following :

1. Expectation Step (E step): we calculate the marginal distributions involved in the expres-
sion of the intermediate quantity Qpθ|θpmqq. It relies on an adaptation of the Forward-
Backward algorithm.

2. Maximisation step (M step): we update the set of parameters θ thanks to the quantities
found in the E Step, by resolving θpm`1q “ argmax

θ
Qpθ|θpmqq.

These two steps are repeated until the algorithm converges.

The intermediate quantity Qpθ|θpmqq, can be decomposed into three terms, one depending
on the initial distribution, another depending on the transition matrix and the last depending
on the emission distribution (see Appendix B.2).

Qpθ|θpmqq “ E
”

lnPpY1:C,0:M , Z1:C,0:M |θq|Y1:C,0:M “ y1:C,0:M , θpmq
ı

“

C
ÿ

c“1

ÿ

z0PΩZ

ln pπpz0; θqqPpZc,0 “ z0|Yc,0:M “ yc,0:M , θpmqq

`

C
ÿ

c“1

M
ÿ

t“1

ÿ

pz,z1qPΩ2
Z

ln
`

Pyc,t´1
pz, z1; θq

˘

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq

`

C
ÿ

c“1

M
ÿ

t“0

ÿ

z1PΩZ

ln
`

Rpz1, yc,t; θq
˘

PpZc,t “ z1|Yc,0:M “ yc,0:M , θpmqq.

3.2.1 E step

The EM algorithm for OD-HMM is very similar to the EM algorithm for HMM. However, the
Backward algorithm in step E has been modified to take into account the fact that the transition
matrix depends on the observation.

The E step consist in computing the marginal probabilities of interest appeared in the ex-
pression of Qpθ|θpmqq. They are :

• @0 ď t ď M,@c P t1, ..., Cu,@zt P ΩZ ,

ρ
pmq

c,t pztq “ PpZc,t “ zt|Yc,0:M “ yc,0:M , θpmqq;

• @1 ď t ď M,@c P t1, ..., Cu,@pzt´1, ztq P Ω2
Z ,

ξ
pmq

c,t pzt´1, ztq “ PpZc,t´1 “ zt´1, Zc,t “ zt|Yc,0:M “ yc,0:M , θpmqq.

To obtain ρ
pmq

c,t pztq and ξ
pmq

c,t pzt´1, ztq, we introduce the following variables :

• α
pmq

c,t pztq, such as, @0 ď t ď M,@c P t1, ..., Cu,@zt P ΩZ ,

α
pmq

c,t pztq “ PpYc,0:t “ yc,0:t, Zc,t “ zt|θ
pmqq;

• β
pmq

c,t pztq, such as, @0 ď t ă M,@c P t1, ..., Cu,@zt P ΩZ ,

β
pmq

c,t pztq “ PpYc,t`1:M “ yc,t`1:M |Zc,t “ zt, Yc,t “ yc,t, θ
pmqq.

8



The E step works by using the Forward-Backward algorithm. The specificity of the Forward-
Backward algorithm for the OD-HMM compared to that of the HMM is in the expression of

β
pmq

c,t pztq, because it is taken conditionally to the current observations.

In the Forward algorithm, we express α
pmq

c,t pztq using the following recurrence formula (see
Appendix B.3.1 for the calculations):

@1 ď t ď M,@c P t1, ..., Cu,@zt P ΩZ ,

α
pmq

c,t pztq “ Rpmqpzt, yc,tq
ÿ

zt´1PΩZ

α
pmq

c,t´1pzt´1qP pmq
yc,t´1

pzt´1, ztq,

where α
pmq

c,0 pz0q “ Rpmqpz0, yc,0qπpz0qpmq.

In the Backward algorithm, we compute β
pmq

c,t pztq using the following recurrence formula (see
Appendix B.3.2 for the calculations):

@0 ď t ă M,@c P t1, ..., Cu,@zt P ΩZ ,

β
pmq

c,t pztq “
ÿ

zt`1PΩZ

Rpmqpzt`1, yc,t`1qβ
pmq

c,t`1pzt`1qP pmq
yc,t

pzt, zt`1q,

where β
pmq

c,M pzM q “ 1.

The quantities α
pmq

c,t pztq and β
pmq

c,t pztq are used to compute ρ
pmq

c,t pztq and ξ
pmq

c,t pzt´1, ztq, as
follows (see Appendix B.3.3 for the calculations):

• @0 ď t ď M,@c P t1, ..., Cu,@zt P ΩZ ,

ρ
pmq

c,t pztq “
α

pmq

c,t pztqβ
pmq

c,t pztq
ř

ztPΩZ

α
pmq

c,t pztqβ
pmq

c,t pztq
;

• @1 ď t ď M,@c P t1, ..., Cu,@pzt´1, ztq P Ω2
Z ,

ξ
pmq

c,t pzt´1, ztq “
α

pmq

c,t´1pzt´1qP
pmq
yc,t´1pzt´1, ztqR

pmqpzt, yc,tqβ
pmq

c,t pztq
ř

ztPΩZ

α
pmq

c,t pztqβ
pmq

c,t pztq
.

3.2.2 M step

During the M step we resolve the maximisation problem to obtain the expression of updated

parameters. We express these parameters in terms of ρ
pmq

c,t pztq and ξ
pmq

c,t pzt´1, ztq as follows (see
Appendix B.4):

• @y P ΩY ,@zt P ΩZ ,@zt´1 P ΩZ ,

P pm`1q
y pzt´1, ztq “

C
ř

c“1

M
ř

t“1
ξ

pmq

c,t pzt´1, ztq1pyc,t´1“yq

C
ř

c“1

M
ř

t“1

ř

z1
tPΩZ

ξ
pmq

c,t pzt´1, z1
tq1pyc,t´1“yq

;

• @zt P ΩZ ,@y P ΩY ,

Rpm`1qpzt, yq “

C
ř

c“1

M
ř

t“0
ρ

pmq

c,t pztq1pyc,t“yq

C
ř

c“1

M
ř

t“0
ρ

pmq

c,t pztq

.
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3.2.3 Initialization and stopping criterion

To initialize the EM algorithm for OD-HMM, we simulate Ninit sets of initial parameters values
and we run the algorithm for each of them.

The algorithm is stopped when the first of the two criteria are met: either a number Niter

is reached or the algorithm has converged. To check for convergence, at each iteration m, we
compute a distance between the estimation at iteration m and the one at iteration m` 1. Since
the st of parameters θ is composed of matrices, and the rows of these matrices all sum up to

one, we consider the following distance between the i-th row of θpmq, denoted θ
pmq

i , and θ
pm`1q

i :

distpθ
pmq

i , θ
pm`1q

i q “
1

K

K
ÿ

k“1

|θ
pmq

i,k ´ θ
pm`1q

i,k |

θ
pmq

i,k

,

where K is the length of θi and θi,k is the k-th element of the θ i-th row. When the average
distance between all rows of θ is smaller than a given threshold ϵ we consider that the algorithm
has converged.

When the Ninit algorithms have converged or stopped, we keep the best estimate, i.e. the
one that is associated to the larger likelihood. The likelihood is easily computed using the αs
and βs (see Appendix B.3.3).

4 Validation of the estimation procedure on simulated data

In order to validate the estimation procedure, we realised three tests of data sets simulated from
the OD-HMM with different true parameters corresponding to problems of increasing difficulty.
With the first test, the transition and emission matrices are very contrasted. In the second test,
the rows of the transition matrices are chosen close to p 1

2 ,
1
2 q. In the last test, the rows of the

emission matrix are similar, so the observations bring little information on the hidden process.
The true values of the parameters for each of the three tests are presented in Table 2. In each
case, ΩZ and ΩY are of size 2. So, by Proposition 1, the OD-HMM are generically identifiable
as soon as the chain has more than 7 observations. We describe below the protocol common to
all the tests and then we provide the results.

4.1 Protocol

For a given test, associated to the true parameters θ˚, and a given C, we set the initial distribution
to π “ p1, 0q to simulate C chains pZtq and pYtq of length M “ 500. Then, we used the EM

algorithm for OD-HMM to obtain the parameters estimator θ̂ from the C observed chains. There
are 6 parameters to estimate. We ran the EM with Ninit “ 10, Niter “ 500, and ϵ “ 0.001. To
the same distance than for testing for convergence.

In order to capture the variability in the EM estimates we ran these steps 30 times. Finally
we repeated the whole procedure for increasing numbers of chains: C “ 10, 50, 100.

Table 1: True transition and emission matrices for the three tests.

True parameters

Test 1 P˚
0 “

ˆ

0.2 0.8
0.8 0.2

˙

, P˚
1 “

ˆ

0.8 0.2
0.2 0.8

˙

, R˚ “

ˆ

0.8 0.2
0.2 0.8

˙

Test 2 P˚
0 “

ˆ

0.6 0.4
0.4 0.6

˙

, P˚
1 “

ˆ

0.4 0.6
0.6 0.4

˙

, R˚ “

ˆ

0.2 0.8
0.8 0.2

˙

Test 3 P˚
0 “

ˆ

0.2 0.8
0.8 0.2

˙

, P˚
1 “

ˆ

0.8 0.2
0.2 0.8

˙

, R˚ “

ˆ

0.4 0.6
0.6 0.4

˙
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4.2 Results

4.2.1 First test

As expected, we noticed that the average distance between the estimation θ̂ and the true pa-
rameters θ˚ is decreasing with the number of chains. Whatever the number of chains, it is lower
than 0.1 (i.e a 10% error) which is of very good quality. The convergence rate is increasing with
the number of chains. Indeed, we have a convergence rate of 43.4% for C “ 10 chains, of 56.7%
for C “ 50 chains and finally of 83.4% for C “ 100 chains.

If we consider now specifically the estimation of the transition matrices (see Figure 2), we
observed that the median distance between P̂0 and P˚

0 is lower than 0.1 and decreasing with
C. In the worst case, the distance does not exceed 0.25 of the value of the real parameter. The
median distance between P̂1 and P˚

1 is also lower than 0.1 and its ninth is lower than 0.25, but
there are some extreme values for C “ 10 and C “ 50 and the distance does not decrease with
C.

The estimation of the emission matrix is of very good quality (see Figure 3): the median
value is much lower than 0.1 and is decreasing with the number of chains.

To conclude, in the case where the matrices are contrasted, i.e. the weights on the rows of P
are distant from p 1

2 ,
1
2 q and the rows of R are very different from each other, the estimation by

the EM algorithm for OD-HMM is satisfactory.
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(b) distance between P̂1 and P˚
1

Figure 2: Boxplot of the distance between the estimated transition matrices and the true ones
depending on the number of chains, and for the first test.

4.2.2 Second test

Now, the weights on the rows of P are closer to p 1
2 ,

1
2 q than in the first test. So, in theory

estimating the transition matrices should be more difficult. This is the case, however, the
average distance between the estimated and the true parameters remains lower than 0.15, it is,
on average, of 0.143 for C “ 10 chains, 0.138 for C “ 50 chains and of 0.127 for C “ 100 chains.
We notice that it is decreasing with the number of chains. The distance for C “ 10 is greater
than the others but we can put it in perspective with the fact that the rate of convergence is
only 40%. For the other values of C the convergence rate is increasing until 100% for C “ 100.

The distances for the transition matrices and for the emission matrices are displayed sepa-
rately on Figure 4 and Figure 5. There is no more systematic decrease of the distance with C.
We can see that the distance between P̂0 and P˚

0 remains low while the distance between P̂1 and
P˚
1 has increased compared to test 1. The median distance between the estimated and the true

emission matrix remains of very good quality eventhough with more variability than for test 1.
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Figure 3: Boxplot of the distance between the estimated emission matrix and the true one
depending on the number of chains, and for the first test.
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Figure 4: Boxplot of the distance between the estimated transition matrices and the true ones
depending on the number of chains, and for the second test.
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Figure 5: Boxplot of the distance between the estimated emission matrix and the true one
depending on the number of chains, and for the second test.
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4.2.3 Third test

The third test is the more difficult: since the rows of the emission matrix are similar it is more
difficult than for tests 1 and 2 to know which hidden state has generated the observation. One
consequence is that for test 3 we faced a problem of label switching, i.e. the roles of the 2
hidden states in the matrices were switched during the estimation. We considered that label
switching occurs when the average distance between the rows of θ˚ and of θ̂ is smaller when we
permute the hidden state than without. We observed 23.3% of label switching for C “ 10, 20%
for C “ 50, and 0% for C “ 100. The distances we discuss know are obtained after correction of
label switching when present. We observed that the quality of the estimation is really less good
than in the two first tests. Indeed, the average distance between the estimated parameters and
the true ones is decreasing from 0.22 to 0.15 when C increases, which is larger than before. The
poor estimation quality for C “ 10 can be explained by the fact that 33% of the estimates did
not converge. For the other values of C the convergence is 97% then 100%.

If we look separately at the transition matrices (Figure 6) and the emission matrix (Fig-
ure 7), we observed that the quality of the estimation of the former is strongly degraded while
the estimation of the latter is of quality similar to that of the other tests.
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Figure 6: Boxplot of the distance between the estimated transition matrices and the true ones
depending on the number of chains, and for the third test.
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Figure 7: Boxplot of the distance between the estimated emission matrix and the true one
depending on the number of chains, and for the third test.
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5 Illustration on simulated dynamics of a real ecological
system

In this section, we present the use of the OD-HMM for modeling annual plants dynamics. Based
on a real use case and using simulated data, we propose two studies. First we illustrate the
discriminating power of the model. Second we illustrate how a key statistics of the dynamics
can be estimated from data using the model and the EM algorithm.

5.1 The model for annual plants dynamics

The model we use is that of Pluntz et al. (2018) who described a parametric OD-HMM for annual
plants. The model take into account four mains processes of plants dynamics. Germination is
the transition from seed to adult plant. The probability of germination is denoted g. Seed
production characterizes the ability of plants to produce and disperse seeds into the soil. The
probability of seed production is denoted d. Seed survival designates the fact that the seeds stay
in the soil from one year to the next. The probability of seed survival is s. Finally, colonization
represents the arrival of exogenous seed, for instance by wind. The probability of this event is
c. The time step is the year The observation Yt represents presence or absence of standing flora,
while the hidden state Zt represents presence or absence of seeds in the soil at year t.

From probabilities g, c, d and s we can construct the matrices P˚
0 , P

˚
1 and R˚ as shown in

Pluntz et al. (2018).

P0 “

ˆ

1 ´ c c
p1 ´ cqp1 ´ sq 1 ´ p1 ´ cqp1 ´ sq

˙

,

P1 “

ˆ

p1 ´ cqp1 ´ dq 1 ´ p1 ´ cqp1 ´ dq

p1 ´ cqp1 ´ dqp1 ´ sq 1 ´ p1 ´ cqp1 ´ dqp1 ´ sq

˙

,

R “

ˆ

1 0
1 ´ g g

˙

.

To understand how to derive this expressions, let us describe how to obtain P1p1, 0q “

PppZc,t “ 0 | Zc,t´1 “ 1, Yc,t´1 “ 1q. It is the probability that that there are no seed in the
soil at time t, knowing that there were seeds in the soil and standing flora at t ´ 1. Thus, the
colonization, the production of seed and the survival of seeds has not succeed, which occurs with
probability P1p1, 0q “ p1 ´ cqp1 ´ dqp1 ´ sq.

Note that P0, P1 and R can be computed from g, c, d and s but the opposite operation is
not possible. Furthermore, in Pluntz et al. (2018), d is set to 1 and not estimated. So in the
following we will use the values of colonization, dispersion and survival probabilities obtained by
Pluntz et al. (2018) for two species, and we will choose an arbitrary value of d to to construct
the matrices defining the OD-HMM and simulate data. Then we will use EM to estimate these
matrices, not the four parameters.

5.2 Possibility to detect the absence of seed survival

Here, the objective is to test if the above EM OD-HMM is able to detect that a plant does not
use seed survival (meaning that it will instead use colonization to avoid extinction), by using a
model selection approach and the Bayesian Information Criterion (BIC, (Raftery 1995)).

In the case where s “ 0, the two transition matrices are expressed as follows:

P0 “

ˆ

1 ´ c c
p1 ´ cq c

˙

, P1 “

ˆ

p1 ´ cqp1 ´ dq 1 ´ p1 ´ cqp1 ´ dq

p1 ´ cqp1 ´ dq 1 ´ p1 ´ cqp1 ´ dq

˙

.

The two rows of each transition matrix are equal. This corresponds to a constrained OD-
HMM with less parameters to estimate (4 instead of 6). We modified the M-step of EM to
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take into account this constraint. The corresponding formula for updating the Py matrices is:
@y, zt, zt´1 P ΩY ˆ Ω2

Z ,

P pm`1q
y pzt´1, ztq “

C
ř

c“1

M
ř

t“1

ř

zt´1Pt0,1u

ξ
pmq

c,t pzt´1, ztq1pyc,t´1“yq

C
ř

c“1

M
ř

t“1
1pyc,t´1“yq

.

For this test, we used the parameter values estimated in Pluntz et al. (2018) for the species
Taraxacum officinale, i.e. c “ 0.22, g “ 0.3, and we fixed s “ 0 and d “ 0.5. We obtained the
following transition and emission matrices:

P˚
0 “

ˆ

0.88 0.22
0.88 0.22

˙

;P˚
1 “

ˆ

0.44 0.56
0.44 0.56

˙

;R˚ “

ˆ

1 0
0.7 0.3

˙

.

We considered them as the true parameters θ˚ and we used them to simulate C “ 100 observa-
tions sequences of length M “ 500 which form the data. Based on these data, we estimated two
models with EM: a full OD-HMM without constraint, Mf , and a constrained OD-HMM, Mc,
where we impose that the 2 rows of each transition matrices are equal. Then we computed BIC
for the two models. The formula of BIC for a model M, with associated MLE θM is:

BICpMq “ ´2 lnpLpθMqq ` KM lnpC ˆ Mq,

where L is the likelihood and KM is the number of free parameters. For the full OD-HMM there
are KMf

“ 6 parameters. For the constrained OD-HMM there are KMc
“ 4 parameters.

We repeated this experimentation 50 times by simulating 50 data set from the same true
parameters θ˚. We obtained that BICpMcq is always lower than BICpMf q, which means that
the constrained model Mc is better than the other. Besides, the difference between these two
BIC criteria is, on average, of 20.53, and its minimal value is 15.14. As presented in Raftery
(1995), a difference greater than 10 can be interpreted as a strong evidence for the selected
model. So, we can conclude that the OD-HMM model is able to detect the absence of survival
with strong evidence.

5.3 Estimation of the average time of seeds stock persistence

Now we illustrate how the OD-HMM can be used to estimate how long can there be seeds present
in the soil. For that, we used the parameters estimated by Pluntz et al. (2018) for the species
Alopecurus Myosoroides to generate a pseudo true data set, with C “ 100 chains of length
M “ 500. For this species, g “ 0.59, s “ 0.51, c “ 0.09 and we choose d “ 0.5, which leads to
the following true transition and emission matrices:

P˚
0 “

ˆ

0.91 0.09
0.4459 0.5541

˙

;P˚
1 “

ˆ

0.455 0.545
0.223 0.777

˙

;R˚ “

ˆ

1 0
0.41 0.59

˙

.

From these data we estimated P̂0, P̂1 and R̂, with the EM algorithm for OD-HMM. Then, we
simulated the trajectories of 100 chains of length 500 from which we estimated the average time
of continuous presence of seeds in the soil (average duration of seed stock persistence). For sake
of comparison, we realized the same estimation but estimating an HMM, instead of a OD-HMM,
from the data. The estimation was obtained by modifying the EM of OD-HMM by forcing the
transition probabilities to be equal. We compared the value of these average durations with the
empirical estimate computed on the pseudo-real data set, as shown in the Table 2.

As results, we obtained that the duration computed using the EM for OD-HMM is very
similar to the empirical estimate computed on data generated by the true model. On contrary,
the duration estimated under the assumption of a HMM model is poorer, which illustrates the
risk in ignoring the influence of the observation on the hidden state.
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Table 2: Comparison of the duration of seeds stock persistence estimated by EM algorithm for
HMM or for OD-HMM with the empirical estimates obtained from the data.

Min.
1st
Decile

Median Mean
9th
Decile

Max.

Empirical estimate
from data

1 1 2 2.973 6 12

EM for OD-HMM 1 1 2 3.155 7 22
EM for HMM 1 2 9 12.166 27 113

6 Conclusion

In this paper, we have developed a new framework, extension of the classical HMM, originally
motivated by applications in ecology and the modeling of populations dynamics when part of
the individuals are hidden. The interest of the OD-HMM goes beyond ecology, and has also
application in finance, for example to study the exchange rate regime of a money.

In these applications, the OD-HMM framework provides tools to estimate the parameters
involved in the dynamics of the systems under study. For this purpose, we have chosen to focus
on the estimation of the parameters by the maximum likelihood principle.

On the theoretical aspect, we studied the consistency of the MLE of the OD-HMM by adapt-
ing the work of Ailliot and Pène (2015) to the case of the OD-HMM. The next step would be
to prove the asymptotic normality of the MLE of the OD-HMM, either by extending the work
of Bickel et al. (1998) and Gámiz et al. (2023) proposed for a classical HMM, or by adapting
the work of Pouzo et al. (2022) proposed for more complex structures including the case of the
OD-HMM. In the same way, measuring the reliability of the system modeled by the OD-HMM
(Durand and Gaudoin 2016; Gámiz et al. 2023) may be an interesting perspective.

On the practical side, we derived the EM algorithm for OD-HMM to estimate the parame-
ters of the model. By performing three experiments, we obtained that when the values of the
true parameters P˚ and R˚, or just R˚, are contrasted, the estimation provides good results.
However, it is not recommended to use the EM algorithm for OD-HMM when the true emission
matrix R˚ is not contrasted. These experiments were conducted on observation trajectories of
length at most 500 to avoid the appearance of possible numerical problems. Moreover, we have
carried out the experiments for C varying from 10 to 100 chains in order to be able to run
more tests in a faster way, although running the algorithm on a larger number of chains would
certainly improve the quality of the estimate. In the same way, although the EM algorithm for
OD-HMM presented here is built for any size of discrete and finite state spaces, we only tested
the 2ˆ 2 case to perform multiple experiments and to be able to detect the possible appearance
of label switching, as in the third proposed experiment. To work with more complex systems
(more trajectories and states) it would be wise to consider a parametric model, as underlined
in Bazzi et al. (2022) : ”A key challenge is to specify an appropriate and parsimonious function
that links the lagged dependent variables to future transition probabilities”.

As this work stems from an application needs, in order to move towards more realism, we
plan to extend the OD-HMM to the case where the hidden chain is a semi-Markov chain (Barbu
and Limnios 2008; Abdullah and Hoek 2022; Yu 2016). The sojourn time distribution will then
be generalized to any probability distribution and not only by a geometric one as in a HMM.
Then, it will be necessary to adapt the framework of Hidden Semi-Markov Models (HSMM) to
the case of OD-HSMM by modelling the impact of observations on sojourn time distribution.
Results on identifiability of HSMM and properties of the MLE (Barbu and Limnios 2008) will
also have to be adapted, as well as the EM algorithm for HSMM to the OD-HSMM (Bulla 2006;
Barbu and Limnios 2008; Yu 2016).
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A Generic identifiability

Let us consider two ODHMM, the first one with parameter θ and the second with parameter
θ1. They transition matrix and emission matrix are respectively Py and R, and P 1

y and R1. We

assume that their reformulations as a HMM lead to the same model, i.e. MHMM
θ “ MHMM

θ1

and we show that this implies that θ “ θ1.
If the two transition matrices PHMM

θ and PHMM
θ1 are identical we have that

$

’

’

’

&

’

’

’

%

PHMM
θ pp0, 0q, p0, 0qq “ PHMM

θ1 pp0, 0q, p0, 0qq

PHMM
θ pp0, 0q, p0, 1qq “ PHMM

θ1 pp0, 0q, p0, 1qq

...

PHMM
θ pp0, 0q, p0, Dqq “ PHMM

θ1 pp0, 0q, p0, Dqq

Using the definition of PHMM
θ in terms of the original OD-HMM, we obtain

$

’

’

’

&

’

’

’

%

P0p0, 0qRp0, 0q “ P 1
0p0, 0qR1p0, 0q

P0p0, 0qRp0, 1q “ P 1
0p0, 0qR1p0, 1q

...

P0p0, 0qRp0, Dq “ P 1
0p0, 0qR1p0, Dq

Adding all the lines leads to

P0p0, 0qr

D
ÿ

d“0

Rp0, dqs “ P 1
0p0, 0qr

D
ÿ

d“0

R1p0, dqs.

Since
D
ř

d“0

Rp0, dq “ 1 et
D
ř

d“0

R1p0, dq “ 1 we obtain P0p0, 0q “ P 1
0p0, 0q. If we replace P 1

0p0, 0q by

P0p0, 0q in the above system we obtain also that @d P t0, ..., Du, Rp0, dq “ R1p0, dq.
We can perform the same calculs with all possible values for pzt´1, yt´1, ztq and we will

obtain that Pyt´1
pzt´1, ztq “ P 1

yt´1
pzt´1, ztq and that @yt P t0, ..., Du, Rpzt, ytq “ R1pzt, ytq.

This establishes that if MHMM
θ “ MHMM

θ1 , then MODHMM
θ “ MODHMM

θ1 .
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B Calculations of EM algorithm

B.1 Complete likelihood expression

We recall the definition of the complete likelihood

Lpθ; z1:C,0:M , y1:C,0:M q “ PpY1:C,0:M “ y1:C,0:M , Z1:C,0:M “ z1:C,0:M |θq.

Since the C chains are i.i.d we have that

Lpθ; z1:C,0:M , y1:C,0:M q “

C
ź

c“1

PpZc,0:M “ zc,0:M , Yc,0:M “ yc,0:M |θq

“

C
ź

c“1

PpZc,M “ zc,M , Yc,M “ yc,M |Zc,0:M´1 “ zc,0:M´1, Yc,0:M´1 “ yc,0:M´1, θq

ˆ PpZc,0:M´1 “ zc,0:M´1, Yc,0:M´1 “ yc,0:M |θq

“ . . .

“

C
ź

c“1

M
ź

t“1

PpZc,t “ zc,t, Yc,t “ yc,t|Zc,t´1 “ zc,t´1, Yc,t´1 “ yc,t´1, θq

ˆ PpZc,0 “ zc,0, Yc,0 “ yc,0|θq

“

C
ź

c“1

M
ź

t“1

PpYc,t “ yc,t|Zc,t “ zc,t, θqPpZc,t “ zc,t|Zc,t´1 “ zc,t´1, Yc,t´1 “ yc,t´1, θq

ˆ PpYc,0 “ yc,0|Zc,0 “ zc,0, θqPpZc,0 “ zc,0, θq

Finally,

Lpy1:C,0:M , z1:C,0:M |θq “

C
ź

c“1

#

πpzc,0qRpzc,0, yc,0q

M
ź

c,t“1

Pyc,t´1pzc,t´1, zc,tqRpzc,t, yc,tq

+

.

B.2 Intermediate quantity calculation expression

We recall the definition of the intermediate quantity, where θpmq is the value of the parameters
at iteration m.

Qpθ|θpmqq “ E
”

lnpPpY1:C,0:M , Z1:C,0:M |θq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

.

We replace the complete likelihood by its expression and we take its logarithm:

lnpPpY1:C,0:M “ y1:C,0:M , Z1:C,0:M “ z1:C,0:M |θqq “ ln

˜

C
ź

c“1

#

πpzc,0qRpzc,0, yc,0q

M
ź

t“1

Pyc,t´1
pzc,t´1, zc,tqRpzc,t, yc,tq

+¸

“

C
ÿ

c“1

lnpπpzc,0qq ` lnp

M
ź

t“0

Rpzc,t, yc,tqq ` lnp

M
ź

t“1

Pyc,t´1
pzc,t´1, zc,tqq

“

C
ÿ

c“1

lnpπpzc,0qq `

M
ÿ

t“0

lnpRpzc,t, yc,tqq `

M
ÿ

t“1

lnpPyc,t´1
pzc,t´1, zc,tqq
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So

Qpθ|θpmqq “ E

«

C
ÿ

c“1

#

lnpπpZc,0q `

M
ÿ

t“0

lnpRpZc,t, Yc,tqq `

M
ÿ

t“1

lnpPYc,tpZc,t´1, Zc,tqq

+

| Y1:C,0:M “ y1:C,0:M , θpmq

ff

“

C
ÿ

c“1

#

E
”

lnpπpZc,0qq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

` E

«

M
ÿ

t“0

lnpRpZc,t, Yc,tqq | Y1:C,0:M “ y1:C,0:M , θpmq

ff

` E

«

M
ÿ

t“1

lnpPYc,t´1
pZc,t´1, Zc,tqq | Y1:C,0:M “ y1:C,0:M , θpmq

ff+

“

C
ÿ

c“1

!

E
”

lnpπpZc,0qq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

`

M
ÿ

t“0

E
”

lnpRpZc,t, Yc,tqq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

`

M
ÿ

t“1

E
”

lnpPYc,t´1
pZc,t´1, Zc,tqq | Y1:C,0:M “ y1:C,0:M , θpmq

ı

+

where

E
”

lnpπpZc,0qq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

“
ÿ

zc,0PΩZ

lnpπpzc,0qq ˆ PpZc,0 “ zc,0|Yc,0:M “ yc,0:M , θpmqq,

and

E
”

lnpRpZc,t, Yc,tqq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

“
ÿ

zc,tPΩZ

lnpRpzc,t, yc,tqq ˆ PpZc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq

In the same way, we have :

A “ E
”

lnpPYc,t´1
pZc,t´1, Zc,tqq | Y1:C,0:M “ y1:C,0:M , θpmq

ı

where

A “
ÿ

pzc,t,zc,t´1qPΩ2
Z

lnpPyc,t´1
pzc,t´1, zc,tqq

ˆ PpZc,t “ zc,t, Zc,t´1 “ zc,t´1|Yc,0:M “ yc,0:M , θpmqq

So, we finally obtain:

Qpθ|θpmqq “

C
ÿ

c“1

ÿ

zc,0PΩZ

ln pπpzc,0qqPpZc,0 “ zc,0|Yc,0:M “ yc,0:M , θpmqq

`

C
ÿ

c“1

M
ÿ

t“1

ÿ

pzc,t,zc,t´1qPΩ2
Z

ln
`

Pyc,t´1
pzc,t´1, zc,tq

˘

PpZc,t´1 “ zc,t´1, Zc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq

`

C
ÿ

c“1

M
ÿ

t“0

ÿ

zc,tPΩZ

ln pRpzc,t, yc,tqqPpZc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq

B.3 E Step calculations

During the E Step, we want to calculate the marginal probabilities of interest appeared in the
expression of Qpθ|θpmqq. We denote:

• ρ
pmq

c,t pztq “ PpZc,t “ zt|Yc,0:M “ yc,0:M , θpmqq,

• ξ
pmq

c,t pzt´1, ztq “ PpZc,t´1 “ zt´1, Zc,t “ zt|Yc,0:M “ yc,0:M , θpmqq.
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To obtain ρ
pmq

c,t pztq and ξ
pmq

c,t pzt´1, ztq, we introduce the following variables :

• α
pmq

c,t pztq, such as αc,tpztq “ PpYc,0:t “ yc,0:t, Zc,t “ zt|θ
pmqq ;

• β
pmq

c,t pztq, such as βc,tpztq “ PpYc,t`1:M “ yc,t`1:M |Zc,t “ zt, Yc,t “ yc,t, θ
pmqq.

B.3.1 Forward algorithm for computing the αs

We begin by expressing α0pzc,0q :

α
pmq

c,0 pzc,0q “ PpYc,0 “ yc,0, Zc,0 “ zc,0|θpmqq

“ PpYc,0 “ yc,0|Zc,0 “ zc,0, θ
pmqqPpZc,0 “ zc,0|θpmqq

“ Rpzc,0, yc,0qpmqπpzc,0qpmq

Now, @1 ď t ď M , we have :

α
pmq

c,t pzq “ PpYc,0:t “ yc,0:t, Zc,t “ z|θpmqq

“ PpYc,0:t “ yc,0:t|Zc,t “ z, θpmqqPpZc,t “ z|θpmqq

“ PpYc,t “ yc,t|Zc,t “ z, θpmqqPpYc,0:t´1 “ yc,0:t´1|Zc,t “ z, θpmqqPpZc,t “ z|θpmqq

“ PpYc,t “ yc,t|Zc,t “ zθpmqqPpYc,0:t´1 “ yc,0:t´1, Zc,t “ z|θpmqq

“ Rpmqpz, yc,tq ˆ
ÿ

zc,t´1PΩZ

PpYc,0:t´1 “ yc,0:t´1, Zc,t “ z, Zc,t´1 “ zc,t´1|θpmqq

“ Rpmqpz, yc,tqˆ
ÿ

zc,t´1PΩZ

PpZc,t “ z|Yc,0:t´1 “ yc,0:t´1, Zc,t´1 “ zc,t´1, θ
pmqqPpYc,0:t´1 “ yc,0:t´1, Zc,t´1 “ zc,t´1|θpmqq

“ Rpmqpz, yc,tq ˆ
ÿ

zc,t´1PΩZ

PpZc,t “ z|Yc,t´1 “ yc,t´1, Zc,t´1 “ zc,t´1, θ
pmqq ˆ α

pmq

c,t´1pzc,t´1q

“ Rpmqpz, yc,tq ˆ
ÿ

zc,t´1PΩZ

P pmq
yc,t´1

pzc,t´1, zq ˆ α
pmq

c,t´1pzc,t´1q.

So, we obtain the forward recursive expression

@1 ď t ď M,α
pmq

c,t pzq “ Rpmqpz, yc,tq
ÿ

zc,t´1PΩZ

α
pmq

c,t´1pzc,t´1qP pmq
yc,t´1

pzc,t´1, zq.

B.3.2 Backward algorithm for computing the βs

We start by initializing β
pmq

M pzq. By convention we set β
pmq

M pzq “ 1.

Now, @1 ď t ď M ´ 1, we have :

β
pmq

c,t pzq “ PpYc,t`1:M “ yc,t`1:M |Zc,t “ z, Yc,t “ yc,t, θ
pmqq

“
ÿ

zc,t`1PΩZ

PpYc,t`1:M “ yc,t`1:M , Zc,t`1 “ zc,t`1|Zc,t “ z, Yc,t “ yc,t, θ
pmqq

“
ÿ

zc,t`1PΩZ

PpYc,t`2:M “ yc,t`2:M |Yc,t`1 “ yc,t`1, Zc,t`1 “ zc,t`1, θ
pmqq

ˆ PpYc,t`1 “ yc,t`1, Zc,t`1 “ zc,t`1|Yc,t “ yc,t, Zc,t “ z, θpmqq

“
ÿ

zc,t`1PΩZ

β
pmq

c,t`1pzc,t`1qPpZc,t`1 “ zc,t`1|Yc,t “ yc,t, Zc,t “ z, θpmqq

ˆ PpYc,t`1 “ yc,t`1|Zc,t`1 “ zc,t`1, θ
pmqq

“
ÿ

zc,t`1PΩZ

β
pmq

c,t`1pzc,t`1q ˆ P pmq
yc,t

pz, zc,t`1q ˆ Rpmqpzc,t`1, yc,t`1q.
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Finally we obtain the backward recursive expression

@1 ď t ď M ´ 1, β
pmq

c,t pzq “
ÿ

zc,t`1PΩZ

Rpmqpzc,t`1, yc,t`1qβ
pmq

c,t`1pzc,t`1qP pmq
yc,t

pz, zc,t`1q.

B.3.3 Expression of quantities ρ and ξ in terms of α and β :

We have
ρ

pmq

c,t pzq “ PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq.

and we can express it as follows :

ρ
pmq

c,t pzq “
PpZc,t “ z, Yc,0:M “ yc,0:M |θpmqq

PpYc,0:M “ yc,0:M |θpmqq
.

In the same way, we have :

ξ
pmq

c,t pz1, z1q “ PpZc,t´1 “ z1, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq,

which we can transform as follows :

ξ
pmq

c,t pz1, z1q “
PpZc,t´1 “ z1, Zc,t “ z1, Yc,0:M “ yc,0:M |θpmqq

PpYc,0:M “ yc,0:M |θpmqq
.

First, we express the quantity PpYc,0:M “ yc,0:M |θpmqq, which is the likelihood, in terms of α
and β. We have :

PpYc,0:M “ yc,0:M |θpmqq “
ÿ

zc,tPΩZ

PpYc,0:M “ yc,0:M , Zc,t “ zc,t|θ
pmqq

“
ÿ

zc,tPΩZ

PpYc,0:M “ yc,0:M |Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t|θ

pmqq

“
ÿ

zc,tPΩZ

PpYc,0:t “ yc,0:t|Zc,t “ zc,t, θ
pmqqPpYc,t`1:M “ yc,t`1:M |Zc,t “ zc,t, θ

pmqq

ˆ PpZc,t “ zc,t, θ
pmqq

“
ÿ

zc,tPΩZ

β
pmq

c,t pzc,tq ˆ PpYc,0:t “ yc,0:t|Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t, θ

pmqq

“
ÿ

zc,tPΩZ

β
pmq

c,t pzc,tq ˆ PpYc,0:t “ yc,0:t, Zc,t “ zc,t|θ
pmqq

“
ÿ

zc,tPΩZ

β
pmq

c,t pzc,tq ˆ α
pmq

c,t pzc,tq.

So, we have

PpYc,0:M “ yc,0:M |θpmqq “
ÿ

zc,tPΩZ

α
pmq

c,t pzc,tqβ
pmq

c,t pzc,tq.

• Expression of ρ:

Let us denote A “ PpZc,t “ zc,t, Yc,0:M “ yc,0:M |θpmqq. We can decompose A as follows:

A “ PpYc,0:M “ yc,0:M |Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t|θ

pmqq

“ PpYc,0:t “ yc,0:t|Zc,t “ zc,t, θ
pmqqPpYc,t`1:M “ yc,t`1:M |Zc,t “ zc,t, Yc,t “ yc,t, θ

pmqqPpZc,t “ zc,t, θ
pmqq

“ β
pmq

c,t pzc,tq ˆ PpYc,0:t “ yc,0:t|Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t, θ

pmqq

“ β
pmq

c,t pzc,tq ˆ PpYc,0:t “ yc,0:t, Zc,t “ zc,t|θ
pmqq

“ β
pmq

c,t pzc,tqα
pmq

c,t pzc,tq.
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So, we deduce that :

ρ
pmq

c,t pzq “
α

pmq

c,t pzqβ
pmq

c,t pzq
ř

zPΩZ

α
pmq

c,t pzqβ
pmq

c,t pzq
.

• Expression of ξ:
Let us denote A1 “ PpZc,t´1 “ zc,t´1, Zc,t “ zc,t, Yc,0:M “ yc,0:M |θpmqq. We can decompose
A1 as follows:

A1 “ PpYc,0:t´2 “ yc,0:t´2, Yc,t:M “ yc,t:M |Zc,t´1 “ zc,t´1, Zc,t “ zc,t, Yc,t´1 “ yc,t´1, θ
pmqq

ˆ PpZc,t´1 “ zc,t´1, Zc,t “ zc,t, Yc,t´1 “ yc,t´1|θpmqq

“ PpYc,0:t´2 “ yc,0:t´2|Yc,t´1 “ yc,t´1, Zc,t´1 “ zc,t´1, θ
pmqqPpZc,t´1 “ zc,t´1, Yc,t´1 “ yc,t´1|θpmqq

ˆ PpYc,t:M “ yc,t:M |Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t|Zc,t´1 “ zc,t´1, Yc,t´1 “ yc,t´1, θ

pmqq

“ PpYc,0:t´1 “ yc,0:t´1, Zc,t´1 “ zc,t´1|θpmqqPpYc,t:M “ yc,t:M |Zc,t “ zc,t, θ
pmqq ˆ Pyc,t´1

pzc,t´1, zc,tq

“ α
pmq

c,t´1pzc,t´1qP pmq
yc,t´1

pzc,t´1, zc,tqPpYc,t “ yc,t|Zc,t “ zc,t, θ
pmqq

ˆPpYc,t`1:M “ yc,t`1:M |Zc,t “ zc,t, Yc,t “ yc,t, θ
pmqq

“ α
pmq

c,t´1pzc,t´1qP pmq
yc,t´1

pzc,t´1, zc,tqR
pmqpzc,t, yc,tqβ

pmq

c,t pzc,tq.

Finally, we obtain :

ξ
pmq

c,t pzc,t´1, zq “
α

pmq

c,t´1pzc,t´1qP
pmq
yc,t´1pzc,t´1, zqRpmqpz, yc,tqβ

pmq

c,t pzq
ř

zPΩZ

α
pmq

c,t pzqβ
pmq

c,t pzq
.

B.4 Step M - Solving the maximization problem

We want to solve the following problem of maximization :

θpm`1q “ argmax
θ

Qpθ|θpmqq,

under the following constraints:

•
ř

ztPΩZ

Pyc,t´1
pzt´1, ztq “ 1 ;

•
ř

ytPΩY

Rpzc,t, ytq “ 1.

(We recall that we do not estimate πpq.)

B.4.1 Writing the Lagrangian of the problem

We write the Lagrangian of the problem :

L “

C
ÿ

c“1

ÿ

zc,0PΩZ

ln pπpzc,0qqPpZc,0 “ zc,0|Yc,0:M “ yc,0:M , θpmqq ´ η1p
ÿ

z0PΩZ

πpz0q ´ 1q

`

C
ÿ

c“1

M
ÿ

t“1

ÿ

pzc,t,zc,t´1qPΩ2
Z

ln
`

Pyc,t´1
pzc,t´1, zc,tq

˘

PpZc,t´1 “ zc,t´1, Zc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq

´ η2pyc,t´1, zc,t´1qp
ÿ

z1PΩZ

Pyc,t´1
pzc,t´1, z

1q ´ 1q

`

C
ÿ

c“1

M
ÿ

t“0

ÿ

zc,tPΩZ

ln pRpzc,t, yc,tqqPpZc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq ´ η3pzc,tqp
ÿ

yPΩY

Rpzc,t, yq ´ 1q
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B.4.2 Resolution

• For P
pm`1q
y pz, z1q :

BL
BPypz, z1q

“ 0 ô

C
ř

c“1

M
ř

t“1
PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1py“yc,t´1q

Pypz, z1q
“ η2py, zq

ô

C
ÿ

c“1

M
ÿ

t“1

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq “ η2py, zq

ˆ Pypz, z1q

ñ

C
ÿ

c“1

M
ÿ

t“1

ÿ

z1PΩZ

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq “ η2py, zq

ˆ
ÿ

z1PΩZ

Pypz, z1q

ô

C
ÿ

c“1

M
ÿ

t“1

ÿ

z1PΩZ

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq “ η2py, zq

So, we obtain :

P pm`1q
y pz, z1q “

C
ř

c“1

M
ř

t“1
PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq

C
ř

c“1

M
ř

t“1

ř

z1PΩZ

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq

.

• For Rpz, yqpm`1q :

BL
BRpz, yq

“ 0 ô

C
ř

c“1

M
ř

t“1
PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq1pyc,t“yq

Rpz, yq
“ η3pzq

ô

C
ÿ

c“1

M
ÿ

t“1

PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq1pyc,t“yq “ η3pzqRpz, yq

ñ

C
ÿ

c“1

M
ÿ

t“1

ÿ

yPΩY

PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq1pyc,t“yq “ η3pzq
ÿ

yPΩY

Rpz, yq

ô

C
ÿ

c“1

M
ÿ

t“1

PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq
ÿ

yPΩY

1pyc,t“yq “ η3pzq

ô

C
ÿ

c“1

M
ÿ

t“1

PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq “ η3pzq

So, we have :

Rpz, yqpm`1q “

C
ř

c“1

M
ř

t“1
PpZc,t “ z|yc,0:M “ yc,0:M , θpmqq1pyc,t“yq

C
ř

c“1

M
ř

t“1
PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq

.
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