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Non-parametric Observation Driven Hidden Markov Model

ABSTRACT

Hidden Markov models (HMM) are used in different fields to study the dynamics of

a process that cannot be directly observed. However, in some cases, the structure

of dependencies of a HMM is too simple to describe the dynamics of the hidden

process. In particular, in some applications in finance and in ecology, the transition

probabilities of the hidden Markov chain can also depend on the current observation.

In this work, we are interested in extending the classical HMM to this situation.

We refer to the extended model as the Observation Driven Hidden Markov Model

(OD-HMM). We present a complete study of the general non-parametric OD-HMM

with discrete and finite state spaces. We study its identifiability and the consistency

of the maximum likelihood estimators. We derive the associated forward-backward

equations for the E-step of the EM algorithm. The quality of the procedure is tested

on simulated datasets. We illustrate the use of the model on an application on

the study of annual plant dynamics. This work establishes theoretical and practical

foundations for this framework that could be further extended to the parametric

context in order to simplify estimation, and to hidden semi-Markov models for more

realism.
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1. Introduction

Hidden Markov Models (HMM, Cappé et al. 2005) are used in many different fields

such as, e.g., medicine (Le Strat and Carrat 1999) to analyze epidemiological surveil-

lance data, signal processing (Gales and Young 2008) for speech recognition, ecology

(McClintock et al. 2020) to reconstruct hidden or partially observed ecological dynam-

ics, bio-informatics (Yoon 2009) for the analysis of biological sequences, and finance

(Engel and Hamilton 1990) to predict the regime of a monetary system thanks to the

exchange rate. HMMs make it possible to study the dynamics of a process that cannot

be directly observed. Indeed, in the above domains, the only observation available is

an indirect information on the process of interest (e.g., symptoms of a disease), or an-

other process driven by the hidden one (e.g., accelerometer data used to classify animal
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behavior Leos-Barajas et al. 2017). In the field of HMM, results have been established

on model identifiability (Allman et al. 2009; Cappé et al. 2005) and on the asymp-

totic properties of the Maximum Likelihood Estimator (MLE, Cappé et al. 2005). In

practice, the MLE is computed using the Baum-Welch algorithm (Baum et al. 1970),

a special case of the Expectation-Maximization algorithm for HMM (Dempster et

al. 1977).

The HMM relies on two assumptions: the hidden process is modeled by a Markov

chain, and the observations are independent, given the hidden chain. In some cases,

this structure of dependencies is too simple to describe the dynamics of the hidden

system. In particular, the next hidden state could depend not only on the current

hidden state but also on the current observation, as we will see in some of the examples

below. In this work we are interested in extending the classical HMM to this situation.

We refer to the extended model as the Observation Driven Hidden Markov Model

(OD-HMM) exemplified below. Theoretical results and inference algorithms for HMM

do not directly apply to the OD-HMM, mainly because the transition probabilities

are not constant across time in the OD-HMM and, instead, depend on the current

observation. For this new dependency structure, it is necessary to study conditions for

model identifiability and properties of the MLE. Furthermore, the forward-backward

equations of the Baum-Welch algorithm must be adapted.

To highlight the usefulness of the OD-HMM, we present two applications where

the hidden dynamics are driven by observations, one in ecology and one in finance.

In ecology, the structure of the classical HMM is not always suitable to study the

development of a partially observable species, in particular when the hidden and the

observed processes represent two different life stages of the species, one dormant and

one non-dormant. Let us consider the case of plants. In practice, we can only observe

grown plants since the seeds in the soil are not attainable. The seeds remain in the

soil for several years. This makes the use of a dynamical model with a hidden state,

like a HMM, relevant. However, new seeds produced by the grown plants enter the soil

each year. A classical HMM does not model this latter event. The OD-HMM is better

suited.
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The OD-HMM can also be used in finance as an extension of the Hamilton Markov-

switching Model (Hamilton 1989), to study series of financial data that oscillate be-

tween two regimes. The characteristics of the observed financial data (e.g., mean,

variance) depend on the hidden regime. In Engel and Hakkio (1996), the authors pro-

pose a study of the exchange rate of the European monetary system that can either

be in a ’stable’ or ’volatile’ regime. The dependence structure of this model is similar

to that of the OD-HMM since the exchange rate observed at time t ´ 1 influences the

regime it is in at time t.

An extension of HMM to the case where the current observation influences the

transition of the hidden chain has already been considered in two contexts. First, in the

two above-mentioned applied domains (Engel and Hakkio 1996; Pluntz et al. 2018a),

specific OD-HMMs have been designed, in a parametric form, in order to estimate

meaningful parameters for the application. Another set of works concerns the study

of the properties of the MLE in models more general than OD-HMMs, but without

providing a generic operational algorithm for model estimation (Ailliot and Pène 2015;

Pouzo et al. 2022). Therefore, no complete tool kit exists at this time for a generic

OD-HMM, providing model identifiability, theoretical properties of the MLE and an

efficient implementation of the adaptation of the Baum-Welch algorithm to this model.

More precisely, the OD-HMM has been used in ecology to model the dynamics

of annual plants (Pluntz et al. 2018a). In Pluntz et al. (2018a), the proposed model

is a parametric model for the presence/absence of seeds as hidden states and the

presence/absence of grown plants as observations. The main drivers of plants dynamics

define the parameters. A simplification assumption considers a fixed probability of

seed production equal to 1. Parameter estimation is performed by reformulating the

model into the framework of classical HMM and applying the Baum-Welch algorithm.

This article presents a parameterized OD-HMM dedicated to annual plant dynamics.

Similarly, in Engel and Hakkio (1996), the model is specific to the financial application,

with two hidden states.

From a theoretical point of view, a multitude of resources are available concerning

the consistency of MLE for the classical HMM (Baum and Petrie 1966; Leroux 1992;
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Gámiz et al. 2023), which we could have adapted to the OD-HMM case. However, other

theoretical works on the properties of the MLE exist for more complex dependency

structures between observations and hidden states than for the classical HMM (Ailliot

and Pène 2015; Pouzo et al. 2022), and that include the OD-HMM as a particular

case. In Ailliot and Pène (2015), the authors define the framework of non-homogeneous

Markov-switching auto-regressive models and propose a study of the consistency of the

MLE of this general model where the current observation and hidden state can depend

on past observations on several time steps, as well as some applications in ecology. In

this work, the state spaces can either be continuous or discrete but the results are given

in the continuous case. The dependency structure of the OD-HMM is a particular case

of the general framework of Ailliot and Pène (2015), even though it is not considered

in their article. It is therefore possible to derive under which assumptions consistency

of MLE for the OD-HMM is ensured, by traducing the generic results in Ailliot and

Pène (2015) to the OD-HMM case. However, it remains to be done. In Pouzo et

al. (2022), the author established sufficient conditions for the consistency and the

local asymptotic normality of the MLE for a Markov regime switching model where

transition probabilities can depend on covariates. Their results are established in the

case where the observation state space is continuous and the hidden state space is

discrete. Parameter estimation is only performed for a particular parametric version

of the OD-HMM.

In conclusion, the works related to the OD-HMM dependency structure are either

based on model parameters dedicated to a particular application (plant dynamics or

finance), or on theoretical results for more general models or with continuous state

space for the observed process. These latter ones can be used to derive consistency

results for a general, non-parametric OD-HMM, but they do not provide an operational

estimation algorithm. We can mention here the work of (Yujian 2005) where the OD-

HMM was introduced as a HMM with states depending on observations. However,

although the estimation procedure is described, there are no results on the asymptotic

consistency of the MLE and the simulation study is very limited with no available

code. The contribution of our work is a complete tool kit for the non-parametric OD-
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HMM with finite state spaces that encompasses both its theoretical study (model

identifiability and MLE consistency) and the design of an EM algorithm for MLE

computation, with its implementation made available to the scientific community.

We begin in Section 2 by defining this model and studying its identifiability. Then,

in Section 3, we study the consistency of the MLE, relying on the results of Ailliot

and Pène (2015). We also provide the necessary modifications compared to the EM

algorithm for HMM, in the Expectation step, and all detailed calculations to obtain

the associated EM algorithm. In Section 4, we perform several simulation examples

on simulated data in order to evaluate the quality of the EM estimators. Finally, in

Section 5, we use a real data set to illustrate how the model can be exploited to

estimate the mean duration of a seed bank in the soil.

2. The non-parametric OD-HMM

2.1. Model definition

Let us consider two sets of random variables, indexed by (discrete) time: Yt, the

observation at time t, with state space ΩY “ t1, ..., Du, and Zt, the hidden state

at time t, with state space ΩZ “ t1, ..., Su. We study the evolution of the hidden

and observed processes between the time t “ 0 and t “ M , where 1 ď M ă 8.

We denote the vector of all observations by Y0:M “ pY0, Y1, Y2, ..., YM q. In the

same way, the vector of all the hidden states, between t “ 0 and t “ M , is de-

noted as Z0:M “ pZ0, Z1, ..., ZM q. In the most common version of a HMM, whose

graphical representation is shown in Figure 1, left side, pZtq is a Markov chain and

PpY0:M “ y0:M | Z0:M “ z0:M q “
śM

t“0 PpYt “ yt | Zt “ ztq
1.

We consider here an extension of the classical HMM, where the observation Yt´1

has an influence on the next hidden variable Zt. This corresponds to the graphical

representation of conditional independencies shown in Figure 1, right side.

Definition 2.1 (OD-HMM). Let Y “ pYtqtPN be random variables mutually indepen-

1By convention, we use uppercase letters, Zt and Yt, for random variables and lowercase letters, zt and yt,
for realizations.
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Zt´1 Zt Zt`1

Yt´1 Yt Yt`1

Zt´1 Zt Zt`1

Yt´1 Yt Yt`1

Figure 1. Graphical representation of conditional independencies in the chain pZt, Ytq for an HMM (left) and
for an OD-HMM (right).

dent conditionally to a sample path of the process Z “ pZtqtPN, such that Yt depends

only on Zt and not all the path, i.e, for all y0:t P pΩY qt`1, and all z0:t P pΩZqt`1, the

following relation holds true :

PpYt “ yt | Z0:t “ z0:t, Y0:t´1 “ y0:t´1q “ PpYt “ yt | Zt “ ztq.

The chain pZt, YtqtPN is said to follow an Observation Driven HMM (OD-HMM) if, in

addition, the process Z “ pZtqtPN satisfies the following property:

PpZt “ zt | Z0:t´1 “ z0:t´1, Y0:t´1 “ y0:t´1q “ PpZt “ z | Zt´1 “ zt´1, Yt´1 “ yt´1q.

As a consequence, in a OD-HMM, the joint distribution of pZ0:M , Y0:M q is fully

determined by the following distributions. The initial probability is denoted πpz0q,

where:

@z0 P ΩZ , πpz0q “ PpZ0 “ z0q.

The emission probability is denoted Rpzt, ytq, where:

@zt P ΩZ , yt P ΩY , Rpzt, ytq “ PpYt “ yt|Zt “ ztq.

The transition probability is denoted Pyt´1
pzt´1, ztq, where:

@pzt, zt´1q P Ω2
Z , yt´1 P ΩY , Pyt´1

pzt´1, ztq “ PpZt “ zt|Zt´1 “ zt´1, Yt´1 “ yt´1q.
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Note that due to the influence of observations on hidden states, the transition

probability depends on the observation yt´1. Therefore a specificity of this model is

that there are as many transition matrices as observed states (D), as opposed to the

classical HMM. In this sense, the OD-HMM is non-homogeneous.

The model is non-parametric in the sense that there is no restriction of the val-

ues of the transition and the emission matrices (this can sometimes also be referred

to as a fully parametric model). Even though the model is non-parametric, for the

sake of simplicity, we will refer to these distributions as the model parameters. Since

they are all probabilities with a constraint to add up to one, the set of parame-

ters is θ “

´

pPypz1, zq, y P ΩY , z
1 P ΩZ , z P ΩZztSuq , pRpz, yq, z P ΩZ , y P ΩY ztDuq

¯

.

It takes values in Θ “ r0, 1s|ΩZ |p|ΩZ |´1q|ΩY |`p|ΩY |´1q|ΩZ |. We do not include the initial

distribution π because we will not consider its MLE estimation.

To illustrate the difference in the behavior of the HMM and the OD-HMM, we

plot two simulated hidden chains in Figure 2. The first one, in solid line, is simulated

according to an OD-HMM with two possible states for the observation and for the

hidden chain. The two transition matrices and the emission matrix are as follows:

P0 “

¨

˝

0.2 0.8

0.8 0.2

˛

‚, P1 “

¨

˝

0.8 0.2

0.2 0.8

˛

‚, R “

¨

˝

0.8 0.2

0.2 0.8

˛

‚.

The second one, in dashed line, is simulated with a HMM, ignoring that the tran-

sition can depend on the observation, and with a transition matrix equal to the first

transition matrix of the OD-HMM. The emission matrix is the same as above.

State 0

State 1

0 10 20 30 40 50
Time

S
ta

te

HMM

OD−HMM

Figure 2. Realization of hidden chains simulated from an OD-HMM and from a HMM. The first one (solid

line) is simulated according to an OD-HMM with two possible states for the observation and, therefore, two
transition matrices. The second one (dashed line) is simulated with a HMM with a transition matrix equal to
the first transition matrix of the OD-HMM. The emission matrix is the same for the two simulations.
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The simulations demonstrate the difference between the two models in terms of

sojourn time in a given state. Specifically, the OD-HMM simulation shows longer

sojourn time in state 1.

Note that, as in a classical HMM, the hidden chain of a OD-HMM is Markovian.

Proposition 2.2 (Markovianity of the hidden chain in a OD-HMM). If pZt, YtqtPN fol-

lows an OD-HMM model, then the hidden chain pZtqtPN is Markovian. The associated

transition probability is equal to
ř

yt´1PΩY

PpZt “ zt|Yt´1 “ yt´1, Zt´1 “ zt´1qPpYt´1 “

yt´1|Zt´1 “ zt´1q.

See Appendix A for the demonstration.

2.2. Generic identifiability

As explained in Allman et al. (2009), the requirement of identifiability may be too strict

when considering statistical parameter estimation. Indeed, for some models, only a

subset of parameters of measure zero may not be identifiable and in practice estimation

will perform well. We therefore consider generic identifiability and we provide sufficient

conditions to ensure the generic identifiability of the parameters of the OD-HMM, by

an application of the results in Allman et al. (2009). We first recall the definition of

generic identifiability.

Definition 2.3 (Generic identifiability). Let FpΘq “ tPθ, θ P Θu be a family of

probability distributions parameterized by θ. We say that the model’s parameters θ

are generically identifiable if the elements of Θ that do not satisfy Pθ “ Pθ1 ùñ θ “ θ1

are of measure zero in the parameter space.

This means that any observed dataset has a probability of one of being drawn

from a distribution with identifiable parameters. In Allman et al. (2009), the authors

established the following proposition on generic identifiability for HMM.

Proposition A (Generic identifiability for HMM (Allman et al. 2009)2). The param-

2Propositions from the literature are numbered by capital letters, while propositions corresponding to new
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eters of a HMM with r hidden states and k observable states are generically identifiable

from the marginal distribution of 2L`1 consecutive variables provided that L satisfies:

¨

˝

L ` k ´ 1

k ´ 1

˛

‚ě r.

In order to establish sufficient conditions for the generic identifiability of the OD-

HMM parameters θ, we first reformulate the model MODHMM
θ into an equivalent

HMM, MHMM
θ , with the dimension of the state space of the hidden variable being

r “ |ΩZ | ˆ |ΩY | and an observed state space of dimension k “ |ΩY |, and whose tran-

sition and emission probabilities are functions of θ. Using Proposition A, we establish

sufficient conditions for the generic identifiability of the parameters of MHMM
θ . We

then establish that if θ ‰ θ1, then MHMM
θ and MHMM

θ1 are not the same model.

Therefore the condition for generic identifiability also holds for the original OD-HMM

model, MODHMM
θ .

Let us first present the reformulation of a OD-HMM model pZt, Ytq as a HMM. The

hidden variable is Ht “ pZt, Ytq P ΩZ ˆ ΩY and the observed variable is a copy of Yt,

i.e., Ot “ Yt P ΩY . The couple pHt, Otq satisfies the definition of a HMM since Ht is a

Markov chain, and conditionally to pHtq, the Ots are mutually independent and each

Ot depends only on Ht. We now express PHMM, the transition matrix, and RHMM, the

emission matrix of MHMM
θ , using the parameters of MODHMM

θ :

PHMM
θ pht´1, htq “ Rpzt, ytqPyt´1

pzt´1, ztq, RHMM
θ pht, otq “ 1pyt“otq.

Then, using Proposition A, we know that the parameters of MHMM
θ (i.e., the ele-

ments of the transition matrix PHMM
θ and the emission matrix RHMM

θ ) are generically

results are numbered by Arabic numbers.
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identifiable when the observed chain is longer than 2L ` 1, where L satisfies:

ˆ

L ` |ΩY | ´ 1

|ΩY | ´ 1

˙

ě |ΩZ ||ΩY |.

It is easy to show (see Appendix B) that two different parameters θ and θ1 of an OD-

HMM that lead to the same transition matrix PHMM, and the same emission matrix

RHMM, are equal (θ “ θ1). Therefore, generic identifiability also holds for MODHMM
θ .

Proposition 2.4 (Generic identifiability for OD-HMM). The parameters of an OD-

HMM with |ΩZ | hidden states and |ΩY | observable states are generically identifiable

from the marginal distribution of 2L`1 consecutive variables, provided that L satisfies:

ˆ

L ` |ΩY | ´ 1

|ΩY | ´ 1

˙

ě |ΩZ ||ΩY |.

Example 2.5. For |ΩZ | “ 2 and |ΩY | “ 2, the parameters θ are identifiable as soon

as the chain has more than 2L ` 1 “ 7 observations. Indeed,

ˆ

L ` 2 ´ 1

2 ´ 1

˙

ě 2 ˆ 2 ô L ě 3.

Example 2.6. For |ΩZ | “ 7 and |ΩY | “ 3, the parameters θ are identifiable as soon

as the chain has more than 2L ` 1 “ 11 observations. Indeed,

ˆ

L ` 3 ´ 1

3 ´ 1

˙

ě 7 ˆ 3 ô L ě 5.

The condition on the minimal length of the observation sequence is easily satisfied.

Furthermore, it is easy to see that when the cardinal of ΩZ increases (while |ΩY |

remains constant), the minimal value of L satisfying the condition also increases. On

the contrary, when |ΩY | increases (while |ΩZ | remains constant), this value decreases.
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3. Maximum likelihood estimation

We are interested in the calculation of the Maximum Likelihood Estimator (MLE),

denoted θ̂M,z0 (or, for the sake of simplicity, θ̂), defined by the following formula:

θ̂ “ argmax
θ

Lpθ; y0:M ; z0q,

where Lpθ; y0:M ; z0q “ PθpY0:M “ y0:M | Z0 “ z0q is the likelihood.

3.1. Consistency

We work on a probability space pΩZ ˆ ΩY ,PpΩZ ˆ ΩY q,Pθ, θ P Θq together with the

counting measure µ.

As shown in Ailliot and Pène (2015, Theorem 2), we can obtain the consistency

of the MLE of a more general model, referred to as the Non-Homogeneous Markov-

Switching Auto-Regressive model (NHMS-AR model), in which the state spaces can

be either continuous or discrete, but the results are given in the continuous case. The

NHMS-AR model is based on the following two assumptions:

‚ The distribution of Zt, conditionally to tZt1 “ zt1 ut1ăt and tYt1 “ yt1 ut1ăt, only

depends on yt´s:t´1 and zt´1, where s P t1, ..., tu.

‚ The distribution of Yt, conditionally to tZt1 “ zt1 ut1ăt and tYt1 “ yt1 ut1ăt, only

depends on yt´s:t´1 and zt.

The OD-HMM is a particular case of the NHMS-AR model, where s “ 1 and

where yt does not depend on yt´1. Moreover, the chain pZtq is non-homogeneous with

respect to time because Py depends on y P ΩY .

Therefore, to take advantage of the results from Ailliot and Pène (2015) in the case

of the OD-HMM, we consider the transition matrix of the couple pZt, Ytq denoted P̃θ
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and defined by:

@pi, aq, pj, bq P ΩZ ˆ ΩY , P̃θpi, a; j, bq “ Papi, j; θqRpj, b; θq.

Thus, the coupled Markov chain pZt, YtqtPN is homogeneous, with the transition

operator P̃θ, and the stationary distribution π̃θ of pZt, Ytq. Moreover, the probability

and the expectation, corresponding to the stationary distribution π̃θ, are denoted,

respectively, as Pθ and Eθ, and are, respectively, Pθp¨q “ Pθ,π̃θ
p¨q, and Eθp¨q “ Eθ,π̃θ

p¨q.

Finally, the marginal distribution of the stationary distribution Pθ of pY q, is referred

to as PY
θ .

The direct transposition of Theorem 2 with its assumptions, from Ailliot and Pène

(2015), to the case of the OD-HMM, with our notations, takes the form of the following

Proposition B with its related assumptions (we will check if they are always satisfied

or not for the OD-HMM in a second step):

(A1) Θ is a compact space;

(A2) The chain pZt, YtqtPN is ergodic with an invariant probability for each θ P Θ

denoted π̃θ;

(A3) The elements of Pθ are absolutely continuous with respect to Pθ for all θ P Θ;

(A4) The elements of Py and R are continuous in θ, for any y in ΩY .

Under the above assumptions, Theorem 2 from Ailliot and Pène (2015) leads to the

following proposition:

Proposition B (Consistency of the NHMS-AR model MLE (Ailliot and Pène 2015),

in the particular case of the OD-HMMMLE). Let θ˚ be the true value of the parameter

θ. Under the model assumptions (A1) - (A4) and the following ones:

(1) 0 ă Py,´ :“ min
θ,z0,y0,z1

Py0
pz0, z1; θq ď Py,` :“ max

θ,z0,y0,z1
Py0

pz0, z1; θq ă 8;

(2) B´ “ Eθ˚ r| lnpmin
θ

ř

z0PΩZ

Rpz0, Y0; θq|s ă 8;

(3) B` “ Eθ˚ r| lnpmax
θ

ř

z0PΩZ

Rpz0, Y0; θq|s ă 8;

(4) @θ P Θ,
ř

zPΩZ

Rpz, Y0q ă 8, Pθ˚-a.s.;
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(5) @θ P Θ, for µ-a.e., and for any probability α on ΩZˆΩY , lim
kÝÑ8

||αP̃ k´π̃θ||1 “ 0,

where the || ¨ ||1 can be either the L1 norm or the total variation norm, which

differ by a multiplicative constant 1{2.

Then, for any z0 P ΩZ , the limit values of the MLE θ̂M,z0, as M ÝÑ 8, are contained

in the space tθ P Θ;PY
θ “ PY

θ˚ u Pθ˚-a.s..

We now focus on the assumptions (A1) to (A4) and (1) to (5) and we check if they

are always satisfied by a OD-HMM, in order to propose a version of the above propo-

sition fully adapted to the OD-HMM. First we introduce the following proposition, an

intermediate result about the ergodicity of the chain pZt, Ytq.

Proposition 3.1. If the Markov chain pZtqtPN is ergodic, then the Markov chain

pZt, YtqtPN is ergodic too and its stationary distribution is referred to as π̃θ.

Proof. From ergodicity of pZtq, for any i, j P ΩZ there exists a finite sequence of states

(a path with positive probabilities) i Ñ i1 Ñ i2 Ñ ... Ñ ik Ñ j. As
ř

yPΩY
Rpi, yq “ 1,

there exists at least ai P ΩY such that Rpi, aiq ą 0, then the path pi, aiq Ñ pi1, ai1q Ñ

... Ñ pik, aikq Ñ pj, ajq exists. So, the Markov chain pZt, Ytq is irreducible.

Now to prove the aperiodicity of the chain pZt, Ytq, we have, since pZtq is ergodic,

that there exists a state, say i0 P ΩZ , such that two different closed paths exist, i.e.,

i0 Ñ i1 Ñ ... Ñ ik Ñ i0 and i0 Ñ i
1

1 Ñ ... Ñ i
1

m Ñ i0 such that GCDtk`1,m`1u “ 1.

We also have pi0, ai0q Ñ pi1, ai1q Ñ ... Ñ pik, aikq Ñ pi0, ai0q and pi0, ai0q Ñ pi
1

1, a
1

i1
q Ñ

... Ñ pi
1

m, a
1

im
q Ñ pi0, ai0q for which we also have the same lengths k`1 andm`1, so the

Markov chain pZt, Ytq is aperiodic and, finally, since it is finite, it will be ergodic.

Remark 1. In the case where all the elements of the transition matrices Py are

strictly positive, the Markov chain pZtq is ergodic. Consequently, the assumption of

Proposition 3.1 is satisfied, and, consequently, the Markov chain pZ, Y q is ergodic.

Remark 2. Moreover, for a HMM, if the elements of the transition matrix P are not

necessary strictly positive, but, the Markov chain pZtq is assumed to be ergodic, then
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there exists an integer n0 ě 1 such that :

@n ě n0,@i, j P ΩZ , P
npi, jq ą 0.

Remark 3. In the case of the OD-HMM, since we have a finite number of transition

matrices Py, y P ΩY , there exists an integer n0 ě 1 such that :

@n ě n0,@i, j P ΩZ ,@y P ΩY , P
n
y pi, jq ą 0.

Using the intermediate Proposition 3.1 and the model assumptions, we will now

examine if the assumptions leading to Proposition B are satisfied for the OD-HMM.

We first consider the model assumptions (A1) to (A4). Assumption (A1) is obviously

satisfied by a OD-HMM. To satisfy assumption (A2), we assume that the Markov

chain pZtq is ergodic, and on the basis of Proposition 3.1, the chain pZ, Y q is ergodic

as well. Assumption (A3) is satisfied since the state spaces ΩZ and ΩY are discrete.

Assumption (A4) is satisfied in the discrete and non-parametric case, which is the case

studied here. Each element of the Py and R matrices is continuous with respect to θ.

Thus, to satisfy assumptions (A1) to (A4), we just have to assume that the Markov

chain pZtq is ergodic.

Let us now consider assumptions (1) to (5) in Proposition B. Assumption (1) is

satisfied when all the elements of the transition matrices Py are positive or, at least,

asymptotically for a value n ě n0, as explained in Remark 1 and Remark 3. Besides,

since the transition matrices are stochastic, max
θ,z0,y0,z1

Py0
pz0, z1; θq ď 1. Assumptions

(2), (3) and (4) are satisfied since any column of the emission matrix R includes at

least one non-zero element. Indeed, if a column of the emission matrix R were equal to

zero, it could be removed. Therefore, the quantity
ř

z0PΩZ

Rpz0, Y0; θq is strictly positive

and finite. Assumption (5) is satisfied because the chain pZt, YtqtPN is ergodic according

to Proposition 3.1. Moreover, the convergence is exponentially fast.

We finally obtain the following proposition concerning the consistency of the MLE

of the OD-HMM. This proposition holds under the model assumption that pZtq is
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ergodic.

Proposition 3.2 (Consistency of the OD-HMM MLE). Let θ˚ be the true value of

the parameters. For all z0 P ΩZ , the limit values of the MLE θ̂M,z0, as M ÝÑ 8, are

contained in the space tθ P Θ;PY
θ “ PY

θ˚ u Pθ˚-a.s..

Note that in the parametric case (still with discrete and finite state spaces), it will

be necessary to study assumption (A4) in order to obtain conditions to ensure the

consistency of the OD-HMM MLE estimator.

3.2. EM algorithm

We now present how to compute the MLE of θ using the Expectation-Maximization

algorithm (EM, Dempster et al. 1977). To take the influence of the previous obser-

vation Yt´1 on the current hidden state Zt into account, as shown in Figure 1, right

side, we propose an adaptation of the EM for HMM (Cappé et al. 2005).

We consider the situation where we have C realizations pYc,tq of C independent

identically distributed OD-HMM pZc,t, Yc,tq, where c P t1, ..., Cu with 1 ď C ă 8 and

t P t0, ...,Mu with 1 ď M ă 8. In the following, we denote the tuple of the hidden

states at time t for chain 1 to chain C by Z1:C,t “ pZ1,t, Z2,t, ..., ZC,tq. In the same

way, we denote by Y1:C,t “ pY1,t, Y2,t, ..., YC,tq the tuple of the observations at time t

for the C chains. Moreover, we denote πpzc,0; θq, Pyc,t´1
pzc,t´1, zc,t; θq and Rpzc,t, yc,t; θq

the probabilities defining the OD-HMM with parameter θ.

With these notations, the complete likelihood Lcomppθ; z1:C,0:M , y1:C,0:M q, denoted

Lcomp, is equal to (see Appendix C):

Lcomp “ PpZ1:C,0:M “ z1:C,0:M , Y1:C,0:M “ y1:C,0:M |θq

“

C
ź

c“1

«

πpzc,0; θqRpzc,0, yc,0; θq

M
ź

t“1

Pyc,t´1
pzc,t´1, zc,t; θqRpzc,t, yc,t; θq

ff

.

The EM algorithm is an iterative algorithm that relies on the expectation of Lcomp
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and that converges to a local maximum of the likelihood PpY1:C,0:M “ y1:C,0:M |θq. At

each iteration, it computes:

θpm ` 1q “ argmax
θ

E
”

lnLcomppθ;Z1:C,0:M , Y1:C,0:M q|Y1:C,0:M “ y1:C,0:M , θpmq
ı

,

“ argmax
θ

Qpθ|θpmqq (1)

where θpmq is the parameter estimator at iteration m of EM.

The intermediate quantity Qpθ|θpmqq can be broken down into three terms, one

depending on the initial distribution, another depending on the transition matrix, and

the last one depending on the emission distribution (see Appendix C).

Qpθ|θpmqq “ E
”

lnPpY1:C,0:M , Z1:C,0:M |θq|Y1:C,0:M “ y1:C,0:M , θpmq
ı

“

C
ÿ

c“1

ÿ

z0PΩZ

ln pπpz0; θqq ˆ PpZc,0 “ z0|Yc,0:M “ yc,0:M , θpmqq

`

C
ÿ

c“1

M
ÿ

t“1

ÿ

pz,z1qPΩ2
Z

ln
`

Pyc,t´1
pz, z1; θq

˘

ˆ PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq

`

C
ÿ

c“1

M
ÿ

t“0

ÿ

z1PΩZ

ln
`

Rpz1, yc,t; θq
˘

ˆ PpZc,t “ z1|Yc,0:M “ yc,0:M , θpmqq.

A detailed derivation of all the formulas for the E step and the M step are available

in Appendix C. Only the main elements are presented here.

3.2.1. E step

At iteration m, the E step consists in computing the marginal probabilities of interest

that appear in the expression of Qpθ|θpmqq. They are:

‚ @0 ď t ď M,@c P t1, ..., Cu,@zt P ΩZ ,

ρ
pmq

c,t pztq “ PpZc,t “ zt|Yc,0:M “ yc,0:M , θpmqq;
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‚ @1 ď t ď M,@c P t1, ..., Cu,@pzt´1, ztq P Ω2
Z ,

ξ
pmq

c,t pzt´1, ztq “ PpZc,t´1 “ zt´1, Zc,t “ zt|Yc,0:M “ yc,0:M , θpmqq.

To obtain ρ
pmq

c,t pztq and ξ
pmq

c,t pzt´1, ztq, we introduce the following variables:

‚ α
pmq

c,t pztq, such that, @0 ď t ď M,@c P t1, ..., Cu,@zt P ΩZ ,

α
pmq

c,t pztq “ PpYc,0:t “ yc,0:t, Zc,t “ zt|θ
pmqq;

‚ β
pmq

c,t pztq, such that, @0 ď t ă M,@c P t1, ..., Cu,@zt P ΩZ ,

β
pmq

c,t pztq “ PpYc,t`1:M “ yc,t`1:M |Zc,t “ zt, Yc,t “ yc,t, θ
pmqq.

The E step works by using the Forward-Backward algorithm. The only specificity in

the Forward-Backward algorithm for the OD-HMM compared to that of the HMM is in

the expression of β
pmq

c,t pztq, in the Backward algorithm because it is taken conditionally

to the current observations yc,t. It is computed by using the following recurrence

formula :

@0 ď t ă M,@c P t1, ..., Cu,@zt P ΩZ ,

β
pmq

c,t pztq “
ÿ

zt`1PΩZ

Rpmqpzt`1, yc,t`1qβ
pmq

c,t`1pzt`1qP pmq
yc,t

pzt, zt`1q,

where β
pmq

c,M pzM q “ 1.

The quantities α
pmq

c,t pztq and β
pmq

c,t pztq are used to compute ρ
pmq

c,t pztq and ξ
pmq

c,t pzt´1, ztq,

as in the classical EM for HMM.
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3.2.2. M step

In the M step we resolve the maximization problem (1) to obtain the expression of up-

dated parameters. We express these parameters in terms of ρ
pmq

c,t pztq and ξ
pmq

c,t pzt´1, ztq

as follows:

‚ @y P ΩY ,@zt P ΩZ ,@zt´1 P ΩZ ,

P pm`1q
y pzt´1, ztq “

C
ř

c“1

M
ř

t“1
ξ

pmq

c,t pzt´1, ztq1pyc,t´1“yq

C
ř

c“1

M
ř

t“1

ř

z1
tPΩZ

ξ
pmq

c,t pzt´1, z1
tq1pyc,t´1“yq

;

‚ @zt P ΩZ ,@y P ΩY ,

Rpm`1qpzt, yq “

C
ř

c“1

M
ř

t“0
ρ

pmq

c,t pztq1pyc,t“yq

C
ř

c“1

M
ř

t“0
ρ

pmq

c,t pztq

.

3.2.3. Initialization and stopping criterion

Since the result of EM can be sensible to the initialization, we simulate Ninit sets

of initial parameter values using a uniform probability distribution Ur0, 1s for each

element of θ, and normalizing them to obtain probabilities. We then run the EM

algorithm for each of them.

The algorithm is stopped when the first of the two criteria is met: either a number

Niter of iterations is reached or the algorithm has converged. To check for convergence,

at each iteration m, we compute a distance between the estimator at iteration m and

the one at iteration m ` 1. Since the set of parameters θ is composed of matrices (P

and R), and the rows of these matrices all add up to one, we consider the following

distance between the i-th row of θpmq, denoted θ
pmq

i , and θ
pm`1q

i :

distpθ
pmq

i , θ
pm`1q

i q “

g

f

f

e

K
ÿ

k“1

pθ
pmq

i,k ´ θ
pm`1q

i,k q2,
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True parameters

Example 1 P ˚
0 “

ˆ

0.2 0.8
0.8 0.2

˙

, P ˚
1 “

ˆ

0.8 0.2
0.2 0.8

˙

, R˚ “

ˆ

0.8 0.2
0.2 0.8

˙

Example 2 P ˚
0 “

ˆ

0.6 0.4
0.4 0.6

˙

, P ˚
1 “

ˆ

0.4 0.6
0.6 0.4

˙

, R˚ “

ˆ

0.2 0.8
0.8 0.2

˙

Example 3 P ˚
0 “

ˆ

0.2 0.8
0.8 0.2

˙

, P ˚
1 “

ˆ

0.8 0.2
0.2 0.8

˙

, R˚ “

ˆ

0.4 0.6
0.6 0.4

˙

Table 1. True transition and emission matrices for the three simulation examples.

where K is the length of θ
pmq

i and θ
pmq

i,k is the k-th element of row θ
pmq

i (K “ |ΩZ |

or K “ |ΩY |). When the average distance over all rows of all matrices of θ is smaller

than a given threshold ϵ, we consider that the algorithm has converged.

When the Ninit algorithms have converged or stopped, we keep the best estimator,

i.e., the one that is associated with the larger likelihood PpY1:C,0:M “ y1:C,0:M |θq. The

likelihood is easily computed using the αs and βs.

4. Validation of the estimation procedure on simulated data

In order to validate the estimation procedure, we realize three simulation examples on

datasets simulated from the OD-HMM with different values of true parameters, whose

transition and emission matrices are provided in Table 1, corresponding to problems

of increasing difficulty. In the first simulation example, the transition and emission

matrices are very contrasted. In the second simulation example, the elements of the

transition matrices are chosen close to 1{2. In the last simulation example, the rows

of the emission matrix are similar, so the observations provide little information on

the hidden process. Note that according to Proposition 2.4, the OD-HMM of the three

simulation examples are generically identifiable as soon as the chain has more than

seven observations.

For the sake of comparison, we also provide estimators for the three examples based

on a HMM model.

We first describe the protocol common to all the simulation examples and we then

present and discuss the results.
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4.1. Protocol

For a given simulation example, associated with the true parameters θ˚ (presented in

Table 1) and a given C, we set the initial distribution to π “ p1, 0q and we simulated

C chains pZc,tq and pYc,tq of length M “ 500. We then ran the EM algorithm for

OD-HMM and the EM for HMM to obtain the parameter estimators, θ̂OD-HMM and

θ̂HMM, respectively, from the C observed chains. There are six parameters to estimate.

We ran the EM with Ninit “ 10, Niter “ 750, and ϵ “ 0.001. To quantify the difference

between θ˚ and θ̂, we used the following distance between the i-th row of θ˚, and θ̂:

distpθ˚
i , θ̂iq “

1

K

K
ÿ

k“1

|θ˚
i,k ´ θ̂i,k|

θ˚
i,k

,

where K is the length of θi and θi,k is the k-th element of the θ i-th row (K “ |ΩZ | or

K “ |ΩY |). We also computed a global distance, defined as the mean of all distances

over each row of the model parameters. Note that in the case of an estimation based on

an HMM model, in order to compare the transition matrix estimated by EM for HMM,

denoted as P̂HMM, with the two true transition matrices P ˚
0 and P ˚

1 , we calculate the

distance between P̂HMM and P ˚
0 , and then between P̂HMM and P ˚

1 .

In order to capture the variability in the EM estimators, we repeated this protocol

50 times. Finally, we reproduce the whole procedure for increasing numbers of chains:

C “ 10, 50, 100.

4.2. Results

4.2.1. First simulation example

First, we compare the results of EM for OD-HMM and those obtained using EM for

HMM on data simulated from the parameters of simulation example 1 (given in Table

1). In Figure 3, we display the boxplots of the average errors, over all parameters for

the two methods.
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Figure 3. Simulation example 1: The top line of the figure displays boxplots of the distance between θ̂OD-HMM

and θ˚ (left boxplot of each figure on the top line) and θ̂HMM and θ˚ (right boxplot of each figure on the top

line) for increasing values of the number of chains pC “ 10, 50 and 100). The second line displays the boxplot of
the distance between P̂0 and P˚

0 (on the middle line at left), P̂1 and P˚
1 (on the middle line at right) and, the

bottom line shows the boxplot between the estimated emission matrix and the true one for increasing values

of the number of chains pC “ 10, 50 and 100).

Regardless of the number of chains, the EM algorithm for OD-HMM provides higher

quality estimators. This was expected since the data are generated from an OD-HMM

with true parameters, matrices P ˚
0 , P

˚
1 , that are significantly different from each other.
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We now take a more detailed look at the quality of the estimators provided by

the EM for OD-HMM. First, looking at the top line of Figure 3, we observe that the

average distance between the estimated parameters θ̂ and the true parameters θ˚ is

decreasing between C “ 10 and C “ 50 and remain constant between C “ 50 and

C “ 100. Regardless of the number of chains, the mean value, over the repetitions,

of this average distance is lower than 0.160 (i.e., a 16% error) which is of very good

quality. The convergence rate is 100%.

If we now specifically consider the transition matrices (see Figure 3, on the middle

line), we observe that the quality of the estimator is quite poor for C “ 10 chains.

Indeed, the median distance between P̂0 and P ˚
0 is slightly above 0.15, and, in the

worst case, the distance can exceed 0.4. However, the estimation results for C “ 50

and C “ 100 chains are more satisfactory. The median distance between P̂0 and P ˚
0

is less than 0.15. Moreover, the estimators do not exceed 33% error (except for the

two highest extreme values with C “ 50). The median distance between P̂1 and P ˚
1

is also around 0.15 for all values of C. We can observe that for C “ 10 and C “ 50,

the quality of the estimator of P1 is not as good as that of the estimator of P0. In

particular, the results are more variable and the ninth deciles are higher for P1 than

for P0. On average, the distance between P̂0 and P ˚
0 is 0.163 for C “ 10 and 0.135

for C “ 50 and C “ 100. The one between P̂1 and P ˚
1 is 0.20 for C “ 10, and then

decreases to 0.165 for C “ 50 and 0.155 for C “ 100.

The estimator of the emission matrix is of very good quality (see Figure 3, on the

bottom line) even if the results for C “ 100 have slightly larger variations than those

of C “ 50. The median value is lower than 0.1 and the distance does not exceed 0.3.

To conclude, in the case where the matrices are contrasted, i.e., the matrices P0 and

P1 are distant from the matrix composed of 1{2 and the rows of R are very different

from each other, the estimation by the EM algorithm for OD-HMM is satisfactory.
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4.2.2. Second simulation example

In this example, the transition matrices (given in Table 1) are close. When comparing

the estimators from the EM for OD-HMM and for HMM, we observe that there is no

clear domination of one model on the other, it varies with C as shown in the top line of

Figure 4. The reason is maybe that in this example, the influence of the observations

on the transition matrices is not strong. Therefore, the OD-HMM is close to a classical

HMM.

Let us focus now on the estimator from EM for OD-HMM. Compared to the sim-

ulation example 1, the transition matrices are close to the matrix composed of 1{2.

Therefore, in theory, estimating the transition matrices should be more difficult, and

this is the case. However, the average distance between the estimated and the true

parameters remains lower than 0.22 and decreases with C; it is, on average, 0.212 for

C “ 10 chains, 0.164 for C “ 50 chains and 0.160 for C “ 100 chains, with more

variability for C “ 50 chains than for C “ 100.

The distances for the transition matrices and for the emission matrices are displayed

separately on middle and bottom lines of Figure 4. There is no more systematic de-

crease of the distance with C.

We can see that the distance between P̂0 and P ˚
0 remains low, while the distance

between P̂1 and P ˚
1 has increased compared to simulation example 1. The distances

between the estimated and the true emission matrices are also greater than the dis-

tances in the simulation example 1. Indeed, the median distance for C “ 10 is 0.23

and decreases to 0.18 for C “ 100 chains.

4.2.3. Third simulation example

In the third simulation example, the two transition matrices are the same as in the

first example; they are not close. The conclusion of the comparison between the results

of EM for OD-HMM and EM for HMM is qualitatively the same, but quantitatively

the difference between the quality of the two estimators is closer (see Figure 5).

If we now look at the quality of the OD-HMM estimator, this simulation example is

the most difficult: since the rows of the emission matrix are similar, it is more difficult
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Figure 4. Simulation example 2: The top line of the figure displays boxplots of the distance between θ̂OD-HMM

and θ˚ (left boxplot of each figure on the top line) and θ̂HMM and θ˚ (right boxplot of each figure on the top

line) for increasing values of the number of chains pC “ 10, 50 and 100). The second line displays the boxplot of
the distance between P̂0 and P˚

0 (on the middle line at left), P̂1 and P˚
1 (on the middle line at right) and, the

bottom line shows the boxplot between the estimated emission matrix and the true one for increasing values

of the number of chains pC “ 10, 50 and 100).

than for simulation examples 1 and 2 to know which hidden state has generated the

observation. One consequence is that we encountered a problem of label switching, i.e.,

the roles of the two hidden states in the matrices were switched during the estima-

tion procedure. We considered that label switching occurs when the average distance
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between the rows of θ˚ and of θ̂ is smaller when we permute the hidden state than

when we do not. We observed 50% of label switching for C “ 10, 36% for C “ 50, and

32% for C “ 100. The distances we discuss now are obtained after correction of label

switching when present.

We observed that the quality of the estimator is really less good than in the two first

simulation examples. Indeed, the average distance between the estimated parameters

and the true ones decreases from 0.31 to 0.25 when C increases, which is larger than

before. The poor estimator quality for C “ 10 can be explained by the fact that 28%

of the EM did not converge. For the other values of C, the convergence rate is 100%.

If we look at the transition matrices (Figure 5, middle line) and the emission matrix

(Figure 5, bottom line) separately, we observe that the quality of the estimator of the

former is strongly degraded, while the estimator of the latter is of a quality similar to

that of the the first simulation example.

5. Applications to plant dynamics on real data

In this section, we present the use of the OD-HMM for analyzing annual plant dynam-

ics. As mentioned in the introduction, a recent model for plant dynamics is from the

family of OD-HMMs but with a specific parameterization of the transition matrices

(Pluntz et al. 2018a). We do not pretend that the non-parametric OD-HMM will lead

to better estimators of plant dynamics than these models. In this section, we illustrate,

on data from the dataset used in Pluntz et al. (2018a) , the advantage of taking into

account the fact that the current hidden state depends on the previous observation,

compared to an HMM approach. We show how a key statistic of the dynamics - the

average duration of the seed stock persistence - can be better estimated.

The dataset utilized in this study comes from the Biovigilance research project.

This project was conducted between the years 2002 and 2009 and aimed to monitor

the abundance of weed species in French agroecosystems. A total of 38 weed species in

325 fields were monitored over a four-year period (Fried 2010). In practice we used the

dataset after conversion into records of presence or absence, as in Pluntz et al. (2018b).
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Figure 5. Simulation example 3: The top line of the figure displays boxplots of the distance between θ̂OD-HMM

and θ˚ (left boxplot of each figure on the top line) and θ̂HMM and θ˚ (right boxplot of each figure on the top

line) for increasing values of the number of chains pC “ 10, 50 and 100). The second line displays the: boxplot
of the distance between P̂0 and P˚

0 (on the middle line at left), P̂1 and P˚
1 (on the middle line at right) and, the

bottom line shows the boxplot between the estimated emission matrix and the true one for increasing values

of the number of chains pC “ 10, 50 and 100).

So for a given weed species, the available observations are py0, . . . , y3) with yt P t0, 1u,

and the hidden chain pz0, . . . , z3) corresponds to the presence or absence of seeds in the

seed bank. To illustrate the data, we present in Table 2 (column Data) the repartition

of the observed trajectories among the 16 possible trajectories for four species (which

26



will be studied below): Lactuca serriola, Matricaria chamomilla, Sonchus oleraceus,

Taraxacum officinale.

Trajectory
Lactuca serriola Matricaria chamomilla

Data HMM OD-HMM Data HMM OD-HMM
p0, 0, 0, 0q 153 122 124 128 84 92
p0, 0, 0, 1q 7 8 7 10 9 8
p0, 0, 1, 0q 1 9 5 6 10 9
p0, 0, 1, 1q 4 3 3 2 3 5
p0, 1, 0, 0q 5 4 8 5 12 11
p0, 1, 0, 1q 0 4 1 1 8 6
p0, 1, 1, 0q 0 5 7 3 6 4
p0, 1, 1, 1q 4 1 0 3 5 4
p1, 0, 0, 0q 3 15 13 6 7 17
p1, 0, 0, 1q 0 3 0 0 8 4
p1, 0, 1, 0q 0 0 0 1 5 4
p1, 0, 1, 1q 0 1 0 0 2 1
p1, 1, 0, 0q 0 1 8 7 6 5
p1, 1, 0, 1q 0 1 0 0 4 3
p1, 1, 1, 0q 0 0 1 3 5 3
p1, 1, 1, 1q 0 0 0 2 3 1

Trajectory
Sonchus oleraceus Taraxacum officinale

Data HMM OD-HMM Data HMM OD-HMM
p0, 0, 0, 0q 112 91 92 138 82 87
p0, 0, 0, 1q 12 14 14 12 5 4
p0, 0, 1, 0q 12 3 9 5 12 8
p0, 0, 1, 1q 4 6 8 4 6 9
p0, 1, 0, 0q 15 10 7 13 83 9
p0, 1, 0, 1q 5 7 3 2 2 4
p0, 1, 1, 0q 3 7 5 2 8 8
p0, 1, 1, 1q 1 5 5 0 5 3
p1, 0, 0, 0q 7 7 13 1 13 9
p1, 0, 0, 1q 0 5 2 0 3 4
p1, 0, 1, 0q 0 5 5 0 11 4
p1, 0, 1, 1q 1 7 3 0 7 5
p1, 1, 0, 0q 3 7 4 0 4 7
p1, 1, 0, 1q 2 5 0 0 3 7
p1, 1, 1, 0q 0 1 1 0 6 5
p1, 1, 1, 1q 0 1 0 0 7 4

Table 2. Repartition of the length 4 trajectories among the 16 possible ones, in the data, in the HMM

simulations and in the OD-HMM simulations, for the four weed species studied.

For a given weed species, we estimated P̂0, P̂1 and R̂, with the EM algorithm for

OD-HMM. We then simulated the trajectories of 100 chains of length 500 using these

estimators from which we estimated the average time of continuous presence of seeds

in the soil (average duration of seed stock persistence). For the sake of comparison,
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we performed the same estimation using EM for HMM instead. We ran this procedure

for the four species mentioned above and classified as non-dormant in the literature

and also according to the estimators obtained in Pluntz et al. 2018a. Consequently,

the seed stock persistence must be low for these species.

Species Model Min.
1st
Quant.

Median Mean
3rd
Quant.

Max.

Lactuca serriola
OD-HMM 1 1 3 3.854 5 39
HMM 1 7 19 25.94 37 162

Matricaria chamo.
OD-HMM 1 1 2 2.066 3 15
HMM 1 3 6 7.654 10 46

Sonchus oleraceus
OD-HMM 1 2 4 5.616 8 46
HMM 1 5 10 14.85 21 129

Taraxacum offici.
OD-HMM 1 4 8 11.14 15 75
HMM 1 17 43 60.47 81 373

Table 3. Comparison of the average duration of seeds stock persistence estimated by EM for HMM, and by

EM for OD-HMM for four weed species. These species are classified as non dormant species based on biological
knowledge and also according to the estimators obtained in Pluntz et al. 2018a. Data are from the Biovigilance

dataset.

Results are presented in Table 3. The estimator of the average duration of seed

stock persistence based on the OD-HMM is clearly in better agreement with what is

expected from biological knowledge. On the contrary, the estimated duration with the

EM for HMM is excessively high. This may be due to the fact that in the HMM model,

the probability to remain in state one in the hidden chain must be high to compensate

for the arrival of new seeds by standing flora, which is not taken into account. We can

see from Table 2 that when simulating the same number of trajectories of length 4 than

in the data, the repartition among the 16 possible ones is quite similar between the

data, the HMM simulations and the OD-HMM simulations. However, for the HMM

model this is only possible with an unrealistic estimation of the dynamics of the hidden

chain.

6. Conclusion

Even though the OD-HMM framework was already encountered in the literature, its

use up until now has been limited to specific cases dedicated to certain applications.

With this work we exhibit the theoretical guaranties and an estimation algorithm
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in the non-parametric case, which should facilitate sharing and use by the scientific

community.

Concerning the theoretical aspect, we studied the consistency of the MLE of the

OD-HMM by transposing the work of Ailliot and Pène (2015) to the case of the OD-

HMM. The next step would be to prove the asymptotic normality of the MLE of the

OD-HMM, either by extending the work of Bickel et al. (1998) and Gámiz et al. (2023)

proposed for a classical HMM, or by adapting the work of Pouzo et al. (2022) proposed

for more complex structures including the case of the OD-HMM. Extending the notion

of reliability of a system modeled by an HMM (Durand and Gaudoin 2016; Gámiz et

al. 2023) to the OD-HMM case may be an interesting perspective.

On the practical side, we derived the EM algorithm for OD-HMM to estimate the

parameters of the model. By performing three experiments, we found that when the

values of the true parameters P ˚ and R˚, or just R˚ are contrasted, the estimation

procedure provides good results. However, it is not recommended to use the EM

algorithm for OD-HMM when the true emission matrix R˚ is not contrasted. These

experiments were conducted on observation trajectories of a maximum length of 500

to avoid the appearance of possible numerical problems. Moreover, we carried out

the experiments for C varying from 10 to 100 chains, in order to be able to run more

simulation examples in a faster way, although running the algorithm on a larger

number of chains would certainly improve the quality of the estimator. In the same

way, although the EM algorithm for OD-HMM presented here is built for any size

of discrete and finite state spaces, we only tested the 2 ˆ 2 case to perform multiple

experiments and to be able to detect the possible appearance of label switching,

as in the third proposed experiment. To work with more complex systems (more

trajectories and states) it would be wise to consider a parametric model, as underlined

in Bazzi et al. (2022) : ”A key challenge is to specify an appropriate and parsimonious

function that links the lagged dependent variables to future transition probabilities”.

Since this work was motivated by the need of more realism in the modeling of ap-

plications, we envisage extending the OD-HMM to the case where the hidden chain is
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a semi-Markov chain (Barbu and Limnios 2008; Abdullah and Hoek 2022; Yu 2016).

The sojourn time distribution will then be generalized to any probability distribution

and not only to a geometric one as in a HMM. The challenge will then be to adapt

the framework of Hidden Semi-Markov Models (HSMM) to the case of OD-HSMM by

modeling the impact of observations on sojourn time distribution. Results on identifi-

ability of HSMM and properties of the MLE (Barbu and Limnios 2008) will also have

to be adapted, as well as the EM algorithm for HSMM to the OD-HSMM (Bulla 2006;

Barbu and Limnios 2008; Yu 2016).

Code and data availability

The algorithm is implemented in R. All the R codes used for the numerical experiments

are available in two GitLab repositories. The functions corresponding to the EM algo-

rithm for OD-HMM (for any size of the state spaces) are contained in an R package,

available at the following link : https://forgemia.inra.fr/hanna.bacave/odhmm. The

functions used to run the experiments in Section 4 and Section 5 can be found in the fol-

lowing repository: https://forgemia.inra.fr/hanna.bacave/article odhmm. For Section

5, the data used is available at the following link : https://hal.science/hal-01801122.
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Appendix A. Demonstration of Markovianity of the hidden chain in an

OD-HMM

Proposition A.1 (Markovianity of the hidden chain in an OD-HMM). If pZt, YtqtPN

follows an OD-HMM model, then the hidden chain pZtqtPN is Markovian. The as-

sociated transition probability is equal to
ř

yt´1PΩY

PpZt “ zt|Yt´1 “ yt´1, Zt´1 “

zt´1qPpYt´1 “ yt´1|Zt´1 “ zt´1q.

Indeed, we have:

PpZt “ zt|Z0:t´1 “ z0:t´1q “
ÿ

yt´1PΩY

PpZt “ zt, Yt´1 “ yt´1|Z0:t´1 “ z0:t´1q

“
ÿ

yt´1PΩY

PpZt “ zt|Yt´1 “ yt´1, Zt´1 “ zt´1qˆ

PpYt´1 “ yt´1|Z0:t´1 “ z0:t´1q

“
ÿ

yt´1PΩY

PpZt “ zt|Yt´1 “ yt´1, Zt´1 “ zt´1qˆ

PpYt´1 “ yt´1|Zt´1 “ zt´1q

“
ÿ

yt´1PΩY

PpZt “ zt, Yt´1 “ yt´1|Zt´1 “ zt´1q

“ PpZt “ zt|Zt´1 “ zt´1q
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Appendix B. Generic identifiability

Let us consider two ODHMMs, the first one with parameter θ and the second with

parameter θ1. The transition matrix and emission matrix are Py and R, and P 1
y and R1

respectively. We assume that their reformulations as a HMM lead to the same model,

i.e. MHMM
θ “ MHMM

θ1 and we show that this implies that θ “ θ1.

If the two transition matrices PHMM
θ and PHMM

θ1 are identical, we have:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

PHMM
θ pp0, 0q, p0, 0qq “ PHMM

θ1 pp0, 0q, p0, 0qq

PHMM
θ pp0, 0q, p0, 1qq “ PHMM

θ1 pp0, 0q, p0, 1qq

...

PHMM
θ pp0, 0q, p0, Dqq “ PHMM

θ1 pp0, 0q, p0, Dqq

Using the definition of PHMM
θ in terms of the original OD-HMM, we obtain:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

P0p0, 0qRp0, 0q “ P 1
0p0, 0qR1p0, 0q

P0p0, 0qRp0, 1q “ P 1
0p0, 0qR1p0, 1q

...

P0p0, 0qRp0, Dq “ P 1
0p0, 0qR1p0, Dq

Adding all the lines leads to:

P0p0, 0qr

D
ÿ

d“0

Rp0, dqs “ P 1
0p0, 0qr

D
ÿ

d“0

R1p0, dqs.

Since
D
ř

d“0

Rp0, dq “ 1 and
D
ř

d“0

R1p0, dq “ 1 we obtain P0p0, 0q “ P 1
0p0, 0q. If we replace

P 1
0p0, 0q by P0p0, 0q in the above system we also obtain that @d P t0, ..., Du, Rp0, dq “

R1p0, dq.

We can perform the same calculations with all possible values for pzt´1, yt´1, ztq
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and we will obtain that Pyt´1
pzt´1, ztq “ P 1

yt´1
pzt´1, ztq and that @yt P

t0, ..., Du, Rpzt, ytq “ R1pzt, ytq. This establishes that if MHMM
θ “ MHMM

θ1 , then

MODHMM
θ “ MODHMM

θ1 .
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Appendix C. Calculations of EM algorithm

Note that another EM solution to estimate the non parametric OD-HMM could be

to use the classical EM for HMM to estimate the non-parametric HMM in which

the hidden state is the pair pZt, Ytq, i.e. the MHMM
θ model defined in Section 2.2. It

would require a second step after estimation to recover the transition and the emission

matrices of the OD-HMM from the estimated transition and emission matrices of the

MHMM
θ model. Furthermore, the number of parameters in theMHMM

θ is |ΩZ |ˆ|ΩY |ˆ

p|ΩZ | ˆ |ΩY | ´ 1q, which is larger than in the original OD-HMM (|ΩZ | ˆ p|ΩZ | ´ 1q ˆ

|ΩY | ` |ΩZ | ˆ p|ΩY | ´ 1q).

C.1. Complete likelihood expression

We recall the definition of the complete likelihood that we will denote Lcomp.

Lcomp “ Lpθ; z1:C,0:M , y1:C,0:M q “ PpY1:C,0:M “ y1:C,0:M , Z1:C,0:M “ z1:C,0:M |θq.

Since the C chains are i.i.d we have:
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Lcomp “ Lpθ; z1:C,0:M , y1:C,0:M q

“

C
ź

c“1

PpZc,0:M “ zc,0:M , Yc,0:M “ yc,0:M |θq

“

C
ź

c“1

PpZc,M “ zc,M , Yc,M “ yc,M |Zc,0:M´1 “ zc,0:M´1, Yc,0:M´1 “ yc,0:M´1, θq

ˆ PpZc,0:M´1 “ zc,0:M´1, Yc,0:M´1 “ yc,0:M |θq

“ . . .

“

C
ź

c“1

M
ź

t“1

PpZc,t “ zc,t, Yc,t “ yc,t|Zc,t´1 “ zc,t´1, Yc,t´1 “ yc,t´1, θq

ˆ PpZc,0 “ zc,0, Yc,0 “ yc,0|θq

“

C
ź

c“1

M
ź

t“1

PpYc,t “ yc,t|Zc,t “ zc,t, θqPpZc,t “ zc,t|Zc,t´1 “ zc,t´1, Yc,t´1 “ yc,t´1, θq

ˆ PpYc,0 “ yc,0|Zc,0 “ zc,0, θqPpZc,0 “ zc,0, θq

Finally,

Lpy1:C,0:M , z1:C,0:M |θq “

C
ź

c“1

«

πpzc,0qRpzc,0, yc,0q

M
ź

c,t“1

Pyc,t´1
pzc,t´1, zc,tqRpzc,t, yc,tq

ff

.

C.2. Intermediate quantity calculation expression

We recall the definition of the intermediate quantity, where θpmq is the value of the

parameters at iteration m.

Qpθ|θpmqq “ E
”

lnpPpY1:C,0:M , Z1:C,0:M |θq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

.

We replace the complete likelihood by its expression and we take its logarithm. We

denote X “ lnpPpY1:C,0:M “ y1:C,0:M , Z1:C,0:M “ z1:C,0:M |θqq and we obtain:
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X “ lnpPpY1:C,0:M “ y1:C,0:M , Z1:C,0:M “ z1:C,0:M |θqq

“ ln

#

C
ź

c“1

«

πpzc,0qRpzc,0, yc,0q

M
ź

t“1

Pyc,t´1
pzc,t´1, zc,tqRpzc,t, yc,tq

ff+

“

C
ÿ

c“1

lnrπpzc,0qs ` lnr

M
ź

t“0

Rpzc,t, yc,tqs ` lnr

M
ź

t“1

Pyc,t´1
pzc,t´1, zc,tqs

“

C
ÿ

c“1

lnrπpzc,0qs `

M
ÿ

t“0

lnrRpzc,t, yc,tqs `

M
ÿ

t“1

lnrPyc,t´1
pzc,t´1, zc,tqs

Let us denote Q “ Qpθ|θpmqq, we can break down Q as follows:

Q “ Qpθ|θpmqq

“ E

#

C
ÿ

c“1

«

lnπpZc,0q `

M
ÿ

t“0

lnRpZc,t, Yc,tq

`

M
ÿ

t“1

lnPYc,t
pZc,t´1, Zc,tq

ff

| Y1:C,0:M “ y1:C,0:M , θpmq

+

“

C
ÿ

c“1

!

E
”

lnπpZc,0q | Y1:C,0:M “ y1:C,0:M , θpmq
ı

`E

«

M
ÿ

t“0

lnRpZc,t, Yc,tq | Y1:C,0:M “ y1:C,0:M , θpmq

ff

` E

«

M
ÿ

t“1

lnPYc,t´1
pZc,t´1, Zc,tq | Y1:C,0:M “ y1:C,0:M , θpmq

ff+

“

C
ÿ

c“1

!

E
”

lnπpZc,0q | Y1:C,0:M “ y1:C,0:M , θpmq
ı

`

M
ÿ

t“0

E
”

lnRpZc,t, Yc,tq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

`

M
ÿ

t“1

E
”

lnPYc,t´1
pZc,t´1, Zc,tq | Y1:C,0:M “ y1:C,0:M , θpmq

ı

+
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where

E
”

lnπpZc,0q | Y1:C,0:M “ y1:C,0:M , θpmq
ı

“
ÿ

zc,0PΩZ

lnπpzc,0q

ˆPpZc,0 “ zc,0|Yc,0:M “ yc,0:M , θpmqq,

and:

E
”

lnRpZc,t, Yc,tq | Y1:C,0:M “ y1:C,0:M , θpmq
ı

“
ÿ

zc,tPΩZ

lnRpzc,t, yc,tq

ˆPpZc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq

In the same way, we have:

A “ E
”

lnPYc,t´1
pZc,t´1, Zc,tq | Y1:C,0:M “ y1:C,0:M , θpmq

ı

where :

A “
ÿ

pzc,t,zc,t´1qPΩ2
Z

lnPyc,t´1
pzc,t´1, zc,tq

ˆ PpZc,t “ zc,t, Zc,t´1 “ zc,t´1|Yc,0:M “ yc,0:M , θpmqq

We finally obtain:

Qpθ|θpmqq “

C
ÿ

c“1

ÿ

zc,0PΩZ

lnπpzc,0qPpZc,0 “ zc,0|Yc,0:M “ yc,0:M , θpmqq

`

C
ÿ

c“1

M
ÿ

t“1

ÿ

pzc,t,zc,t´1qPΩ2
Z

lnPyc,t´1
pzc,t´1, zc,tq

ˆ PpZc,t´1 “ zc,t´1, Zc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq

`

C
ÿ

c“1

M
ÿ

t“0

ÿ

zc,tPΩZ

lnRpzc,t, yc,tqPpZc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq
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C.3. E Step calculations

During the E Step, we want to calculate the marginal probabilities of interest appeared

in the expression of Qpθ|θpmqq. We denote:

‚ ρ
pmq

c,t pztq “ PpZc,t “ zt|Yc,0:M “ yc,0:M , θpmqq,

‚ ξ
pmq

c,t pzt´1, ztq “ PpZc,t´1 “ zt´1, Zc,t “ zt|Yc,0:M “ yc,0:M , θpmqq.

To obtain ρ
pmq

c,t pztq and ξ
pmq

c,t pzt´1, ztq, we introduce the following variables:

‚ α
pmq

c,t pztq, such as αc,tpztq “ PpYc,0:t “ yc,0:t, Zc,t “ zt|θ
pmqq ;

‚ β
pmq

c,t pztq, such as βc,tpztq “ PpYc,t`1:M “ yc,t`1:M |Zc,t “ zt, Yc,t “ yc,t, θ
pmqq.

C.3.1. Forward algorithm for computing the αs

We begin by expressing α0pzc,0q :

α
pmq

c,0 pzc,0q “ PpYc,0 “ yc,0, Zc,0 “ zc,0|θpmqq

“ PpYc,0 “ yc,0|Zc,0 “ zc,0, θ
pmqqPpZc,0 “ zc,0|θpmqq

“ Rpzc,0, yc,0qpmqπpzc,0qpmq
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Now, given that @1 ď t ď M , we have:

α
pmq

c,t pzq “ PpYc,0:t “ yc,0:t, Zc,t “ z|θpmqq

“ PpYc,0:t “ yc,0:t|Zc,t “ z, θpmqqPpZc,t “ z|θpmqq

“ PpYc,t “ yc,t|Zc,t “ z, θpmqqPpYc,0:t´1 “ yc,0:t´1|Zc,t “ z, θpmqqPpZc,t “ z|θpmqq

“ PpYc,t “ yc,t|Zc,t “ zθpmqqPpYc,0:t´1 “ yc,0:t´1, Zc,t “ z|θpmqq

“ Rpmqpz, yc,tq ˆ
ÿ

zc,t´1PΩZ

PpYc,0:t´1 “ yc,0:t´1, Zc,t “ z, Zc,t´1 “ zc,t´1|θpmqq

“ Rpmqpz, yc,tq
ÿ

zc,t´1PΩZ

PpZc,t “ z|Yc,0:t´1 “ yc,0:t´1, Zc,t´1 “ zc,t´1, θ
pmqq

ˆPpYc,0:t´1 “ yc,0:t´1, Zc,t´1 “ zc,t´1|θpmqq

“ Rpmqpz, yc,tq ˆ
ÿ

zc,t´1PΩZ

PpZc,t “ z|Yc,t´1 “ yc,t´1, Zc,t´1 “ zc,t´1, θ
pmqq

ˆα
pmq

c,t´1pzc,t´1q

“ Rpmqpz, yc,tq ˆ
ÿ

zc,t´1PΩZ

P pmq
yc,t´1

pzc,t´1, zq ˆ α
pmq

c,t´1pzc,t´1q.

We therefore obtain the forward recursive expression:

@1 ď t ď M,α
pmq

c,t pzq “ Rpmqpz, yc,tq
ÿ

zc,t´1PΩZ

α
pmq

c,t´1pzc,t´1qP pmq
yc,t´1

pzc,t´1, zq.

C.3.2. Backward algorithm for computing the βs

We start by initializing β
pmq

M pzq. By convention we set β
pmq

M pzq “ 1.
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Now, given that @1 ď t ď M ´ 1, we have:

β
pmq

c,t pzq “ PpYc,t`1:M “ yc,t`1:M |Zc,t “ z, Yc,t “ yc,t, θ
pmqq

“
ÿ

zc,t`1PΩZ

PpYc,t`1:M “ yc,t`1:M , Zc,t`1 “ zc,t`1|Zc,t “ z, Yc,t “ yc,t, θ
pmqq

“
ÿ

zc,t`1PΩZ

PpYc,t`2:M “ yc,t`2:M |Yc,t`1 “ yc,t`1, Zc,t`1 “ zc,t`1, θ
pmqq

ˆ PpYc,t`1 “ yc,t`1, Zc,t`1 “ zc,t`1|Yc,t “ yc,t, Zc,t “ z, θpmqq

“
ÿ

zc,t`1PΩZ

β
pmq

c,t`1pzc,t`1qPpZc,t`1 “ zc,t`1|Yc,t “ yc,t, Zc,t “ z, θpmqq

ˆ PpYc,t`1 “ yc,t`1|Zc,t`1 “ zc,t`1, θ
pmqq

“
ÿ

zc,t`1PΩZ

β
pmq

c,t`1pzc,t`1q ˆ P pmq
yc,t

pz, zc,t`1q ˆ Rpmqpzc,t`1, yc,t`1q.

We finally obtain the backward recursive expression:

@1 ď t ď M ´ 1, β
pmq

c,t pzq “
ÿ

zc,t`1PΩZ

Rpmqpzc,t`1, yc,t`1qβ
pmq

c,t`1pzc,t`1qP pmq
yc,t

pz, zc,t`1q.

C.3.3. Expression of quantities ρ and ξ in terms of α and β:

We have

ρ
pmq

c,t pzq “ PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq.

and we can express it as follows:

ρ
pmq

c,t pzq “
PpZc,t “ z, Yc,0:M “ yc,0:M |θpmqq

PpYc,0:M “ yc,0:M |θpmqq
.

In the same way, we have:

ξ
pmq

c,t pz1, z1q “ PpZc,t´1 “ z1, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq,
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which we can transform as follows:

ξ
pmq

c,t pz1, z1q “
PpZc,t´1 “ z1, Zc,t “ z1, Yc,0:M “ yc,0:M |θpmqq

PpYc,0:M “ yc,0:M |θpmqq
.

First, we express the quantity PpYc,0:M “ yc,0:M |θpmqq, which is the likelihood, in

terms of α and β. Let us denote P “ PpYc,0:M “ yc,0:M |θpmqq. We can decompose P as

follows:

P “ PpYc,0:M “ yc,0:M |θpmqq

“
ÿ

zc,tPΩZ

PpYc,0:M “ yc,0:M , Zc,t “ zc,t|θ
pmqq

“
ÿ

zc,tPΩZ

PpYc,0:M “ yc,0:M |Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t|θ

pmqq

“
ÿ

zc,tPΩZ

PpYc,0:t “ yc,0:t|Zc,t “ zc,t, θ
pmqqPpYc,t`1:M “ yc,t`1:M |Zc,t “ zc,t, Yc,t “ yc,tθ

pmqq

ˆ PpZc,t “ zc,t, Yc,t, θ
pmqq

“
ÿ

zc,tPΩZ

β
pmq

c,t pzc,tq ˆ PpYc,0:t “ yc,0:t|Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t, θ

pmqq

“
ÿ

zc,tPΩZ

β
pmq

c,t pzc,tq ˆ PpYc,0:t “ yc,0:t, Zc,t “ zc,t|θ
pmqq

“
ÿ

zc,tPΩZ

β
pmq

c,t pzc,tq ˆ α
pmq

c,t pzc,tq.

Therefore, we have

PpYc,0:M “ yc,0:M |θpmqq “
ÿ

zc,tPΩZ

α
pmq

c,t pzc,tqβ
pmq

c,t pzc,tq.

‚ Expression of ρ:

Let us denote A “ PpZc,t “ zc,t, Yc,0:M “ yc,0:M |θpmqq. We can decompose A
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as follows:

A “ PpYc,0:M “ yc,0:M |Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t|θ

pmqq

“ PpYc,0:t “ yc,0:t|Zc,t “ zc,t, θ
pmqqPpYc,t`1:M “ yc,t`1:M |Zc,t “ zc,t, Yc,t “ yc,t, θ

pmqq

ˆPpZc,t “ zc,t, θ
pmqq

“ β
pmq

c,t pzc,tq ˆ PpYc,0:t “ yc,0:t|Zc,t “ zc,t, θ
pmqqPpZc,t “ zc,t, θ

pmqq

“ β
pmq

c,t pzc,tq ˆ PpYc,0:t “ yc,0:t, Zc,t “ zc,t|θ
pmqq

“ β
pmq

c,t pzc,tqα
pmq

c,t pzc,tq.

Therefore, we deduce:

ρ
pmq

c,t pzq “
α

pmq

c,t pzqβ
pmq

c,t pzq
ř

zPΩZ

α
pmq

c,t pzqβ
pmq

c,t pzq
.

‚ Expression of ξ:

Let us denote A1 “ PpZc,t´1 “ zc,t´1, Zc,t “ zc,t, Yc,0:M “ yc,0:M |θpmqq. We can
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decompose A1 as follows:

A1 “ PpYc,0:t´2 “ yc,0:t´2, Yc,t:M “ yc,t:M |Zc,t´1 “ zc,t´1, Zc,t “ zc,t, Yc,t´1 “ yc,t´1, θ
pmqq

ˆ PpZc,t´1 “ zc,t´1, Zc,t “ zc,t, Yc,t´1 “ yc,t´1|θpmqq

“ PpYc,0:t´2 “ yc,0:t´2|Yc,t´1 “ yc,t´1, Zc,t´1 “ zc,t´1, θ
pmqq

ˆPpZc,t´1 “ zc,t´1, Yc,t´1 “ yc,t´1|θpmqqPpYc,t:M “ yc,t:M |Zc,t “ zc,t, θ
pmqq

ˆ PpZc,t “ zc,t|Zc,t´1 “ zc,t´1, Yc,t´1 “ yc,t´1, θ
pmqq

“ PpYc,0:t´1 “ yc,0:t´1, Zc,t´1 “ zc,t´1|θpmqqPpYc,t:M “ yc,t:M |Zc,t “ zc,t, θ
pmqq

ˆPyc,t´1
pzc,t´1, zc,tq

“ α
pmq

c,t´1pzc,t´1qP pmq
yc,t´1

pzc,t´1, zc,tqPpYc,t “ yc,t|Zc,t “ zc,t, θ
pmqq

ˆPpYc,t`1:M “ yc,t`1:M |Zc,t “ zc,t, Yc,t “ yc,t, θ
pmqq

“ α
pmq

c,t´1pzc,t´1qP pmq
yc,t´1

pzc,t´1, zc,tqR
pmqpzc,t, yc,tqβ

pmq

c,t pzc,tq.

We finally obtain:

ξ
pmq

c,t pzc,t´1, zq “
α

pmq

c,t´1pzc,t´1qP
pmq
yc,t´1pzc,t´1, zqRpmqpz, yc,tqβ

pmq

c,t pzq
ř

zPΩZ

α
pmq

c,t pzqβ
pmq

c,t pzq
.

C.4. Step M - Solving the maximization problem

We want to solve the following problem of maximization :

θpm`1q “ argmax
θ

Qpθ|θpmqq,

under the following constraints:

‚
ř

ztPΩZ

Pyc,t´1
pzt´1, ztq “ 1 ;

‚
ř

ytPΩY

Rpzc,t, ytq “ 1.

(We recall that we do not estimate πpq.)
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C.4.1. Writing the Lagrangian of problem

We write the Lagrangian of the problem L:

L “

C
ÿ

c“1

ÿ

zc,0PΩZ

ln pπpzc,0qqPpZc,0 “ zc,0|Yc,0:M “ yc,0:M , θpmqq ´ η1p
ÿ

z0PΩZ

πpz0q ´ 1q

`

C
ÿ

c“1

M
ÿ

t“1

ÿ

pzc,t,zc,t´1qPΩ2
Z

ln
`

Pyc,t´1
pzc,t´1, zc,tq

˘

PpZc,t´1 “ zc,t´1, Zc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq

´ η2pyc,t´1, zc,t´1qp
ÿ

z1PΩZ

Pyc,t´1
pzc,t´1, z

1q ´ 1q

`

C
ÿ

c“1

M
ÿ

t“0

ÿ

zc,tPΩZ

ln pRpzc,t, yc,tqqPpZc,t “ zc,t|Yc,0:M “ yc,0:M , θpmqq ´ η3pzc,tqp
ÿ

yPΩY

Rpzc,t, yq ´ 1q

C.4.2. Resolution

‚ For P
pm`1q
y pz, z1q :

BL
BPypz, z1q

“ 0 ô

C
ř

c“1

M
ř

t“1
PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1py“yc,t´1q

Pypz, z1q
“ η2py, zq

ô

C
ÿ

c“1

M
ÿ

t“1

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq “ η2py, zq

ˆ Pypz, z1q

ñ

C
ÿ

c“1

M
ÿ

t“1

ÿ

z1PΩZ

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq “ η2py, zq

ˆ
ÿ

z1PΩZ

Pypz, z1q

ô

C
ÿ

c“1

M
ÿ

t“1

ÿ

z1PΩZ

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq “ η2py, zq

Therefore, we obtain :

P pm`1q
y pz, z1q “

C
ř

c“1

M
ř

t“1
PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq

C
ř

c“1

M
ř

t“1

ř

z1PΩZ

PpZc,t´1 “ z, Zc,t “ z1|Yc,0:M “ yc,0:M , θpmqq1pyc,t´1“yq

.
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‚ For Rpz, yqpm`1q :

BL
BRpz, yq

“ 0 ô

C
ř

c“1

M
ř

t“1
PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq1pyc,t“yq

Rpz, yq
“ η3pzq

ô

C
ÿ

c“1

M
ÿ

t“1

PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq1pyc,t“yq “ η3pzqRpz, yq

ñ

C
ÿ

c“1

M
ÿ

t“1

ÿ

yPΩY

PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq1pyc,t“yq “ η3pzq
ÿ

yPΩY

Rpz, yq

ô

C
ÿ

c“1

M
ÿ

t“1

PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq
ÿ

yPΩY

1pyc,t“yq “ η3pzq

ô

C
ÿ

c“1

M
ÿ

t“1

PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq “ η3pzq

Therefore, we have :

Rpz, yqpm`1q “

C
ř

c“1

M
ř

t“1
PpZc,t “ z|yc,0:M “ yc,0:M , θpmqq1pyc,t“yq

C
ř

c“1

M
ř

t“1
PpZc,t “ z|Yc,0:M “ yc,0:M , θpmqq

.
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