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c UMR Silva, Université de Lorraine, faculté des Sciences et Technologies Campus Aiguillettes, 54506 Vandoeuvre Les Nancy, France 
d UMR MIA-Paris, Université Paris-Saclay, AgroParisTech, INRAE 16 rue Claude Bernard, 75 231 Paris Cedex 05, France 
e Ștefan cel Mare University of Suceava, 13 University street, Suceava 720229, Romania   

A R T I C L E  I N F O   

Keywords: 
Calibration domain 
Model-based maps 
Model transferability 
Extrapolation bias 
Airborne laser scanning 
Sampling effort 

A B S T R A C T   

The ever-increasing availability of remote sensing data allows production of forest attributes maps, which are 
usually made using model-based approaches. These map products are sensitive to various bias sources, including 
model extrapolation. To identify, over a case study forest, the proportion of extrapolated predictions, we used a 
convex hull method applied to the auxiliary data space of an airborne laser scanning (ALS) flight. The impact of 
different sampling efforts was also evaluated. This was done by iteratively thinning a set of 487 systematic plots 
using nested sub-grids allowing to divide the sample by two at each level. The analysis were conducted for all 
alternative samples and evaluated against 56 independent validation plots. Residuals of the extrapolated vali
dation plots were computed and examined as a function of their distance to the model calibration domain. 
Extrapolation was also characterized for the pixels of the area of interest (AOI) to upscale at population level. 
Results showed that the proportion of extrapolated pixels greatly reduced with an increasing sampling effort. It 
reached a plateau (ca. 20% extrapolation) with a sampling intensity of ca. 250-calibration plots. This contrasts 
with results on model’s root mean squared error (RMSE), which reached a plateau at a much lower sampling 
intensity. This result emphasizes the fact that with a low sampling effort, extrapolation risk remains high, even at 
a relatively low RMSE. For all attributes examined (i.e., stand density, basal area, and quadratic mean diameter) 
estimations were generally found to be biased for validation plots that were extrapolated. The method allows an 
easy identification of map pixels that are out of the calibration domain, making it an interesting tool to evaluate 
model transferability over an area of interest (AOI). It could also serve to compare “competing” models at a 
variable selection phase. From a model calibration perspective, it could serve a posteriori, to evaluate areas (in the 
auxiliary space) that merit further sampling efforts to improve model reliability.   

1. Introduction 

The ever-increasing availability of remote sensing data facilitates the 
production of forest attributes maps, which are usually made using 
model-dependant approaches (e.g., McRoberts et al. 2010, Saarela et al. 
2015, Magnussen et al. 2016, Stahl et al. 2016, Coops et al. 2021). In 
such approaches, auxiliary variables are linked to forest attributes 
through field calibration samples that are used to build models. These 
calibration samples do not necessarily need to follow a rigorous sam
pling design, and their purposive selection can sometimes be performed 
to meet cost effectiveness criteria. According to Magnussen (2015), in 

simple situations, model-dependant approaches are credible alternatives 
to the design-based ones usually followed by national forest inventories. 
Globally, estimates might be considered unbiased when a sufficiently 
large sample is used for model calibration (Magnussen 2015) and when 
the model is used within its validity domain. However, locally, for small 
domains or for conditions not encountered during calibration (i.e., 
pixels out of the calibration auxiliary space), there is no evidence that 
model predictions would be reliable or unbiased (Magnussen et al. 2016, 
Hsu et al. 2020). Even though this crucial role played by the calibration 
sample is recognised by many authors (e.g., Frazer et al. 2011, Mesgaran 
et al. 2014, Saarela et al. 2015, Bouvier et al. 2019, Meyer and Pebesma 
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2021), reliability maps of forest attributes are infrequent and, to para
phrase McRoberts (2011), such maps with predictions out of the models’ 
validity domain have a non-negligible risk of being potentially unreli
able and rather “pretty pictures”. 

To minimise model’s prediction errors, different strategies have been 
proposed to efficiently distribute field samples in the auxiliary space of 
the remote sensing data (e.g. Van Aardt et al. 2006, Pesonen et al. 2009, 
Hawbaker et al. 2009, Maltamo et al. 2011, Grafström et al. 2014). Some 
authors have proposed to stratify the ALS data to spread the sampling 
effort over the whole auxiliary space (Hawbaker et al. 2009, Frazer et al. 
2011). Maltamo et al. (2011) also compared different plot selection 
strategies to optimise precision. Nevertheless, to the best of our 
knowledge, none have tried to identify the validity domain of models 
used to predict forest attributes or to identify extrapolated predictions 
on the resulting maps. Owing to the simplicity of the method (Barber 
et al. 1996), one motivation of this study was therefore to use convex 
hulls as a tool for evaluating the quality and the validity domain of 
models used over an AOI. 

Characterizing the validity domain of a regression model is not a new 
problem, and not restricted to the remote sensing community (Cook 
1977; Brooks et al. 1988; Mesgaran et al. 2014; Ebert et al. 2014; Conn 
et al. 2015; Bouchet et al. 2020, Meyer and Pebesma 2021). In ecology 
for example, models used outside their calibration range produce 
frequently unreliable predictions of species distribution for example 
(Conn et al. 2015). Even though there is no universal definition of 
extrapolation, some authors have proposed algorithms based on statis
tical properties of the auxiliary space, such as Cook’s or Mahalanobis 
distances, or dissimilarity indexes to identify extrapolation situations 
(Cook 1977; Mesgaran et al. 2014; Conn et al. 2015; Bouchet et al. 2020, 
Meyer and Pebesma 2021), while others have used different forms of 
convex or concave hulls (Brooks et al. 1988, Ebert et al. 2014; Conn et al. 
2015). 

In their best practices guide of ALS approaches in forestry, White 
et al. (2013) illustrated that convex hull could be used to show uncov
ered forest structures by an ALS model. They showed that an inefficient 
calibration sample could leave a large part of the model predictions out 
of the calibration domain. Such a situation is prone to errors, as model 
transferability could be questioned outside the range of the sampled 
conditions (Brooks et al. 1988; Conn et al. 2015). Another important 
aspect about extrapolated predictions is their distance to the calibration 
data, since a remote prediction is expected to be more prone to bias than 
one located just beside the calibration domain. 

As extrapolated predictions over an AOI are rarely reported in the 
remote sensing literature and considering that they may produce biased 
estimates, and locally erroneous maps, a first objective of this study was 
to use convex hulls to evaluate the proportion of an AOI auxiliary space 
covered by a model and characterize the residual error associated to the 
extrapolated predictions. The proportion of extrapolated pixels over the 
AOI was used as an indicator of model representativity. A secondary 

objective was to evaluate how sampling intensities affects the degree of 
extrapolation and how extrapolation distance influence prediction 
errors. 

2. Data and methods 

The study area is based on an ALS flight performed in February 2019 
in North-eastern France, which covers a forested area of 18,646 ha, with 
a mean pulse emission density of 16 points per m2. Within this area, a set 
of 487 systematic field plots were carried out in the Mouterhouse forest 
(5,324 ha) during the winter of 2019–2020 (Fig. 1). The Mouterhouse 
forest consisted of broadleaved, mixed, and coniferous stands (respec
tively 43 %, 23 % and 34 % on an area basis) that were considered as 
representative of the whole ALS area. The main species are Scots pine 
(Pinus sylvestris), sessile oak (Quercus petraea), beech (Fagus sylvatica), 
Douglas fir (Pseudotsuga menziesii) and Norway spruce (Picea abies). 
Diameter (starting at 17.5 cm) and tree species were measured in these 
calibration plots of 15-meter radius spaced at every ~ 300 m, on a 
systematic grid. An independent set of 56 plots, located in the same 
forest area was used as a validation data set. 

To evaluate the effect of different sampling efforts, the systematic 
plot grid was thinned by half several times to obtain coarser grids, down 
to a minimum of 8 remaining plots, sequentially producing systematic 
subsamples (Fig. 2). The process follows the approach in used by the 
French National Forest Inventory and described in Vidal et al. (2007). It 
consists of a system of nested sub-grids allowing to divide the sample by 
two at each level. As indicated in Vidal et al. (2007) such an approach 
preserves the properties of the systematic sample at every grid levels. 
Furthermore, multiple subsamples of the sampling intensity were used 
at each thinning iteration, using alternative plot samples of the same 
grid resolution as replicates (i.e., for example the green and blue dots of 
the first iteration in Fig. 2). These replicates allowed to obtain estimates 
of attributes variability at each grid resolution (i.e., for each level of 
sampling intensity). As the number of candidate replicates grow expo
nentially at each iteration, a maximum of 40 replicates were used at 
lower grid resolutions for computational ease. When all replicates of a 
given grid resolution had not exactly the sample number of plots due to 
the spatial configuration of the forest, each replicate was trimmed to the 
minimal value found for that given resolution by randomly removing 
exceeding plots. This approach was retained since the initial sampling 
design was systematic and allowed a more even spatial repartition of the 
sampling effort. As a results, more precise estimates were then available 
at coarser grid resolution, resulting from the larger number of replicates 
for these lower sampling efforts. 

As shown in Fig. 1, no field plots were available for 71 % of the ALS 
acquisition area (the orange section). This situation offers the opportu
nity to examine the impact of model application outside of its “spatial” 
calibration area. Standard area-based ALS metrics (ABA) were computed 
using the R package lidR (Roussel and Auty 2021). Metric computation 

Fig. 1. The ALS flight area in orange, with the Mouterhouse forest in green (left) and for illustration, its initial 487 systematic (middle) and 56 validation 
(right) plots. 
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was performed over the field plots, as well as over a raster grid of 30 m 
resolution for the whole ALS area. A simple working linear regression 
model (Magnussen et al. 2012, Bouvier et al. 2015) was adjusted to 
estimate basal area (G), quadratic mean diameter (Dg) and tree density 
per hectare (N) separately. The retained working model parameters (Eq. 
(1)) included 3 independent variables: mean (Hmean), and standard 
deviation (Hsd) of all ALS pulse heights and the average slope (Slope) of 
the pixels (or of the field plots), computed from the digital terrain model 
(DTM) using the R package terra (Hijmans 2021). The working model is 
as follow:  

(N, G, Dg) ~ β1 Hmean + β 2 Hsd + β 3 Slope + ε                                 (1) 

where βi are model parameters obtained for each dependant vari
ables separately (N, G, Dg). 

Models’ performance was evaluated using root mean square error 
(RMSE) computed from the validation samples, as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(yi − ŷi)
2

n

√

(2) 

where n is the number of validation field plots, yi the observed values 
of field attributes and ŷi the predicted values. RMSE was further divided 
by the validation attribute mean to obtain a relative RMSE. 

Using the calibration auxiliary space of the model independent 
variables, convex hulls were computed for all field calibration configu
rations associated to the different sampling efforts compared. The “ge
ometry” package (Habel et al. 2019) was used to build convex hulls 
around the the auxiliary space of the calibration domains. The volume of 
the convex hull was also extracted from the scaled auxiliary space. Then, 
validation plots or pixels of the AOI were classified as being located 
inside or outside the hulls using the “inhull” function of the same 
package. For the Mouterhouse forest, as well as for the extended ALS 
area, the proportion of extrapolated pixels were computed. The yaIm
pute R package (Crookston and Finley 2008), was then used to obtain 
their Euclidian distances (using scaled X variables) to the nearest cali
bration plot. The same operation was performed for the validation plots 
which were also used to compute residuals from the models’ predictions 
(Eq. (3)): 

residuali = (yi − ŷi) (3) 

where, yi is the observed value, ŷi is predicted value. Means and 
standard deviations of all these indicators were obtained for each level 
of sampling intensity by aggregating replicates and were reported in the 

relevant figures. 

3. Results 

A conventional way to evaluate the quality of a model adjustment is 
to examine its validation RMSE. In this study, based on the results of 
decreasing sampling intensities, it appeared that the relative mean 
RMSEs tended to reach a plateau when ca. 50 calibration plots were used 
to build models, regardless of the forest attributes examined (Fig. 3a). 
This plateau represented relative RMSE values of ca. 18 %, 27 % and 42 
% for Dg, G and N respectively. In absolute values, it represented a mean 
RMSE of 5.9 cm for Dg, 6.5 m2/ha for G and 117 stems/ha for N. 

Mean bias per sampling intensity is shown in Fig. 3b. While for all 
forest attributes examined no bias was globally observed, a large vari
ability was nevertheless present at small sampling intensities. It showed 
that in such a situation (e.g., with less than 25 plots to calibrate a model) 
it was possible to obtain a bias larger than 10 % for a given replicate 
(Fig. 3b). 

As opposed to RMSE, the mean proportion of extrapolated pixels 
remained relatively high at low sampling intensities (Fig. 3c). For 
example, with less than 100 calibration plots, more than 25 % of the 
pixels over the Mouterhouse forest, or 29 % over the whole Lidar area 
were located outside the auxiliary space defined by the calibration hulls. 
Only minor differences in proportion of extrapolated pixels between the 
two AOI examined were observed, slightly more extrapolated pixels (ca. 
3 %) were observed within the extended AOI, as opposed to the Mou
terhouse forest area. With the full calibration dataset (487 plots) the 
proportion of extrapolated pixels was less than 18 % (Fig. 3c). 

When the sampling effort decreases, a larger number of pixels were 
found outside the calibration hull and their distances to the nearest 
calibration plots (in the auxiliary space) tended to increase. For 
example, with a sampling effort of 487 calibration plots, the mean 
extrapolation distances observed were respectively 0.6 and 0.8 for the 
Mouterhouse forest or the extended area respectively, while it was 
almost twice, i.e., 1.2, when less than 20 plots were used for calibration 
(Fig. 3d). Greater extrapolation distances to the calibration domain were 
also consistently observed for the extended lidar area as compared to the 
Mouterhouse forest, as shown in Fig. 3d. The mean interpolation dis
tance (i.e., distance among the auxiliary space of the calibration plots) 
was also shown in Fig. 3d (the dashed line). This mean interpolation 
distance (of the calibration plots) was low (0.3) for the largest sampling 
effort (487 plots) but increased with at reduced sampling intensities. 
When less than 50 plots were used to calibrate models, the mean 

Fig. 2. Illustration of the thinning process from the initial dense grid (left) to the second thinning iteration (right). Field pots are symbolised by dots. At each 
iteration, every second plot is removed, yielding a thinned grid. At each iteration, all plots of the same spatial resolution were used as replicates of the same sampling 
effort (e.g., 2 replicates at iteration 1: green and blue dots). 
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Fig. 3. Impact of sampling intensities on: (a) the relative root means squared errors (RMSE in %) of validation plots for the different forest attributes examined; (b) 
the mean relative bias (in %); (c) the mean proportion of pixels located outside the calibration hull for each AOI (whole Lidar area or the Moutherhouse forest only); 
and (d) the mean scaled extrapolation distances for each AOI. (The dashed line is the mean interpolation distance for the calibration plots). In all graphs, error bars 
represent 2 standard deviations of the replicated sampling intensities. 

Fig. 4. 3D representation of the convex hull (a) obtained from the model’s auxiliary space using 487 (yellow) and 23 calibration plots (black) and (b) the effect of 
sampling effort on the convex hull volumes. (As all variables are scaled, the hull volume is unitless.). 
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interpolation distance tended to be larger than 0.5 (Fig. 3d). 
The explored variability of the auxiliary space was also presented in 

terms of convex hulls volumes (Fig. 4). Fig. 4a presents envelops of the 
auxiliary space for two sampling intensities: 487 plots (in yellow) and 23 
plots (in black). An obvious shrinkage of the volume of the calibration 
domain was associated to the reduction of the sampling intensity. To 
illustrate more completely this phenomenon, the volumes of the convex 
hulls were presented as a function of the sampling intensity in Fig. 4b. 
From that figure, it appeared that below a sampling effort of 247 plots, a 
large reduction in the hull volumes was observed. The convex hull 
volumes were also computed (data not shown) for the pixel’s population 
of the Mouterhouse forest and the extended lidar area. It yielded vol
umes 2.5 and 2.9 times larger than the convex hull volume obtained 
with the full set of calibration plots (487 plots). This result suggested 
that a large part (greater than60 %) of the convex hull volumes of the 
AOI was not included within the volume of the calibration domain. 

For each replicate of the sampling grid resolutions, validation plots 
were classified as being inside or outside the calibration domain, based 
on their auxiliary space. The forest attributes observed in each group 
were aggregated, and their distribution compared (Fig. 5a-c). Results 
showed, for G and N, that the validation plots located outside of the hulls 
(InHull = FALSE) were more frequently at the lower end of the distri
butions compared to interpolated ones (InHull = TRUE) (Fig. 5a and c). 
For quadratic mean diameter, both distributions were overlapping 
(Fig. 5b). This translated, for basal area and stand density, into a clear 
tendency for an underestimation bias associated with an increase in 
extrapolation distances (Fig. 5d and f). For quadratic mean diameters, a 
trend toward reduced residuals with increasing extrapolation distance 
was also observed. Clearly from Fig. 5 (d-f), even for large sampling 
efforts (green and blue points), the extrapolated plots were globally 
underestimated for G and N and overestimated for Dg. This result 
underlined the importance of minimising extrapolation in model 

predictions and suggested a contribution of the extrapolation distance to 
bias. 

4. Discussion 

Our results are emphasizing the interest of convex hulls to identify 
model predictions that are made outside their calibration range not only 
for producing potentially more reliable maps, but also to ascertain forest 
attribute predictions. Even though it is well-known that unreliable 
predictions may results from such situations (Brooks et al. 1988), the 
proportion of extrapolated predictions are rarely reported in the remote 
sensing community involved in forest modelling. In most studies, the 
main model quality indicators reported are often the RMSE and coeffi
cient of determination (R2). However, as underlined by Persson and 
Stahl (2020), the use of RMSE has shortcomings, since it represents only 
a limited facet of the error structure. In a simulation study, Kangas et al. 
(2016) also showed that RMSE can significantly underestimate the real 
model uncertainty. Our results showed that RMSE tended to reach a 
plateau, at sampling intensities where the proportion of extrapolated 
pixels was not yet stabilized. This result is not due to a curse of 
dimensionality problem (Sagar et al. 2021) since we purposefully used a 
simple working model (Magnussen et al. 2012, Bouvier et al. 2015). At 
low sampling intensities the calibration domain tended to have a 
reduced convex hull volume (Fig. 4), and the proportion of extrapolated 
pixels tended clearly to increase. Distances of extrapolated pixels to the 
calibration domain also tended to increase at low sampling intensities 
(Fig. 3). This shrinkage of the model’s auxiliary space is problematic, 
since one would expect the calibration domain to cover as much as 
possible the ranges of the target population to produce reliable pre
dictions (Stage and Crookston 2007). This is particularly critical for 
models that cannot extrapolate due to their nature (e.g., non-parametric 
models such as k-NN or random Forest) or for non-linear relationships of 

Fig. 5. Distribution of forest attributes of the mean values of the validation plots grouped as inside (InHull = TRUE) or outside (InHull = FALSE) the calibration 
domain, aggregated over all replicates of sampling intensities (a-c). Mean residuals of the extrapolated plots (d-f, InHull = FALSE) are also given according to their 
mean distances to the calibration domain. The solid lines in plates d to f represented the regression line. Legend corresponds to classes of sampling intensities. 
(Attributes are basal area (a, d), quadratic mean diameter (b, e), and tree density per hectare (c, f). 
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forest attributes over a wider range of the predictors space (Stage and 
Crookston 2007, Magnussen et al. 2010, Corona et al. 2014). In het
erogeneous forests, a low sampling intensity is thus synonymous of a 
restricted calibration domain and of a potentially low model trans
ferability to unsampled areas (White et al. 2013, Mesgaran et al. 2014, 
Meyer and Pebesma 2021), especially when empirical models are used. 

Of course, the extrapolation problem mentioned above is particularly 
important in a model-based perspective, or when maps are directly 
produced from model predictions. Forest managers receiving such maps 
containing locally extrapolated predictions should be warned, and pixels 
out of the model’s validity domain should be identified as potentially 
unreliable. However, in a design-based perspective, an estimator 
frequently used is the generalized regression estimator (GREG). For in
ternal models, GREG is considered as approximately unbiased, regard
less of how well the model fits the relationship between the inventory 
and auxiliary data (Gregoire 1998, Lehtonen et al. 2003, Corona et al. 
2014, Stahl et al. 2016, Wojcik et al. 2022). This absence of bias is 
nevertheless associated with an adequate sample size and the assump
tion that residuals obtained from the calibration data are representative 
of the whole population. These conditions thus permit to correct model 
misspecification (Sarndal et al. 1992, Lehtonen et al. 2003). However, 
for operational forest management, concerns are frequently associated 
with small domains where only few, or even no calibration data are 
available to correct model errors. In GREG, two terms are used: the mean 
(or total) of model predictions for each pixel of the AOI, and a Horvitz- 
Thompson estimator of the residuals computed over the calibration plots 
(Sarndal et al. 1992, Gregoire 1998, Corona et al. 2014, Stahl et al. 2016, 
Wojcik et al. 2022). In Moutherhouse, predictions that were extrapo
lated had frequently non-null mean residuals. They concerned mainly 
young stands with low G and a low number of tallied stems, as shown in 
Fig. 5, but also occurred in mature plots still having low G and N, but 
large Dg suggesting that they resulted from thinning operations. 
Extrapolated predictions were mainly underestimated for G and N and 
overestimated for Dg (Fig. 5d-f). Even though it is out of the scope of this 
study, an evaluation of the impact of extrapolations on GREG’s esti
mation of small domains, would certainly be worth further 
investigations. 

We used an initial sampling effort of ca. 1 field plots per 8 ha (487 
plots). At this intensity, less than 18 % of the pixels from the AOI were 
found to be outside of the calibration domain. However, this proportion 
raised drastically when the sampling grid was thinned to a density of 1 
plot every 33 ha or more (<115 calibration plots over the AOI). A similar 
pattern was nevertheless not observed for RMSE, that reached a plateau 
at a sampling intensity of ca. 1 field plot per 70 ha (50 plots) (Fig. 3). 
When the sampling grid contained less than 50 calibration plots, the 
proportion of extrapolated pixels exceed 35 % and mean predictions of 
extrapolated pixels were biased (Fig. 5). Interestingly, a sampling in
tensity of 1 field plot per 70 ha (50 plots) is also the sample size that 
allow G to be estimated with a precision of 5 % based on the field sample 
plots alone (Kangas and Maltamo 2006). 

In a Wisconsin forest, Hawbacker et al. (2009) used a much lower 
sampling intensity (one plot per 700 ha) but stratified their training 
plots using the ALS predictor space. With this approach, they extended 
their calibration domain and obtained more accurate results, as 
compared to a simple random sampling design. This improvement was 
thus directly related to a better representativity of their calibration 
domain. In a Norwegian forest, Maltamo et al. (2011) also observed that 
stratifying field plots based on ALS data improved relative RMSE by 5 to 
10 %. That improvement was nevertheless dependant on sampling in
tensities. With a large sampling effort (at least 1 plot per 340 ha), all 
sampling designs tested had similar RMSE (Maltamo et al. 2011). We 
conjecture that the convergence in RMSE past a given sampling intensity 
is related to the proportions of extrapolated pixels in these studies, 
which unfortunately were not quantified or reported. Spatially system
atic samples have favourable properties because they are spatially 
balanced (Stevens 1997, Stevens and Olsen 2004), thus avoiding 

sampling voids over an AOI (Christianson and Kaufman 2016, Meyer 
and Pebesma 2021). In our case study, a systematic sampling design was 
used. This sample could be considered as efficient in obtaining a cali
bration sample covering all aspects of the AOI. But it seems that under a 
sampling effort of 1 field plot per 70 ha (50 plots), a large amount of the 
AOI’s auxiliary space is left uncovered. This could be related to the 
heterogeneity or the aggregation structure of the forest. Indeed, spatial 
regularity, or spatial structures can strongly reduce the efficiency of a 
systematic sample (Stevens and Olsen 2004), as some aggregated forest 
structures may be missed bellow a given sampling resolution. 

More advanced sampling methods can be implemented to reduce 
extrapolation. For instance, a sampling based on the cube method could 
be tested (Grafström et al. 2014). This method aims to improve the 
spread of the probabilistic samples in the space of some auxiliary vari
ables and could be used to sample from the space of the dependent 
variables used for model construction. Even though the impact of 
extrapolation on the prediction’s bias hasn’t been fully studied or 
established (Magnussen et al. 2010), it is probable that the informative 
spreading of the sample could enable to reduce extrapolation situations. 

Several authors have shown that NFI data are efficient to train ALS 
models (Hollaus et al. 2007, Maltamo et al. 2009, Véga et al. 2021). In 
France, the NFI plot density, over a 5-year period, represents an average 
sampling effort of 1 plot per 570 ha (Hervé 2016). This intensity over the 
Moutherhouse forest appears to be low and would probably have led to a 
large proportion of extrapolated pixels. The use of convex hull in such 
contexts, could contribute to improved model reliability through iden
tification of area of the predictor space requiring complementary sam
pling effort or to identify potentially unreliable predictions areas in 
maps, made for decision-makers or forest managers (Sagar et al. 2021). 
Certainly, problems associated to low sampling efforts could be more 
easily diagnosed using the proposed convex hull approach. A drawback 
though of the method is its large computational requirements in high 
dimensionalities, that restricts its use to the comparison of parsimonious 
models. Nevertheless, the question of model transferability at different 
scales remains a question beyond the scope on the present study. 

With an increased sampling intensity, mean extrapolation distances 
tended to be reduced. Meyer and Pebesma (2021) used such a distance- 
based criterion to estimate prediction’s reliability in random Forest 
models. They used the mean calibration distance of their auxiliary space 
(i.e., interpolation distances) to build an index of potentially spurious 
predictions. From Fig. 5, such a tendency of larger biases with increasing 
extrapolation distances can be observed, but the relationship is noisy. 
From a calibration perspective though, a clear impact of the sampling 
intensities is observed on the mean interpolation distances (Fig. 3), 
reflecting a denser calibration auxiliary space with larger sampling 
efforts. 

Convex hull could also serve at a model selection stage. Comparing 
convex hull volumes of competing models with the the ones of the AOI 
could serve as indicators of models’ extrapolation potential. The lowest 
the hull volume ratio, the lowest the extrapolation risk. In addition to 
the volume ratio, the extrapolation distance could serve as an indicator 
of outliers. Models with extrapolation distance largely above their 
interpolation counterpart should be considered with care. The impact of 
models’ predictions out of their validity domain on maps is certainly an 
aspect that worth further investigation and this study is a first step to
ward the use of this interesting tool. 

5. Conclusions 

This study presented the use of convex hulls as a multivariate tool 
allowing to identify model’s calibration domains and their trans
ferability over an AOI. It showed that the achieved RMSE can hide 
extrapolation issues, with risks of local bias. Our results also suggest that 
addressing the extrapolation issue requires a higher sampling intensity 
than the one considered for achieving a given RMSE target. The use of 
convex hulls allows to produce maps with identified predictions that are 
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made outside model’s calibration domains. From an operational forest 
management point of view, knowing where predictions are out of there 
validity domain could represent a valuable outcome of this approach. 
Convex hulls could also help to compare “competing” models at a var
iable selection phase, provided that a limited number of variables are 
constituting the auxiliary space, due to the large computational 
requirement of the convex hull method in high dimensions. From a 
model calibration perspective, it could also serve a posteriori, to evaluate 
areas (in the auxiliary space) that merit further sampling efforts to 
improve calibration or evaluate prediction bias. Finally, further studies 
are required to examine the possibility of correcting map bias using the 
extrapolation distances. 
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Kangas, A., Myllymäki, M., Gobakken, T., Næsset, E., 2016. Model-assisted forest 
inventory with parametric, semiparametric, and nonparametric models. Can. J. For. 
Res. 46 (6), 855–868. 

Lehtonen, R., Sarndal, C.-E., Veijanen, A., 2003. The effect of model choice in estimation 
for domains, including small domains. Survey Methodology, Statistique Canada 29, 
33–44. 

Magnussen, S., 2015. Arguments for a model-dependent inference? Forestry: An 
International Journal of Forest Research 88, 317–325. https://doi.org/10.1093/ 
forestry/cpv002. 

Magnussen, S., Tomppo, E., McRoberts, R.E., 2010. A model-assisted k-nearest neighbour 
approach to remove extrapolation bias. Scand. J. For. Res. 25, 174–184. https://doi. 
org/10.1080/02827581003667348. 

Magnussen, S., Næsset, E., Gobakken, T., Frazer, G., 2012. A fine-scale model for area- 
based predictions of tree-size-related attributes derived from LiDAR canopy heights. 
Scand. J. For. Res. 27, 312–322. https://doi.org/10.1080/02827581.2011.624116. 

Magnussen, S., Frazer, G., Penner, M., 2016. Alternative mean-squared error estimators 
for synthetic estimators of domain means. Journal of Applied Statistics 43, 
2550–2573. 

Maltamo, M., Packalén, P., Suvanto, A., Korhonen, K.T., Mehtätalo, L., Hyvönen, P., 
2009. Combining ALS and NFI training data for forest management planning: a case 
study in Kuortane, Western Finland. Eur. J. For. Res. 128, 305–317. 

Maltamo, M., Bollandsas, O.M., Næsset, E., Gobakken, T., Packalen, P., 2011. Different 
plot selection strategies for field training data in ALS-assisted forest inventory. 
Forestry 84 (1), 23–31. https://doi.org/10.1093/forestry/cpq039. 

McRoberts, R.E., 2011. Satellite image-based maps: Scientific inference or pretty 
pictures? Remote Sens. Environ. 115, 715–724. https://doi.org/10.1016/j. 
rse.2010.10.013. 

McRoberts, R.E., Cohen, W.B., Næsset, E., Stehman, S.V., Tomppo, E.O., 2010. Using 
remotely sensed data to construct and assess forest attribute maps and related spatial 
products. Scand. J. For. Res. 25, 340–367. https://doi.org/10.1080/ 
02827581.2010.497496. 

Mesgaran, M.B., Cousens, R.D., Webber, B.L., 2014. Here be dragons: a tool for 
quantifying novelty due to covariate range and correlation change when projecting 
species distribution models. Divers. Distrib. 20, 1147–1159. https://doi.org/ 
10.1111/ddi.12209. 

Meyer, H., Pebesma, E., 2021. Predicting into unknown space? Estimating the area of 
applicability of spatial prediction models. Methods Ecol. Evol. 12, 1620–1633. 
https://doi.org/10.1111/2041-210X.13650. 

Persson, H.J., Ståhl, G., 2020. Characterizing Uncertainty in Forest Remote Sensing 
Studies. Remote Sensing 12, 505. https://doi.org/10.3390/rs12030505. 

Pesonen, A., Leino, O., Maltamo, M., Kangas, A., 2009. The comparison of fi eld sampling 
methods and the use of airborne laser scanning as auxiliary data for assessing coarse 
woody debris. For. Ecol. Manage. 257, 1532–1541. 

J.P. Renaud et al.                                                                                                                                                                                                                               

https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://doi.org/10.1111/2041-210X.13469
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.1016/j.rse.2014.10.004
https://doi.org/10.1080/07038992.2019.1669013
https://doi.org/10.1080/07038992.2019.1669013
https://doi.org/10.2307/2684998
https://doi.org/10.1371/journal.pone.0141416
https://doi.org/10.2307/1268249
https://doi.org/10.1016/j.rse.2021.112477
https://doi.org/10.1016/j.rse.2021.112477
https://doi.org/10.1139/cjfr-2014-0203
https://doi.org/10.18637/jss.v023.i10
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0055
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0055
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0055
https://doi.org/10.1016/j.rse.2010.10.008
https://doi.org/10.1139/cjfr-2014-0202
https://doi.org/10.1139/x98-166
https://doi.org/10.1139/x98-166
https://CRAN.R-project.org/package=geometry
https://CRAN.R-project.org/package=geometry
https://doi.org/10.1029/2008JG000870
https://doi.org/10.1029/2008JG000870
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0085
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0085
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0085
https://CRAN.R-project.org/package=terra
https://CRAN.R-project.org/package=terra
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0095
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0095
https://doi.org/10.1007/s13595-020-00976-8
https://doi.org/10.1007/s13595-020-00976-8
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0105
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0105
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0110
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0110
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0110
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0115
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0115
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0115
https://doi.org/10.1093/forestry/cpv002
https://doi.org/10.1093/forestry/cpv002
https://doi.org/10.1080/02827581003667348
https://doi.org/10.1080/02827581003667348
https://doi.org/10.1080/02827581.2011.624116
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0135
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0135
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0135
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0140
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0140
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0140
https://doi.org/10.1093/forestry/cpq039
https://doi.org/10.1016/j.rse.2010.10.013
https://doi.org/10.1016/j.rse.2010.10.013
https://doi.org/10.1080/02827581.2010.497496
https://doi.org/10.1080/02827581.2010.497496
https://doi.org/10.1111/ddi.12209
https://doi.org/10.1111/ddi.12209
https://doi.org/10.1111/2041-210X.13650
https://doi.org/10.3390/rs12030505
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0175
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0175
http://refhub.elsevier.com/S1569-8432(22)00136-4/h0175


International Journal of Applied Earth Observation and Geoinformation 112 (2022) 102939

8

Roussel, J.R., Auty, D., 2021. Airborne LiDAR Data Manipulation and Visualization for 
Forestry Applications. R package version 3 (1), 1. https://cran.r-project.org/ 
package=lidR. 

Saarela, S., Schnell, S., Grafstrom, A., Tuominen, S., Hyyppa, J., Nordkvist, K., 
Kangas, A., Stahl, G., 2015. Effects of sample size and model form on the accuracy of 
model-based estimators of growing stock volume. Can. J. For. Res. 45 (11), 
1524–1534. https://doi.org/10.1139/cjfr-2015-0077. 
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