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Bushpigs (Potamochoerus larvatus) play a major role in the socio-ecosystem of Madagascar, particularly in rural areas. They are
largely hunted by rural populations as a major source of income and protein. They can also represent a potential source of
pathogens for domestic animals and people. For example, it is hypothesized that bushpigs might compromise African swine fever
(ASF) eradication programs by sporadically transmitting the virus to domestic pigs. However, available knowledge on the
distribution of bushpigs in Madagascar is limited. In this study, we estimated the distribution of bushpigs on Madagascar using
a species distribution model (SDM). We retrieved 206 sightings of bushpigs in Madagascar during 1990-2016 and predicted the
distribution by using 37 climatic, geographic, and agricultural/human variables related to the presence of bushpigs and running
a presence-background maximum entropy SDM. Our model identified three main areas with a high suitability for bushpigs: in the
north, central-western, and east of the island (AUC = 0.84). The main contributors to the model were the vegetation index (51.3%),
percentage of land covered by trees (17.6%), and annual averaged monthly precipitation (12.6%). In addition, we identified areas in
central Madagascar with a high density of domestic pigs and a high suitability score for bushpigs. These results may help to identify
bushpig areas at the interface with domestic pigs to assess the risk of pathogen transmission and to design ecological assessments,
wildlife management studies, or targeted surveillance and research studies related to many bushpig-borne pathogens, such as ASF,
which is an endemic problem in the country, as well as zoonotic diseases such as cysticercosis and hepatitis E. Our approach could
also be extrapolated to other species of wild swine in other countries.
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1. Introduction

Wild pigs have been shown to carry a large diversity of
pathogens in many parts of the world, many of which can
induce disease in other domestic animals and humans
[1]. In Madagascar, the bushpig (Potamochoerus larva-
tus) represents the largest terrestrial vertebrate. This
species is not native and is suspected to have been in-
troduced in the country more than 2000 years ago, with
the arrival of the first human populations from the Af-
rican continent [2]. Bushpigs are widespread in the
Malagasy territory and represent an important source of
income and protein for many rural populations in the
country, but they are also important crop raiders [3]. As
such, they have the capacity to approach anthropized
areas and interact with domestic pigs, and, therefore, we
hypothesize a considerable risk of direct or indirect
pathogen transmission to pigs and other domestic ani-
mals. The role of bushpigs as source of pathogens in the
African continent and Madagascar has been in-
sufficiently studied [4]. However, there is occasional
evidence of their capacity of carrying pathogens related
to important diseases such as bovine tuberculosis [5],
trichinellosis [6], classical swine fever [7], and African
swine fever (ASF) [8].

To properly quantify this risk, it is necessary to de-
termine the distribution of bushpigs and the potential
areas of contact with domestic pigs. This will be useful to
understand the epidemiology of shared diseases in the
country such as ASF. The ASF is one of the major
transboundary diseases in swine due to its health and
socioeconomic impact in the affected countries. In
Madagascar, this disease is endemic despite long efforts
to eradicate it after its introduction in 1997 [9, 10].
Cycles involving wild suids, ticks, and domestic pigs
contribute to the maintenance of the disease in endemic
countries of Africa [11], but it is uncertain whether they
occur in Madagascar. However, the potential of this
swine to interact and share ASF virus, as well as other
pathogens, with domestic pigs in Madagascar remains
unstudied.

However, data on the presence of bushpigs in Mada-
gascar are scarce and scattered. Species distribution models
(SDMs) of maximum entropy (MaxEnt) are widely used
tools that have successfully helped to estimate the suitability
of areas for the presence of several species based on envi-
ronmental, climatic, and anthropogenic factors [12]. In this
sense, efforts to characterize the wild boar-domestic pig
interface are carried out by the ENETWILD consortium in
Europe with similar approaches to define risk maps of in-
teractions [13, 14], but these initiatives are more limited in
African countries, even though important shared diseases
are endemic. Thus, in this study, we aimed to apply an SDM
to estimate the distribution of bushpigs in Madagascar using
the MaxEnt algorithm. This would help to define areas in
which contact between domestic and wild pigs might be
likely and provide the foundations to conduct further epi-
demiological studies at the bushpig-domestic pig interface
and risk-based surveillance.
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2. Material and Methods

2.1. Study Area. Madagascar can be divided into three main
geographic areas: (i) the eastern coast, with a narrow and
steep escarpment characterized by lowland moist evergreen
forests (sea-level to about 900 m); (ii) the central highlands
(the zone above 900 m), which comprises the most densely
populated part of the island and concentrates the rice-
producing lands between patches of highly fragmented
medium-altitude moist evergreen forest; and (iii) a western
and southern area characterized by dry deciduous forests,
dry spiny thickets, and secondary grasslands and pastures
(vegetation formations follow Gautier et al. [15]).

2.2. Data on Bushpig Presence. We obtained georeferenced
data using the waypoint WGS84 on the presence and oc-
currence of bushpigs obtained during broad-scale biological
inventories of mammals made by the Vahatra Association
during the period 1990-2016 (n=206). The data collected
for this study are the result of multiple projects to assess the
presence and distribution of animals on the island [16]. This
consisted of visits to register observations of bushpigs and
their tracks and spoor, as well as remains from hunter
camps. Indirect evidence of bushpigs was considered, as this
is the only wild swine species present in the country, but it
was also discussed with local people.

In the SDM, problems of pseudoreplication may occur
due to neighboring observations that may present similar
values for environmental variables, violating the assumption
of independence between observations and compromising
the reliability of the model [17]. Therefore, to control for
potential pseudoreplication problems, we reduced the local
density of occurrences by removing observations under
a determined pairwise distance [18]. This threshold was
established at 15km as bushpigs in Africa have been re-
ported to move to a maximum distance of 15km [19]. We
intended with this that the observations represent different
suitable habitats for bushpigs. As a result, the number of
observations of bushpigs in the period of study used was
reduced from 206 to 83 (Supplementary Figure 1). When
various observations were closer than the threshold, one of
them was randomly selected for modeling.

2.3. Explanatory Variables. We conducted a comprehensive
review of the literature to identify possible factors that in-
fluence the presence and distribution of bushpigs [20-24].
We selected 37 variables and grouped them into four cat-
egories: climatic, vegetation, geographic, and agricultural/
human. The variables and their sources are detailed in
Supplementary Table 1. Briefly, they are defined as follows:

Climatic variables were obtained from WorldClim 2
(BIOCLIM, [25]). These data consist of averages for the
years 1970-2000 from climatic variables interpolated
from ground-based meteorological measurements.
These consisted of monthly/annual rasters for tem-
perature (mean, minimum, and maximum), annual-
averaged monthly precipitation, wind speed, solar
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radiation, and water vapor pressure. In addition, we
used 17 other bioclimatic variables available from
WorldClim 2 that represent annual trends, seasonality,
and extreme or limiting environmental factors.

Vegetation variables consisted of the normalized dif-
ference vegetation index (NDVI), evapotranspiration,
and the percentage of land area covered by trees,
nontree vegetation, and no vegetation. These variables
are proportional estimates of cover developed from
global training data derived using high-resolution
imagery and were obtained from the moderate reso-
lution imaging spectroradiometer (MODIS) aboard
NASA’s Terra satellite and extracted using the R
package “MODIStsp” [26]. All rasters available for the
period of study in the MODIS (from February 2000 to
December 2016; no data prior to February 2000 was
available in this source) were gathered. These consisted
of 204 monthly rasters for NDVI and a raster from 2016
for the percentage of land area covered by trees, nontree
vegetation, and no vegetation. We used the NDVI
rasters to calculate the NDVI seasonality as the co-
efficient of variation of the average monthly rasters. The
procedure to obtain a single raster of the period
consisted of averaging submonthly rasters to monthly
rasters, then to annual rasters, and finally to a raster of
the entire period.

Geographic variables consisted of elevation retrieved
from WorldClim 2 BIOCLIM [25], distance to water
points (rivers, wetlands, and lakes), and distance to the
nearest main human settlements (cities and towns).
This refers to human settlements with more than 1,000
inhabitants. Layers of water points and human settle-
ments were obtained from Open Street Maps [27] and
were used to create rasters of the Euclidean distances.

Agricultural/human variables consisted of raster maps
of the production of Madagascar’s principal crops (rice
and cassava). These data were retrieved from the In-
ternational Food Policy Research Institute [28]. These
datasets were created by spatially disaggregating na-
tional and subnational harvest data for 2001 using the
Spatial Production Allocation Model (SPAM). This
approach is a cross-entropy method that estimates crop
distribution from a variety of inputs (land cover, crop
production statistics, biophysical suitability, rural
population density, etc.) [29, 30]. In addition, a raster of
the human population in Madagascar (number of
people per pixel) was obtained from WorldPop [31],
which uses a dasymetric modeling approach for cal-
culation. Finally, a raster of the human footprint was
retrieved from the Socioeconomic Data and Applica-
tions Center of NASA [32], and it is defined as the
cumulative human pressure on the environment and
calculated as a combination of eight variables: built-up
environments (human produced areas that provide the
setting for human activity, e.g., buildings, paved land,
and urban parks), population density, electric power
infrastructure, crop lands, pasture lands, roads, rail-
ways, and navigable waterways [32].

All predictor rasters were standardized to the same
extent and projection (WGS 84/UTM zone 38). The cell sizes
of the different rasters were set following the layer with the
lowest resolution (926 x 926 m).

2.4. Species Distribution Model. The suitability for the
presence of bushpigs on Madagascar was calculated using an
SDM based on the MaxEnt algorithm [33]. MaxEnt was
developed to use presence-only data by contrasting pres-
ences with background locations [12] and has been shown to
outperform other algorithms, even when applied to small
datasets [34, 35]. In MaxEnt, it is essential to place back-
ground points where presence/absence is unmeasured but in
which the presence is possible. Thus, a random sample of
10,000 background points [36] was obtained from the en-
vironmental layers after removing locations which were not
expected to be permanent habitats for these animals (water
points, roads, trail roads, and human settlements, as defined
above). Since observations of animals may be easier in areas
with more human presence, we used the human footprint
layer as a bias layer to distribute 10,000 background points
with a likelihood of presence proportional to this layer [37].

We ran separate MaxEnt models for each of the four
groups of variables (i.e., climatic, vegetation, geographic, and
agricultural/human). In each of the four models, we eval-
uated collinearity following a data-driven variable selection
approach. First, we computed the pairwise Spearman’s
correlation of each variable and set a threshold of 0.7 [38].
Then, we performed a leave-one-out Jackknife test among all
correlated variables, thus ruling out the correlated variable
that least decreased the model’s performance. This perfor-
mance was measured with the Akaike’s Information Cri-
terion corrected for a small sample size (AICc). We also used
the area under the curve (AUC) of the receiver operating
characteristic (ROC) and the true skill statistic (TSS) to
explore if using different metrics would lead to different
results. The process was repeated after removing each var-
iable until the correlations among all the retained variables
fell below the threshold. Finally, a dataset that included all
the selected variables from each of the four groups was run,
repeating the same collinearity assessment. Spearman’s
correlations between all the variables are shown in Sup-
plementary Figure 2.

We tuned the model by selecting the regularization
multiplier, the features to be used, the number of iterations,
and the inclusion/exclusion of explanatory variables, re-
moving first the variable with the lowest contribution to the
model as suggested by Phillips et al. [33] according to the
best AICc value. To determine the optimal model com-
plexity, we explored all combinations of the regularization
parameter from 0.1 to 6 at intervals of 0.2 and nine potential
combinations of four feature classes: linear “I,” quadratic “g,”
product “p,” and hinge “h” (“L,” “Ig,” “Ip,” “Igp,” “h,” “Ih,”
‘Igh,” “Iph,” “Igph”) and set a final model with 100 repli-
cations. Since the predictive accuracy of models selected by
AICc has been questioned [39], we also used AUC and TSS
to explore if using different metrics would produce a dif-
ferent solution.



The models’ performances were evaluated by cross
validation by splitting our dataset into four spatially in-
dependent partitions. We used three partitions to train the
model and the remaining one to test it. The accuracy of the
final model was estimated by computing the AUC and the
partial ROC (pROC) [40]. We verified the absence of spatial
sorting bias using the function ssb in the R package “dismo”
[41]. The models, the selection of variables, and the model
tuning were carried out wusing the R package
“SDMtune” [42].

The variables in the final model were ranked based on the
estimated percentage contribution. The resulting model was
expressed on a map (resolution: 926 km x 926 km) using the
maximum value (pointwise) of the 100 replications to
provide the scenario of highest suitability. The model’s
predictions are given in logistic format and represent
a suitability score (0-1) of the cell for the presence of
bushpigs. All the values presented were obtained as averages
of the cross-validation runs. We also estimated the most
limiting variables (responsible for decreasing suitability) in
each raster cell using the function limiting implemented in
the R package “rmaxent.” This function defines, for each cell,
the variable whose value is most responsible for decreasing
suitability in this model [43, 44]. In addition, we explored the
influence on the output of resampling the presence points to
avoid pseudoreplication by repeating the models 1,000
times, each time with a different random set of presence
points and ensuring again a minimum distance of 15km
between points, creating some functions in R to automatize
the process of point selection and subsequent analysis
(Supplementary Code 1).

In order to detect areas with high risk of contact between
domestic pigs and bushpigs, we collected data on the dis-
tribution of the density of domestic pigs in Madagascar in
2006 available from the livestock geo-wiki (a multipartner
collaboration of the International Livestock Research In-
stitute, the Food and Agriculture Organization of the United
Nations, and the Université Libre de Bruxelles) and calcu-
lated by Gilbert et al. [45] (Supplementary Figure 3), and we
compared the livestock density map of Madagascar with the
results of our model. For this purpose, we selected the pixels
with the highest quartile of the density of domestic pigs and
the highest suitability score for bushpigs estimated by our
model and compared the areas in which both maps overlap.

3. Results

The best model according to AICc included linear and
quadratic features and a regularization parameter of 0.4.
Using different metrics (AUC or TSS) to assess model se-
lection did not change the final selected model in this case.
Model performance was notably good with a high AUC
value (0.84; sd =0.006) and a pROC of 0.84 (p <0.001). The
suitability for bushpigs predicted by the model is shown in
Figure 1(a). The resampling of the presence points did not
show great variation in the output since in all the iterations
the variation of the suitability scored in each cell was lower
than 5% in 95% of the raster cells (Supplementary Figure 4)
compared to the presented model.
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The final model included six variables (Table 1) after
removing those that displayed collinearity and low contri-
bution to the model. The main contributors to our model
were NDVI (51.3%), percentage of land covered by trees
(17.6%), and annual average monthly precipitation (12.6%)
(Table 1). Figure 1(b) shows that NDVT is the most common
predictor associated with the largest decrease in suitability in
each pixel. For these three principal contributors, the re-
sponse curves showed that the probability of the presence of
bushpigs increased with variables related to vegetation cover
and precipitation (Figure 2).

The geographic areas that presented a probability greater
than 75% (highest quartile) of the presence of bushpigs were
mainly concentrated in the north of the island, in the central
west, and in the eastern area including a portion of the
central highlands (zones I, II, and III in Figure 3, re-
spectively). The density distribution of the domestic pigs
presented few high values, and 75% of the pixels presented
less than 10 heads per km? The high-density areas of do-
mestic pigs were mainly located in the central highlands
(Supplementary Figure 2). Comparing the areas of higher
probability of bushpigs (>75%) with the areas of higher
density of domestic pigs (>10 heads/km?), we found several
overlapping pixels in the central highlands and eastern
portions of Madagascar (zone IIla in Figure 3).

4, Discussion

Ecological and health studies on African forest wild pig
species such as Potamochoerus porcus and Hylochoerus
meinertzhageni are scarce and scattered, mainly due to the
elusive nature and nocturnal habits of these species. The
bushpig is not an exception, and knowledge about its precise
area of distribution and its potential role as a source of
pathogens on Madagascar is still limited. Consequently, in
this study, we estimated the distribution of bushpigs on
Madagascar using the SDM. The approach followed in the
present study also maximized the use of information from
open-source databases and allowed us to provide, to the best
of our knowledge, the first suitability map for this species on
Madagascar. Moreover, this approach also allows a quanti-
fication for this suitability, so that surveillance can be
designed considering the certainty about the presence of
bushpigs at each particular location and efforts can be
weighted accordingly.

Defining the area of bushpig distribution is a key element
to realistically assess the risk of contact with domestic pigs
and its role in interspecies disease transmission. According
to previous studies, bushpigs occur throughout much of sub-
Saharan Africa in a variety of wooded and wetland habitats
including closed canopy moist forest [8, 46]. On Mada-
gascar, the range of this species was previously estimated to
be lowland areas, forming a sort of ring around the island
and not occurring in the central highlands [8]. The bushpig
distribution on Madagascar estimated by our model is
largely consistent with this previous approximation but add
greater resolution, showing a pattern of distribution in the
central highlands and determining specific areas of high
probability for its occurrence, particularly in the north, in
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FIGURE 1: (a) The map of the estimated probability of presence of bushpigs on Madagascar obtained with the species distribution model and
presence data (n=206), and (b) the map of the limiting factors of the environmental suitability for bushpigs predicted by the model.

TaBLE 1: Estimates of the relative contribution of variables included in the ecological niche model.

Variable

Percent contribution

Permutation importance

Normalized difference vegetation index (NDVI)
Percentage of land covered by trees
Annual-averaged monthly precipitation
Evapotranspiration

Minimum temperature in the coldest month
Maximum temperature in the warmest month

51.3 66.9
17.6 0.4
12.6 19.0
9.9 3.8
5.0 6.1
3.6 3.8

the central-western and eastern half of the island. Our
analysis provides new insights into the areas of distributional
overlap in eastern half of the island, particularly the central
highlands (zone IIla in Figure 3) between bushpigs and
domestic pigs, which may favor interspecies transmission of
pathogens.

The results of our model on the distribution of bushpigs on
Madagascar were mainly determined by variables related to
vegetation: the NDVI and the percentage of land covered by

trees. The NDVI is a measure of the presence of live green
vegetation associated with near-infrared sunlight reflected by the
plant canopies. Different studies have shown that several un-
gulate populations in Africa react to variation in the NDVI with
regards to their behavior, distribution, etc. (e.g., [47-50]). The
high contribution of the NDVI to the model (51.3%) also points
to the utility of this parameter as a screening of the potential
presence of bushpigs. Diverse studies have shown a preference
for bushpigs in areas with dense vegetation [23, 24], which is
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F1GURE 3: The map of the areas of high density of domestic pigs and probability of presence of bushpigs and overlapping areas between both
species. Three zones (I, II, and III) of high probability of bushpigs are differentiated and a subzone where overlapping distribution with

domestic pigs is more likely (IIIa).

consistent with the relationship in our model with those areas
with higher tree coverage. Nevertheless, although the NDVI and
forest density are variables that may be interrelated, the cor-
relation between them was below 0.7, and the greater contri-
bution of the NDVI suggests that the presence of bushpigs is not
only restricted to high-density forests but that animals may
inhabit areas with different vegetation covers as evidenced by the

presence of observations in areas of the country with different
vegetation types.

Precipitation also contributed to the model, and this is
a known factor in the distribution of African ungulates since
it is related to vegetation growth [51]; however, the nature of
the influence of this variable in our results is not very clear
since the response curve presented a wide variation in areas
of high precipitation (Figure 2). This may be a consequence
of high variability of precipitations in areas with no recorded
presence of bushpigs, or it may indicate that this variable is
capturing information from other correlated variables,
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either the NDVI, which was at the limit of the correlation
threshold that we established (r=0.7) (Supplementary
Figure 2) or with other variables not included in our model
whose effect could be masked by the precipitation.

There is limited information in the literature from the
African-Malagasy region on the factors influencing the
presence of bushpigs. Bushpigs are crop raiders that cause
frequent problems for local agriculturalists and could be
attracted to farming areas due to increased food availability
[22, 46]. Previous studies indicated that bushpigs may be
frequently found (27%-60%) around villages in certain areas
of Madagascar [3]. However, crop and human variables were
not found to be major contributors to the probability of
bushpig occurrences in our predictive model. It must be kept
in mind that the layers of crops used in this study are es-
timates obtained through modeling [29]. They provide
enough spatial resolution to use this information in pre-
dictive models, but they could be inaccurate at a local level
and prone to offer outdated information. It also must be
noted that suitability is not necessarily correlated with
abundance, especially when models are driven by only cli-
matic variables [52]. Other variables, e.g., related with food
availability, could lead to higher numbers of animals despite
the fact that the suitability score may not be the highest. In
this regard, crops could still be modulators of the behavior of
bushpig populations in areas where these animals are already
present by favoring their local movement from adjacent
habitats and by increasing their density due to the higher
availability of resources. In the case of Madagascar, this
would explain the areas of high suitability for bushpigs
located in zone III, which overlaps with the high density of
domestic pigs. In this regard, the presence of bushpigs
around pig farms from this zone has already been reported
[3]. This high risk of contact is not only limited to the areas
where high densities of domestic and wild swine overlap but
also in adjacent areas. For example, in Uganda, bushpigs
may have a greater occurrence during the day in areas with
denser vegetation and at night venture into more open areas
to forage including agricultural plots [19].

The information obtained in this study could be useful for
the management of diseases shared between bushpigs and
domestic pigs and contribute to a better understanding of the
epidemiologic role of bushpigs. The elusive behavior and noc-
turnal habits of bushpigs [53] can make direct interactions with
domestic pigs difficult, hindering disease transmission. Despite
this, there are several reports of contacts between bushpigs and
domestic pigs in Madagascar and even interbreeding in diverse
areas, although not scientifically proven to date [8, 23, 53]. In
addition, different practices may favor indirect contact between
bushpigs and domestic pigs, including feeding pigs with leftover
food wastes, remains of slaughtered animals, inappropriate
disposal of dead animals, and, in general, the lack of biosecurity
and sanitary measures [21]. Furthermore, bushpigs may ingest
contaminated pig carcasses during nocturnal visits to farming
areas. Bushpigs are also a favored game species in certain areas
[3, 22], and hunting can favor the transmission of disease to
domestic pigs when pigs are fed portions of bushpig carcasses
[54] and when bushpig hunters or vendors also raise pigs and
keep live or butchered bushpigs in close proximity to pig farms.

Therefore, to assess interspecies transmission, the defi-
nition of risk areas of contact between domestic pigs and
bushpigs is critical. For example, ASF is a relevant endemic
disease in the country, and bushpigs are suspected reservoirs
[8, 55, 56], but bushpigs have shown a low capacity to
become infected, and information about bushpig-domestic
pig transmission in field conditions is extremely limited
[11, 57]. Antibodies against ASF virus in bushpigs have not
been detected in two previous investigations including those
on 27 and 26 individuals carried out in the country [58, 59],
but studies on the prevalence of ASFV in bushpigs are
difficult to conduct and still very local [8]. Moreover, ASF is
also transmitted by ticks of the Ornithodoros spp., and
species of this genus (Ornithodoros porcinus) have been
found infected in the country [60]. Thus, identifying over-
lapping areas between potential reservoirs may aid to define
surveillance schemes focused on areas with a higher risk of
contact between reservoirs and therefore increase the sen-
sitivity of the detection of potential events of interspecies
transmission. This would give a better knowledge of the real
involvement of bushpigs in the epidemiology of the disease
in the country.

This study includes one of the largest assembled datasets
of bushpig occurrences on Madagascar and covers a 30-year
period. The distributional range of this species could have
varied during this period due to different factors: human
activity, changes in the suitability of different areas, etc., thus
affecting our model. However, we believe that these potential
factors have little influence on our results. Instead, the
continued presence of bushpigs at certain sites during the
three decades (Supplementary Figure 1) suggests the high
suitability of these areas for this species, and our environ-
mental variable extrapolations are assumed to be reliable.
Likewise, domestic pig data layers were obtained by in-
terpolation, and there may be some problems in accuracy at
spatial or temporal levels. However, these layers seem
consistent with the district-level information available from
administrative sources [61]. However, our model can still be
improved. Seasonal changes may have an effect on the
distribution of bushpigs and could be modeled in further
studies. In terms of risk, modeling abundance would be
especially valuable, as density may be more important than
mere presence. Moreover, layers of crops and human ac-
tivities had little impact despite the fact that they could
attract wild swine [3]. It cannot be ruled out that low
precision at a local scale could misrepresent their influence
and predictive value. Different approaches using other
methodologies, such as multicriterion decision analysis
could also explore this issue from another perspective [62],
and it would be valuable to compare different approaches to
increase the accuracy of estimates.

5. Conclusions

Our results are insightful to design further epidemiological
studies on the role of these animals in the epidemiology of
diseases such as ASF and help design more cost-effective,
risk-based surveillance programs. For example, bushpig
sampling should consider areas in which interspecies



contacts are more likely to maximize the probability of
detection. Monitoring or surveillance systems in defined
high-risk areas may give better results to detect sporadic
events of transmission that could contribute to the un-
derstanding of the risk of transmission at the pig-bushpig
interfaces and the design of better mitigation strategies if
necessary. This information can also be used for the diverse
shared diseases between bushpigs and domestic pigs present
in the country in addition to ASF, such as classical swine
fever, cysticercosis, trichinellosis, or Hepatitis E [22]. In
addition, the methodology implemented here could also be
extrapolated to other African countries, contributing to the
evaluation of the potential risks of interspecies transmission
of pathogens.
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