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Abstract: Wheat (Triticum aestivum L.) is one of the most important crops as it provides 20% of
calories and proteins to the human population. To overcome the increasing demand in wheat grain
production, there is a need for a higher grain yield, and this can be achieved in particular through
an increase in the grain weight. Moreover, grain shape is an important trait regarding the milling
performance. Both the final grain weight and shape would benefit from a comprehensive knowledge
of the morphological and anatomical determinism of wheat grain growth. Synchrotron-based phase-
contrast X-ray microtomography (X-ray µCT) was used to study the 3D anatomy of the growing
wheat grain during the first developmental stages. Coupled with 3D reconstruction, this method
revealed changes in the grain shape and new cellular features. The study focused on a particular
tissue, the pericarp, which has been hypothesized to be involved in the control of grain development.
We showed considerable spatio-temporal diversity in cell shape and orientations, and in tissue
porosity associated with stomata detection. These results highlight the growth-related features rarely
studied in cereal grains, which may contribute significantly to the final grain weight and shape.

Keywords: grain development; 3D imaging; spatial variability; pericarp; mesocarp; cross cells; tube
cells; stomata

1. Introduction

Worldwide, wheat is a major crop used mainly for food and animal feed, with a central
role in the human diet providing a substantial part of daily required calories, protein, and
other pro-health compounds [1]. To meet the rising demand for wheat production, one
solution is to increase the final weight of the individual grain [2]. Moreover, from a techno-
logical point of view, the shape itself is important as it influences the milling performance,
an important step of grain processing [3]. The final grain weight and shape of wheat grains
result from complex and coordinated transformations of the grain dimensions over the en-
tire course of its development. To increase our understanding of these transformations, it is
essential—as a first step—to gain a more precise description of changes in the morphology
and anatomical properties of the cells and tissues that form the grain.

The final grain shape and size result from developmental processes occurring in
various compartments of the grain. Botanically, the wheat grain is a fruit and, more
precisely, a caryopsis containing a single true seed defined as a matured ovule. In this
article, we will refer to this definition of the seed and not to its broader definition as a
unit of dissemination. A mature wheat caryopsis is composed of the seed containing the
embryo, a storage tissue, the starchy endosperm itself surrounded by a layer of specialized
endosperm cells, the aleurone layer, and several compressed outer cell layers, including the
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remains of the seed nucellar epidermis and testa, and that of the pericarp [4]. The caryopsis
development, which is initiated by the ovule fertilization, is classically divided into the
(i) early (lag-) phase, (ii) the filling phase, mainly characterized by a rapid accumulation
of dry matter and by a water plateau, and (iii) the maturation phase characterized by the
caryopsis dehydration and polymerization of storage proteins.

The development of cereal endosperm and embryo has been extensively studied [4–9].
On the contrary, the development of the outer layers (pericarp + testa and nucellar epider-
mis) of the cereal caryopsis has been less comprehensively studied. Nevertheless, pericarp
was suggested to greatly contribute to the determinism of the wheat caryopsis size, weight,
and shape [10]. Indeed, at early stages, the caryopsis consists mainly of pericarp cells
that extend, causing grain elongation. During this early development, the wheat grain
shape changes from a triangular shape to an ellipsoid [11] and a crease and two lobes
appear. Another important contribution of the pericarp is to serve as a transient storage
tissue. In addition, pericarp contributes to caryopsis feeding with the direct products
of pericarp photosynthesis, and/or nutrients remobilized from disintegrated tissues. Its
vascular tissues also allow for the supply of water and nutrients to the caryopsis. Moreover,
it has been proposed that pericarp could set the upper limit of the caryopsis expansion and
filling capacity by constraining the growth [12–14].

After fertilization, the caryopsis pericarp develops from the ovary wall and includes
the epicarp or pericarp outer epidermis, the mesocarp and endocarp, or inner pericarp.
The pericarp tissues undergo an important phase of cell elongation. From four days
after anthesis (DAA), the mesocarp parenchyma cells undergo programmed cell death
(PCD) [15]. The endocarp differentiates into a photosynthetically active chlorenchyma layer.
The endocarp contains two cell layers known as cross cells and tube cells. At the end of
the filling phase, the outer layers (pericarp, testa, and nucellar epidermis) are drastically
reduced to only a few cell layers. The endocarp remains photosynthetically active until
late development. While several studies were conducted to improve our knowledge on the
development of the wheat pericarp [14,16,17], a comprehensive study with an assessment
of the developmental and spatial variability of the pericarp anatomy in the entire caryopsis
is lacking.

The development of plant tissues may be investigated through microscopy imaging.
Optical microscopy on cross-sections reveals changes in the morphology at the cell scale,
and may depict changes in the chemical composition [17–19]. Electron microscopy provides
an enhanced resolution, but within a reduced field of view [20–22]. However, as the growth
of organs is neither isotropic nor homogeneous, the changes in the morphology must be
investigated in three dimensions and within the whole caryopsis. The three-dimensional
anatomy can be investigated from the acquisition of many serial cross-sections, followed
by a tedious reconstruction procedure [23,24]. An alternative is to use three-dimensional
imaging, such as confocal microscopy [25–27]. However, the field of view and the small
imaging depth limit this technique to small organs or tissue portions.

X-ray microcomputed tomography (µCT) is increasingly used for the non-destructive
investigation of the 3D architecture of biological specimens, without requiring staining,
sectioning, or inclusion [28]. Dry specimens present a high contrast to X-rays, but in the
case of developing grain, tissues are highly hydrated and present a relatively low contrast
to X-rays, making the tissues difficult to distinguish [11]. The coherent beam light provided
by synchrotron facilities allows for phase contrast µCT and allows for the differentiation of
some tissues within the organs [29–31]. The interest of synchrotron imaging for agronomy
and food sciences research was recently highlighted in [32].

We have shown that X-ray µCT is a relevant technique for in vivo 3D imaging of
the developing wheat caryopsis [11,31]. However, besides the proof-of-concept of the
adequacy of the synchrotron micro-tomography for the live imaging of plant tissues, little
was concluded about the provided information in relation to caryopsis development and
in particular to the pericarp changes. The aim of this study was then to take advantage of
synchrotron imaging to investigate changes in the morphology and anatomy of the pericarp,
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which has been hypothesized to be a central actor in caryopsis morphogenesis. For this,
the first step was to validate the use of synchrotron micro-tomography to depict changes
in the 3D morphology of the whole caryopsis. The second step was to identify tissues
within synchrotron micro-tomography images that cannot be observed with laboratory
tomography. The third step was to investigate the changes in the morphology at the cell
level, focusing first on the epicarp, then on the mesocarp, and finally on the endocarp.
The observations were then discussed in relation to the putative roles of pericarp in the
caryopsis growth and development.

2. Results
2.1. Changes in Caryopsis Shape with Development

Phase contrast X-ray µCT images obtained with low and high resolutions were visu-
alized using the ImageJ software and thoroughly examined. The images contained the
caryopsis samples but also signals due to the tape used to fix the samples, and to the tube
where the samples were inserted. These non-caryopsis items were removed, and the 3D
volume of the caryopsis samples was reconstructed. Figure 1A–I shows a representative
3D volume reconstruction of wheat caryopses at the investigated stages of development,
accompanied by examples of virtual cross and longitudinal sections. On virtual sections,
an artefact due to the detector and known as the “ring artefact” was often observed in
the center of the images, sometimes hampering the detailed observation of some tissues
(Figure 1A).Plants 2023, 12, x FOR PEER REVIEW 4 of 28 

 

 

 
Figure 1. Representative X-Ray tomography images obtained with low resolution for wheat cary-
opses at stage 0 to 250 °DAA. 0 °DAA (A), 25 °DAA (B), 50 °DAA (C), 80 °DAA (D), 100 °DAA (E), 
150 °DAA (F), 180 °DAA (G), 200 °DAA (H), 250 °DAA (I). For each stage, from left to right, exam-
ples of virtual cross and longitudinal sections sampled from the 3D caryopsis reconstruction. 

2.2. Spatio-Temporal Variability of Tissues within the Whole Caryopsis 
Low-resolution images of virtual cross-sections localized at different positions along 

the longitudinal axis of caryopses (Figure 2A) highlighted spatial variability in the tissue 
composition. For instance, at stage 50 °DAA at the bottom position, the caryopsis con-
tained pericarp and vascular tissues; at the middle position, the space was mainly occu-
pied by the embryo sac and a thick mesocarp, while the very top contained only pericarp 
tissues (Figure 2B). At stage 250 °DAA at the bottom position, the caryopsis contained 

Figure 1. Representative X-ray tomography images obtained with low resolution for wheat cary-
opses at stage 0 to 250 ◦DAA. 0 ◦DAA (A), 25 ◦DAA (B), 50 ◦DAA (C), 80 ◦DAA (D), 100 ◦DAA
(E), 150 ◦DAA (F), 180 ◦DAA (G), 200 ◦DAA (H), 250 ◦DAA (I). For each stage, from left to right,
examples of virtual cross and longitudinal sections sampled from the 3D caryopsis reconstruction.
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The 3D representations highlighted the changes occurring in the caryopsis shape
during its development with a major phase of elongation, an enlargement at the top, a
deepening of the crease, an increase in the volume, and a collapse of the rolls at the top of
the caryopsis. Virtual sections showed the growth of the seed within the developing wheat
caryopsis, highlighted by the voids surrounding the seed. These voids were not detected
at anthesis; they were visible first at the top of the caryopsis at 25 ◦DAA (Figure 1B) then
spread to surround the seed at 100 ◦DAA (Figure 1E). Simultaneously, with the growth of
the seed, the thickness of the pericarp (mainly mesocarp) tissue decreased (Figure 1).

2.2. Spatio-Temporal Variability of Tissues within the Whole Caryopsis

Low-resolution images of virtual cross-sections localized at different positions along
the longitudinal axis of caryopses (Figure 2A) highlighted spatial variability in the tissue
composition. For instance, at stage 50 ◦DAA at the bottom position, the caryopsis contained
pericarp and vascular tissues; at the middle position, the space was mainly occupied by
the embryo sac and a thick mesocarp, while the very top contained only pericarp tissues
(Figure 2B). At stage 250 ◦DAA at the bottom position, the caryopsis contained pericarp,
vessels, and the embryo; at the middle position, the space was mainly occupied by the
endosperm surrounded by a thin pericarp, while the very top contained only pericarp
tissues and voids (Figure 2C).
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Figure 2. Spatial variability in tissue composition observed along the caryopsis longitudinal axis.
(A) Localization of the virtual sections (green) from low-resolution X-ray µCT. (B) Representative
image in three regions of a wheat caryopsis harvested at 50 ◦DAA. (C) Representative image in
three regions of a wheat caryopsis harvested at 250 ◦DAA. Legends: mp—mesocarp; ep—epicarp;
v—vascular tissue; e—endosperm; emb—embryo; es—embryo sac.
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High-resolution images of virtual cross-sections localized at different positions along
the longitudinal axis of the caryopses (Figure 3A) revealed individual cells in several tissues
(Figure 3B,C). In the pericarp, some cells of the mesocarp and endocarp (cross cells and
tube cells) were distinguished due to intercellular spaces (Figure 3C). In contrast, the cells
inside the embryo sac or later in the seed tissues were difficult to visually separate as there
was no void between them (Figure 3B).
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Figure 3. Spatial and developmental variability observed along the caryopsis longitudinal axis.
(A) Localization of the virtual sections (green) and shown regions (blue rectangles) from high-
resolution X-ray µCT. (B) Representative image in three regions of a wheat grain harvested at
50 ◦DAA (dorsal area). (C) Representative image in three regions of a wheat grain harvested at
250 ◦DAA (dorsal area). Legends: mp—mesocarp; cc—cross cells; tc—tube cells; ep—epicarp;
se—endosperm; emb—embryo; ne—nucellar epidermis; al—aleurone; es—embryo sac.

High-resolution images revealed other developmental variations. Our X-ray tomogra-
phy acquisitions showed developing cross and tube cells from 50 ◦DAA highlighted by the
formation of intercellular spaces. A gradient of differentiation was observed at 50 ◦DAA



Plants 2023, 12, 1038 6 of 25

between the top of the caryopsis where cross and tube cells were distinguished, the middle
region, and the bottom of the caryopses where they were hardly visible (Figure 3B). In
virtual cross sections tube cells appeared as round cells while cross cells were elongated
(Figure 3).

In addition, high-resolution images revealed spatial variations in the tissue and cellular
morphology. For a given longitudinal position, variations were observed between the three
regions imaged at a high resolution: the dorsal, lobe, and ventral regions (Figure 4A).
At 250 ◦DAA, in the endocarp, tube cells were detected only in the dorsal position, as
described in [20], and for all the observed longitudinal positions (Figure 4B). The mesocarp
was almost totally disintegrated at the lobe position (Figure 4C) while it was still well
represented in the ventral region (Figure 4D).
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Figure 4. Spatial variability observed in different regions on a wheat section at the equatorial position.
(A) Regions targeted for high-resolution X-ray µCT on a transverse section. (B–D) Representative
tomography image in dorsal (B), lobe (C), and ventral (D) regions of a wheat caryopsis harvested at
250 ◦DAA. Legend: mp—mesocarp; cc—cross cells; tc—tube cells; ep—epicarp; vb—vascular bundle;
se—starchy endosperm; ne—nucellar epidermis; al—aleurone.
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The spatio-temporal variability observed in the pericarp prompted us to explore the po-
tential of 3D reconstructions and image analysis in more detail to reveal new characteristics
in the different pericarp tissues.

2.3. Cell Morphology within Epicarp

A careful observation of the surface of the caryopses obtained from µCT images using
a 3D viewer revealed several anatomical details. For instance, at the top of the caryopsis,
the basis of the stigmas and trichomes were visible. Trichomes covered almost half of the
caryopsis at the earliest stages (Figure 1). In the ventral region of the caryopses, dark dots
were noticed (Figure 5A). Using high-resolution images obtained for the ventral region,
it was possible to zoom in towards these dots. The 3D view of the epidermis surface
showed typical stomata structures with stomatal pores and guard cells (Figure 5B). In
virtual sections across stomata, wide intercellular spaces that could serve as an air chamber
were found (Figure 5C).
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Figure 5. Stomata are present on the ventral face of wheat caryopses. A 2D projection of a 3D view of
the caryopsis surface showing stomata in the ventral region of a caryopsis at 100 ◦DAA (A). Zoom
on the epicarp of the caryopsis in the region depicted by the red frame (B). Virtual section across a
stomata showing the guard cells and the substomatal chamber (C). Concomitant evolution along time
of stomata number per caryopsis (D) and the whole caryopsis dimensions (E). Legend: st—stomata;
is—intercellular space.
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In all the investigated images, stomata were observed only in the ventral region and in
the upper part of the crease region. The number of stomata present on each caryopsis was
estimated by monitoring the pores at the surface of the caryopses. It ranged from 0 to 89,
with an important variability between caryopses and across the development (Figure 5D).
At anthesis, the number of stomata was low, with some caryopses having no detected
stomata. In subsequent stages, there was an increase in the number of detected stomata,
which seemed to reach a plateau around 100 ◦DAA. At 250 ◦DAA, the detection of stomata
in the crease was difficult. This was due to the topology of the surface with an increased
curvature and both lobes touching each other at the top and bottom of the caryopsis.
The evolution of the number of stomata per caryopsis could be related to that of the
whole caryopsis dimensions (Figure 5E), and, in particular, to a caryopsis length of up to
100 ◦DAA. Indeed, an increase in both the stomata number and length was observed
between 0 and 50 ◦DAA, followed by a stagnation and then a sharp increase between 80
and 100 ◦DAA.

In addition to stomata, our 3D images also revealed classical epidermal cells at the
surface of the epicarp (Figure 6). These cells were visible only in the ventral region where
the caryopsis samples were not adhering to the tape during the acquisitions (Figure 6A,C,F).
Therefore, epidermal cells could not be comprehensively investigated in relation to their
potential variability; in particular, no quantitative and kinetical study of the cell area could
be provided. In young grains (50 ◦DAA), epidermal cell borders were hardly distinguished
on 3D reconstructions of X-ray µCT images (Figure 6B) while they were visible at 250 ◦DAA
(Figure 6E). Figure 6E shows an illustration of the variability in the cell shape in the ventral
region of a representative caryopsis at 250 ◦DAA. Stomata, rows of elongated cells, but also
cells with a more globular shape were observed. This diversity of shape was confirmed by
the examination of microscopy images of wheat caryopses at the same stage (Figure 6F,G).
Microscopy images showed that epicarp cells have a more homogeneous and square shape
at 50 ◦DAA (Figure 6D).
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correspond to the position of 3D reconstructions. (B,E) A 2D projection of a 3D visualization of
epicarp cell surface from X-ray µCT, ventral side, 50 ◦DAA (B) 250 ◦DAA (E). Cell borders are visible
at 250 ◦DAA not at 50 ◦DAA. (C,D) Light micrographs of a wheat caryopsis harvested at 50 ◦DAA.
(C) Entire cross-section stained with toluidine blue, and (D) zoom on the epicarp cells in the ventral
region. (F,G) Light micrographs of a wheat caryopsis harvested at 250 ◦DAA. (F) Entire cross-section
stained with toluidine blue, and (G) zoom on the epicarp cells in the ventral region. The arrows point
at different cell shape and size. Legend: mp—mesocarp; cc—cross cells; tc—tube cells; ep—epicarp;
vb—vascular bundle; e—endosperm; ne—nucellar epidermis; st—stomata; t—testa.

2.4. Porosity and Cell Orientation of Mesocarp

The mesocarp tissue contains parenchyma cells. As shown in Figures 1–4, the mesocarp
tissue contained large voids surrounding the seed due to programmed cell death, and
smaller voids between mesocarp cells. X-ray image observation suggested a variability
in the proportion of intercellular voids depending on the position within the caryopsis
(Figure 1). In particular, we observed intercellular voids at the top of the grain (Figure 1)
and in the ventral side of the caryopses below the epicarp (Figures 4 and 5). This region
was investigated using 3D visualizations (Figure 7A). This highlighted the connections
between these empty spaces between ventral mesocarp cells (Figure 7B).
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Figure 7. Representative example of the inter connections of empty spaces between cells within
ventral mesocarp of a wheat caryopsis at 100 ◦DAA. (A) Localization of the region observed.
(B) A 2D projection of a 3D view.

To quantify the intercellular spaces in the mesocarp and assess their variability, we
implemented a procedure to calculate the porosity of the mesocarp tissue. Figure 8A depicts
the regions used to compute the porosity. Porosity values (volume of voids/total volume)
for individual images ranged from 0.0 to 0.7. Average porosity maps were constructed
for caryopses at different stages and are presented in Figure 8B–E. They revealed that the
ventral mesocarp porosity varies spatially. For a given development stage, it was higher in
the upper central part of the caryopsis than at the bottom of the caryopsis. This reflects the
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presence of stomata in the upper central part of the caryopsis (Figure 5). Figure 8B–E also
highlights developmental variations, with an increase in the porosity from 50 to 200 ◦DAA.
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Figure 8. Variability in mesocarp porosity in the ventral region of the caryopsis. (A) Representation
of the measurement regions for three virtual sections within a caryopsis at stage 150 ◦DAA. (B–E)
Average porosity maps obtained from all the caryopses at 50, 100, 150, and 200 ◦DAA (n = 5 to 10).
Porosity was calculated as ratio of volume of voids/total volume of targeted regions delineated in
blue in A. The regions were located such that they divide the ventral face into 20 regions on each side
around the crease, from −10 to +10. This calculation was repeated along the longitudinal axis and
normalized between 0 (bottom of the caryopsis) and 1 (top of the caryopsis). The colors correspond
to the porosity values, between 0 (no void, blue) and 0.3 (yellow).

The observation of transverse virtual sections (Figure 9A) revealed an apparent hetero-
geneity in the mesocarp cell shape depending on the position in the caryopsis (Figure 9B–I).
In caryopses undergoing elongation (100 ◦DAA), mesocarp cells at the middle part of the
caryopses appeared to be round, while they were elongated at the top of the caryopsis
(Figure 9E compared to Figure 9C). In longitudinal virtual sections, mesocarp cells ap-
peared elongated in the middle of the caryopsis and slightly elongated at the top of the
caryopsis (Figure 9H,I), and their elongation axis assigned to their biggest dimension was
different. The elongation axis of mesocarp cells in the middle region was in line with the
caryopsis elongation axis. At the top of the caryopsis, the elongation axis seemed in line
with radial growth.
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tomography image (transverse virtual section) at the top of a wheat caryopsis harvested at anthesis
0 ◦DAA (B) and 100 ◦DAA (C) (lobe area). Mesocarp cells have an irregular shape, nearly round (r)
at anthesis, elongated (el) at 100 ◦DAA. (D,E) Representative high-resolution tomography image
(transverse virtual section) at the middle of a wheat caryopsis harvested at 0 ◦DAA (D) and 100
◦DAA (E) (lobe area). Mesocarp cells have a round shape. (F,G) Representative low-resolution tomog-
raphy image (longitudinal virtual section) of a wheat caryopsis harvested at 0 ◦DAA. (G) Zoom in
(F) to highlight cell orientation. Mesocarp cells have a round (r) shape at the bottom and top, and
a slightly elongated (sel) shape at the middle of the caryopsis. (H,I) Representative low-resolution
tomography image (longitudinal virtual section) of a wheat caryopsis harvested at 100 ◦DAA.
(I) Zoom in (H) to highlight cell orientation. Mesocarp cells have elongated shape at the top and
middle of the caryopsis, but their elongation axis is in different orientations (x at the top and y at the
middle). Legend: mp—mesocarp; cc—cross cells; e—endosperm; es—embryo sac; v—ovary vessel.

The variability in the mesocarp cell shape/orientation between the top and middle
regions was observed at all investigated stages from anthesis to 150 ◦DAA. At anthesis,
mesocarp cells at the top were round to slightly elongated (Figure 9B). Cells were slightly
elongated in the middle of the caryopsis, but a low intercellular space made them difficult
to visualize (Figure 9D). At the bottom, cells were small and round (Figure 9F,G). Relatively
more mesocarp cells were elongated in the direction of caryopsis elongation at 100 ◦DAA
compared to anthesis. In subsequent stages, the mesocarp was too degraded to compare
the cell shape and orientations.

2.5. Cell Morphology and Organisation of Endocarp

Virtual sections highlighted the spatial and temporal variability in the cell shape of
the endocarp (Figures 3 and 4). To more globally explore the structure of the endocarp, its
surface was isolated using the Crop3D software for caryopses at two stages of development:
at 150 ◦DAA and at 250 ◦DAA in the lobe region. Before 150 ◦DAA, the mesocarp was not
disintegrated enough to allow for a segmentation of the endocarp.

At 250 ◦DAA, 3D reconstructions were performed at different positions along the
caryopsis (Figure 10A). They highlighted the surface of the endocarp cross cell layer
(Figure 10B–G). The surface was not flat, and the cross cells appeared as patches of continu-
ous and elongated cells arranged in parallel with the ends located at approximately similar
positions and forming ridges.

In the dorsal region of the caryopsis, below the cross cells layer, tube cells were present.
Their 3D structure and arrangement were obtained using the Crop3D software at different
longitudinal positions (Figure 11A). In stages prior to 150 ◦DAA, the tube cells were not
clearly distinguished in the X-ray images in positions other than the upper part of the
caryopsis because no sufficient voids were present in the cell layer (Figure 3B). The 3D
representations highlighted the fact that tube cells were elongated and orientated in the
same direction. Their orientation axis was perpendicular to that of the cross cells, both
cell layers forming a 3D grid (Figure 11E–H). At 150 ◦DAA, tube cells were contiguous,
although spaces were present between the cells at the top (Figure 11B,E). At the bottom
and at the top (Figure 11B,D), the tube cells were mostly adherent to the seed, while in the
middle part, the tube cells did not systematically adhere to the seed (Figure 11C).



Plants 2023, 12, 1038 13 of 25

Plants 2023, 12, x FOR PEER REVIEW 14 of 28 
 

 

0 °DAA (B) and 100 °DAA (C) (lobe area). Mesocarp cells have an irregular shape, nearly round (r) 
at anthesis, elongated (el) at 100 °DAA. (D,E) Representative high-resolution tomography image 
(transverse virtual section) at the middle of a wheat caryopsis harvested at 0 °DAA (D) and 100 
°DAA (E) (lobe area). Mesocarp cells have a round shape. (F,G) Representative low-resolution to-
mography image (longitudinal virtual section) of a wheat caryopsis harvested at 0 °DAA. (G) Zoom 
in (F) to highlight cell orientation. Mesocarp cells have a round (r) shape at the bottom and top, and 
a slightly elongated (sel) shape at the middle of the caryopsis. (H,I) Representative low-resolution 
tomography image (longitudinal virtual section) of a wheat caryopsis harvested at 100 °DAA. (I) 
Zoom in (H) to highlight cell orientation. Mesocarp cells have elongated shape at the top and middle 
of the caryopsis, but their elongation axis is in different orientations (x at the top and y at the mid-
dle). Legend: mp—mesocarp; cc—cross cells; e—endosperm; es—embryo sac; v—ovary vessel. 

2.5. Cell Morphology and Organisation of Endocarp 
Virtual sections highlighted the spatial and temporal variability in the cell shape of 

the endocarp (Figures 3 and 4). To more globally explore the structure of the endocarp, its 
surface was isolated using the Crop3D software for caryopses at two stages of develop-
ment: at 150 °DAA and at 250 °DAA in the lobe region. Before 150 °DAA, the mesocarp 
was not disintegrated enough to allow for a segmentation of the endocarp.  

At 250 °DAA, 3D reconstructions were performed at different positions along the 
caryopsis (Figure 10A). They highlighted the surface of the endocarp cross cell layer (Fig-
ure 10B–G). The surface was not flat, and the cross cells appeared as patches of continuous 
and elongated cells arranged in parallel with the ends located at approximately similar 
positions and forming ridges. 
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Figure 10. Morphology of cross cells at the surface of a caryopsis endocarp at 250 ◦DAA.
(A) Localization of observed regions. Gray surface corresponds to the caryopsis outer surface,
red surface corresponds to endocarp. (B–D) Reconstruction of endocarp surface showing cross cells
at top (B), middle (C), and bottom (D) regions. (E–G) Zoom on the cross cells of the caryopsis in
regions depicted by the red frames, highlighting the organization in patches.

At the extremities (top and bottom) of the caryopses (Figure 12A), virtual slices
revealed differences in the organization of the endocarp compared to the middle region.
At the top, several layers of endocarp were visible and their elongation axis seemed
orthogonal (Figure 12B). The 3D reconstruction of individual cells was carried out using
the Free-D software to visualize the arrangement of these top endocarp cells compared to
the underneath seed compartment (Figure 12C,D). At the bottom of the caryopsis, several
layers of endocarp and structures forming “extensions” from the seed were also visible
(Figure 12E). The 3D reconstruction of individual cells showed that the cells that appeared
as “extensions” were cells with an elongation axis that followed the curvature of the
seed, while cells in the next layers had an elongation axis corresponding to the caryopsis
longitudinal axis (yellow and brown) (Figure 12F).
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Figure 11. Longitudinal variability of the tube cells within the dorsal part of caryopses at 150 ◦DAA
at different Z-positions. (A) Localization of the regions of interest: top (B,E), middle (C,F), bottom
(D,G), using high-resolution tomography images. Red arrows on virtual X-Y sections (B–D) indicate
the tube cells. (E–G) A 2D projection of a 3D visualization of the grid formed by the tube cells.
(H) Example of superimposition of cross cells (green layer) and tube cells (red layer) in the
dorsal × middle part of the wheat caryopsis.
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(zoom in the square to better visualize the delineated cells) and bottom of the caryopsis
(E) (150 ◦DAA). (C,D,F) 3D volume reconstructions of part of the seed and endocarp cells at the top
(top view (C); front view dorsal region (D) with zoom); and bottom of a representative caryopsis
(F) (150 ◦DAA). The seed and several mesocarp cells were segmented and their volume was recon-
structed using the Free-D software. Legend: mp—mesocarp; ip—endocarp; vb—vascular bundle;
ep—epicarp.

3. Discussion

The cereal grain or caryopsis contains several tissues with different functions, such
as support, protection, storage, water, and nutrient transport. Several studies have been
conducted to characterize the tissue structure of wheat caryopses; however, most studies
examined only part of it in the cross-sections of caryopses observed by optical microscopy,
fluorescence microscopy, and electron microscopy; e.g., as in [17,33]. Using synchrotron-
based X-ray µCT, image analysis and 3D reconstruction we were able to explore entire
caryopses in 3D at different stages of development at a low or high resolution. Our study
revealed spatial (depending on the position in the caryopsis) and temporal (developmental)
variability in caryopsis tissue organization, cell shape, and orientation, especially in the
pericarp. X-ray µCT also has the advantage of not requiring fixation, dehydration, embed-
ding, and cutting steps which damage the tissues. However, it has drawbacks since it does
not allow us to distinguish all the tissues and cells, nor to have access to the inside of cells
even with a high resolution and high signal/background ratio obtained in the synchrotron
facility [31]. Moreover, our experimental settings generated additional difficulties and
missing data. The use of fixing tape with a high X-ray signal hampered the comprehensive
survey of the caryopsis surface and the selected regions for high-resolution µCT did not
allow us to explore fully the very top and bottom of the caryopses.

However, new observations for the different tissues of the pericarp were obtained and
their relations with the processes governing caryopsis growth are discussed below.

3.1. New 3D Anatomical Features Revealed in Epicarp and Mesocarp

At the caryopsis surface, we were able to observe epicarp cells and distinguish different
types of epidermal cells. Normal “pavement” cells were detected with a rectangular shape
and elongation axis following that of the elongation axis of the caryopsis. We could not
explore the spatial variability in epicarp pavement cells due to our experimental settings.
Variability has already been reported in the shape and dimension of wheat epicarp cells.
They were described as elongated cells following the longitudinal axis, with narrower cells
in the crease region and less elongated cells (almost isodiametric cells) at the bottom part of
the caryopsis [34]. Cells with a more globular shape were also detected. They were also
visible in the cross-sections observed by microscopy. Plant epidermal cells can arbor many
shapes. For instance, the epidermis of the stamens of Clematis macropetala comprises nine
epidermal cell types differing by their micromorphology [35]. The wheat epicarp globular
cells might have a specific function. We also observed specialized cells. Trichome cells are
easily visible on the ovary and on top of the caryopsis, as described in the literature [36].
The guard cells of stomata were detected only in the upper ventral region of the caryopses.
Stomata had already been reported in cereal grains [21,34,37], but in the recent literature,
they are hardly mentioned.

Underneath the epicarp, mesocarp cells are parenchyma cells revealed as elongated
cells with axes of elongation different at the top and at the middle part of the caryopsis.
From 0 to 100 ◦DAA, the number of cells elongated in the same direction as the caryopsis
length growth increases. This may reflect a probable role of mesocarp cells in caryopsis
elongation at these stages. Cells located above the rolls and at the bottom of the caryopsis
are not likely to be involved in caryopsis elongation/length since they are not elongated
longitudinally. However, mesocarp cells at the top of the caryopsis were found to be
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elongated in different directions, such as towards the lobes. They might be involved
in the expansion of the lobes and the formation of the caryopsis shape. Then, in the
mesocarp tissue, large voids were detected; these voids result from mesocarp PCD, an
important process in cereal caryopsis development which takes place to make room for the
developing seed [15]. Voids were detected as soon as 25 ◦DAA (around 1 DAA), earlier
than has been described in the literature. Moreover, our study showed that PCD started
at the top/apical end of the caryopsis. The mesocarp cells in the dorsal and lobe regions
were almost all degraded at 250 ◦DAA, while they remained intact in the ventral region
as already described in [17]. In addition, X-rays highlighted intercellular spaces in the
mesocarp tissues. Variability in the level of air space was found between developmental
stages and between different positions within the caryopsis. We uncovered mesocarp with
a high intercellular porosity in the ventral crease region where stomata were detected.
Within the aerated mesocarp, vascular tissues were detected by X-rays as a dense area with
no intercellular spaces. The ovary vascular bundles present in both lobes remain visible
in tomography images up to the end of early development. Contrary to mesocarp cells,
vascular cells are not degraded. The caryopsis vascular tissues are also visible as a dense
area, but few individual cells are revealed by X-rays inside the tissue.

The endocarp derives from the cell layers of the ovary that surround the ovule. The
outer layer differentiates into cross cells. Three-dimensional reconstructions allowed us
to visualize the endocarp in 3D and showed that the cross cells surround and envelop
the seed and form patches of elongated cells. They have a more elongated shape in the
ventral region than in the dorsal region [17] and, as we see in this work, in lobe regions.
The inner layer differentiates into tube cells which are only present in the dorsal region [20].
This restricted localization is sometimes omitted in recent publications. Our observations
showed that this layer exhibits a gradient of differentiation from the top to the bottom of
the caryopsis; at 50 ◦DAA, the cells are well distinguished only at the top of the caryopsis.
In 3D, we showed a variability in tube cells arrangement between the top, middle, and
bottom of the caryopsis, with cells being more adjacent at the bottom of the caryopsis, and
less adherent to the seed in the middle of the caryopsis. Tube cells and cross cells have an
orthogonal elongation direction [17,20] and where both cell layers are present, they form a
3D grid. At both caryopsis extremities, several layers of endocarp cells were detected. They
also have different elongation axes. We gathered new data to study the 3D arrangement
of pericarp cells; however, our experimental design did not allow us to survey the entire
diversity in cell arrangement at the very top and bottom of the caryopses.

All the gathered information was examined in relation to the role of pericarp in the
grain growth.

3.2. Caryopsis Elongation, Radial Expansion, and Physical Constraints
3.2.1. Mesocarp Cells and Growth

Our study highlighted the fact that in early development, mesocarp cells have differ-
ent elongation directions and that the number of longitudinally elongated cells increases
underneath the rolls between anthesis and 100 ◦DAA. A schematic model of the main
elongation axis of mesocarp cells related to the caryopsis growth is proposed in Figure 13.
Above the rolls, mesocarp cells have an elongation axis in different directions depending
on their position. Then, most mesocarp cells undergo PCD. This highlights a crucial role of
mesocarp cell elongation above the rolls for the shape of the top of the ovary/caryopsis.
Similarly, below the rolls, a crucial role of mesocarp cell elongation is suggested for cary-
opsis elongation (and caryopsis length) at early stages only. Such an important role of
the mesocarp was reported in [38] who compared fertilized and unfertilized sterile wheat
ovaries in terms of their dimensions, shape, and anatomy. They showed that in contrast to
fertilized ovaries, which essentially grow vertically, unfertilized ovaries grow only radially.
This resulted in ovaries with tops larger than that of fertilized caryopses, rounder “grains”
with very shallow crease and less marked lobes (Figure 2E in [38]). In these sterile ovaries,
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no PCD was detected in mesocarp cells; the authors propose that fertilization induces
mesocarp PCD which regulate the mesocarp growth.
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Figure 13. Schematic model of the main elongation axis of mesocarp cells related to the caryopsis
growth. Mesocarp cells are represented in blue. This role is illustrated between the development
stages 0 (A,C) and 100 ◦DAA (B,D) in two views: (A,B) equatorial and (C,D) longitudinal. Blue
arrows indicate the main direction of caryopsis growth giving the orientation of mesocarp cells.
Legend: es—embryo sac; end—endosperm; vb—vascular bundle.

3.2.2. Putative Role of the Endocarp

The endocarp forms a tissue adhering more or less tightly to the seed. It covers the
seed inside the developing caryopsis, while at certain stages due to mesocarp PCD, it is
not in contact with the rest of the pericarp: mesocarp and epicarp. The layer of cross cells
is doubled with a layer of tube cells in the dorsal region, forming a grid. The endocarp
forms a grid also at the seed’s extremities. Such grids might act as a physical support or
reinforcement. They might also locally constrain/control the growth of the seed within
the caryopsis (Figure 14). They might be constraining the growth longitudinally at both
extremities and radially in the dorsal part of the caryopsis. Interestingly, the rice caryopsis,
which has a different shape than wheat caryopsis, contains tube cells surrounding the seed
and not only in the dorsal area [39].
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Figure 14. Schematic model of the putative function of endocarp in constraining growth. Within
the rice caryopsis, cross cells and tube cells form a grid that covers the seed and would result in a
uniform mechanical constraint. Within the wheat caryopsis, cross cells cover the whole surface of the
seed while tube cells (and therefore the grid) are present only in the dorsal region. This could create
local differences in mechanical properties, stiffer regions in the dorsal region and in the ventral region
due to the vascular bundle, and “more” extensible regions in the lobes which could expand more.

The voids separating the outermost layers of the caryopsis and the seed+endocarp
question the relationship between the expansion of the caryopsis outer layers and that of
the seed. The importance of outer epidermal cell layers in determining organ size and
shape is recognized as “epidermal-growth-control” [40,41]. Here, the seed growth does
not seem to be systematically physically limited by the growth of the caryopsis epicarp
due to physical separation. However, epicarp could set the size potential of the caryopsis.
Depending on the stages of development, the endocarp may also contribute to the growth
control of the caryopsis. The radial growth of the caryopsis in early development is not
uniform, resulting in the formation of two lobes and of a deep crease. The genesis of
this complex shape requires physical constraints. In the crease, these constraints may
be determined by the presence of the dense zone of the vascular bundle. In the dorsal
region, they may be determined in part by the grid of the endocarp (Figure 14). The less
constrained regions in between could expand more freely under the effect of the internal
pressure of the developing seed and give rise to the lobes. Additional studies targeting the
Triticum species with a different caryopsis size and shape, as described in [42], would be
of interest to address the contribution of the pericarp tissues. Combined with modelling
these studies would help to better understand the formation of the complex shape of the
wheat caryopsis.

3.2.3. Putative Role of the Pericarp in Caryopsis Photosynthesis

The presence of stomata in the ventral crease area, close to the vascular bundle of the
wheat caryopsis, has already been reported [20,21,34,37] in a density close to that reported
here [21]. However, as a new finding in this study, we showed that there is an increase in
the stomata number at the early stages of development, particularly between 0 and 100
◦DAA when the caryopsis growth is particularly rapid and significant. Moreover, our study
reports large airspace and space connections in the chloroplast-containing mesocarp behind
wheat caryopsis stomata; the volume of airspaces, estimated by porosity values, increases
between 0 ◦DAA and 200 ◦DAA. These mesocarp porosity values are similar to maximal
mesophyll porosity values found in leaves (0.25 to 0.35 depending on wheat lines) [43].
Note that our values could have been underestimated due to our calculation method,
which includes the epicarp cell layer. Mesophyll airspace formation has been proposed as a
determining factor to the stomatal function in both monocots and eudicots [43].

Our experimental set-up did not allow us to assess the functioning of the stomata
nor any direct measurement of photosynthesis. However, provided that the stomata are
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functional, our results support the hypothesis of the photosynthetic capacity of the pericarp
and its ability to contribute to the assimilate transfer to the developing grain. Pericarp
photosynthesis would then provide the energy and oxygen required for the early growth
of caryopsis. Note that our results do not prejudge the origin of CO2: external CO2 or a
possible recycling of endogenously CO2 released by grain respiration [44]. This hypothesis
does not exclude completely the possibility of gas exchanges occurring via the thin cell
walls of wheat caryopsis outer tissues [17].

Given the presence of functional chloroplasts and the transient storage of assimilates
(starch, [17]), the presence of stomata and aerated parenchyma in the vicinity of vascular
tissues, and a possible combination of C3 and C4 photosynthesis in the wheat pericarp [45],
it seems important to re-investigate the contribution of pericarp photosynthesis to the
growth of cereal caryopsis.

3.3. Towards a 3D Model of Caryopsis Morphogenesis

The images obtained with the two experimental setups (whole caryopsis imaging and
high-resolution imaging) provide complementary information. When imaging the whole
caryopsis, it is possible to depict the global shape of the caryopsis, and the morphology
(thickness and porosity) of some tissues can be described. The morphology of cells is,
however, still difficult to assess. Using high-resolution imaging allows us to investigate the
3D morphology of thin tissue layers (e.g., tube cells and cross cells), and the morphology of
a larger number of cells in more detail. However, due to the size of the field of view, the
observations and measurements are more difficult to generalize to the whole caryopsis. An-
other point worth mentioning is that 3D micro-tomography provides information solely on
the morphology of cells and tissues. Other imaging techniques can provide complementary
information. For example, magnetic resonance imaging allows for quantifying water fluxes
within the organ. Microscopy or mass-spectroscopy imaging can describe the chemical
composition within tissue slices. Moreover, the local mechanical properties of tissues can
be measured using atomic-force microscopy.

The joint analysis of the information provided by different techniques represents a
methodological challenge. Correlative imaging approaches and image registration meth-
ods represent a first technical solution to combine different observations from the same
sample [46–48]. An additional difficulty comes from the fact that imaging data are often ac-
quired on different samples. In that case, the information provided by an individual image
has to be interpreted as a sample measurement representative from a whole population.

A promising way for the capitalization and the fusion of the information provided
by various imaging devices or setup is to consider the construction of synthetic atlases of
biological organs. This was successfully applied in medical sciences for human organs such
as the brain, heart, or liver [49–51]. Based on micro-tomography data of wheat caryopsis,
the first step could be the constitution of a 3D atlas of the whole caryopsis images by
applying a group-wise shape registration strategy at each development stage. In the second
step, the integration of high-resolution images could enrich the atlas with cell morphology
information. The constitution of this 3D+time morphological atlas will later allow for
registering images from other imaging techniques. This will allow for a consideration of
the evolution of the physical and chemical composition of tissues within the caryopsis and
pave the way for an integrated vision of plant organ development.

In conclusion, using X-ray µCT, in vivo 3D imaging highlights the important spatial
and temporal variability of pericarp tissues and cell morphology of the growing wheat
caryopsis. First, from anthesis to 150 ◦DAA, we showed an increasing number of stomata in
the epicarp of the upper ventral region of the caryopsis, next to the crease; it is accompanied
by an increasing porosity of mesocarp tissue underneath the stomata. This supports the
idea of a major role of the pericarp in caryopsis photosynthesis. Second, 3D reconstructions
of the growing caryopsis showed a different mesocarp cell orientation between the top
and the middle of the caryopsis. This difference increases from anthesis to 150 ◦DAA.
Moreover, 3D images highlight the presence of a grid formed of cross and tube cells only
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on the dorsal region, whereas cross cells cover the whole surface of the seed. All together,
these observations may contribute to a better understanding of the anisotropic growth of
the wheat caryopsis and of the physical constraints involved in its final shape and size.
Finally, these results should be of interest both for the researchers interested in caryopsis
development and physiology, and more generally for cereal science and the whole plant
development community.

4. Material and Methods
4.1. Plant Material and Preparation of Samples

The wheat (Triticum aestivum L.) plants cultivar Recital were cultivated from sowing to
a few days around anthesis in a controlled greenhouse at INRAE Clermont-Ferrand, where
the mean day temperature was 16.0 ± 1.8 ◦C and under natural daylight, supplemented
to a 16h photoperiod. Plants were watered daily in excess twice a day. Around anthesis,
plants were transported to the synchrotron SOLEIL for X-ray tomography acquisitions
which were conducted as described in [31]. There, plants were kept at 15.2 ± 1.4 ◦C for
the 4 days of image acquisitions. For each spike, the date at which anthers become visible
(anthesis) for the florets of the middle spikelets was noted to estimate the development by
calculating the cumulated average day temperature (with 0 ◦C as the base temperature)
since anthesis in degrees days after anthesis: ◦DAA). The basal caryopsis of the two middle
spikelets were harvested at 9 developmental stages immediately before the acquisitions.
The samples covered the early phase of caryopsis development from 0 to 250 ◦DAA, i.e.,
anthesis to the beginning of the filling phase. Number of replicates are listed in Table 1.

Table 1. Number of replicates for each development stage, expressed in thermal time after anthesis
(◦DAA) or in approximate number of days after anthesis (DAA).

Stage (◦DAA) 0 25 50 80 100 150 180 200 250

Approximate stage (DAA) 0 1.5 3 5 6 9 11 12.5 15.5

Low Resolution 5 5 5 5 9 10 4 5 5

High Resolution 2 2 2 2 2 2

Representative caryopsis samples at the targeted stages were imaged using a stereomi-
croscope (SMZ800 Nikon), and some samples were prepared as described in [52]. In short,
they were fixed in 1% (v/v) glutaraldehyde and 3% formaldehyde in 0.1 M of phosphate
buffer, pH 7.4, then dehydrated through a graded aqueous ethanol series (30, 50, 70, 85, 95,
and 100%). The samples were then embedded in London Resin White. Semi-thin sections
were prepared (1 µm, ultracut UC7, Leica), stained with 0.1% toluidine blue, and observed
using a multizoom macroscope under bright-field conditions (AZ100 M Nikon) [53].

4.2. Image Processing and Analysis
4.2.1. Image Preprocessing

Image data generated by the Psiche beamline consisted in binary data files in a raw for-
mat, with intensity coded into 32-bits floating point values. Raw data files were converted
to 3D 8-bits grayscale images, with the intensity re-calibrated between 0 and 255, and saved
as 3D Tiff images. For each 3D image, three 2D slices corresponding to the middle slice
along each of the X, Y, and Z direction were generated to provide a quick overview of the
caryopsis shape. Preprocessing was performed with the ImageJ/Fiji software [54].

4.2.2. Caryopsis Segmentation

The 3D images acquired at low-resolution contained the caryopses, but also the
materials used to fix the caryopses during acquisition (tube, plastic tape, rubber tape). The
3D binary images of the caryopses were segmented using the workflow described in [31].
In short, the bright structures were identified using a manual threshold of the volume.
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Morphological filtering operations (opening, closing, holes filling, and morphological
reconstructions) were applied to separate the caryopsis from the tube, and to remove
the voxels belonging to the structures that maintained the caryopsis. Image processing
resulted in 3D binary images where the foreground corresponded to the wheat caryopsis
region. Segmented images were used as binary masks to generate 3D grayscale images
retaining only the voxels belonging to the caryopses and replacing background voxels with
the value 0.

4.2.3. Alignment

To facilitate further analysis, each caryopsis was aligned along its main axes. First,
the crease tip was identified from segmented cross-sections of the caryopsis. The series of
3D positions were used to align the crease axis with the vertical axis. In the second step,
the caryopsis was rotated around the vertical axis such that the two lobes were orientated
in the y-axis direction. Finally, each caryopsis was centered within the image, using the
same image size for all the caryopses of the same stage. The same alignment procedure
was applied to binary images and grayscale images. The estimation of the transform
parameters was performed within Matlab (the Mathworks, Natick, MA, USA). The 3D
aligned images were generated using in-house software tailored to process large 3D images
(https://github.com/SciCompJ/Imago, accessed on 21 February 2023).

4.2.4. Visualization

The ImageJ/Fiji software [54] was used for the interactive visualization of 3D im-
ages, either using slice-by-slice display, or using the 3D Viewer plugin. To facilitate
the interpretation of 3D structures, a specific plugin for ImageJ was designed that al-
lowed for the generation of a 3D scale bar with various locations and orientations (https:
//github.com/ijtools/ScaleBar3d, accessed on 21 February 2023).

4.2.5. Morphometry

The global morphometry of the caryopses was measured from 3D binary images, using
the same strategy as in [11]. To measure the global shape of the caryopsis, morphological
filtering operations were applied to remove the hairs of the caryopses and to fill the voids
within the caryopsis. The dimensions of the caryopses were measured by computing the
difference between the minimum and maximum extent in each dimension after alignment.

4.2.6. Pericarp Porosity

The pericarp porosity was quantified on grayscale images after 3D alignment. A
representative portion of the XY slices was selected, and the contour of the caryopsis
was retrieved from the binary slices and smoothed. The portion of the contour comprised
between the two lobe extremities was retained and divided into two halves. A fixed number
of ten regions perpendicular to each curve was determined by dividing each curve into
equal-length portions and considering the parallel to each curve. The parallel curve was
obtained by applying a translation in the direction perpendicular to the curve and with a
distance chosen according to the average depth corresponding to each stage. The porosity
was measured within each region of each slice by counting the proportion of pixels within
the grayscale slice with a value below the given threshold. A threshold value equal to
140 was chosen. The values on all the slides were summarized into a table, with 50 rows
corresponding to the relative heights within the grain, and 20 columns corresponding to the
relative horizontal position on the crease. The whole workflow was implemented within
Matlab (the Mathworks, Natick, MA, USA) and is available upon reasonable request.

4.2.7. Three-D Visualization of the Organization of the Inner Tissues

Several tissues and cell layers within the caryopsis structure are located inside or
between other bright tissues, making it difficult to assess their 3D structure and organization.
For this, we developed a semi-interactive software tool (Crop3D) that allows us to crop from

https://github.com/SciCompJ/Imago
https://github.com/ijtools/ScaleBar3d
https://github.com/ijtools/ScaleBar3d
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a 3D image a region corresponding only to the desired tissues. The user is able to select
representative slices and manually extract the 2D contour corresponding to the structure of
interest. The contours are merged together with help of Fuchs’ algorithm [55] to generate a
3D polygonal mesh that surrounds the structure. Finally, the result image is generated by
using the intensity of the original image for voxels located inside the mesh, and zero for
voxels located outside. The development was integrated into the Imago software, which is
freely available at https://github.com/SciCompJ/Imago (accessed on 21 February 2023).

At the cell level, the Free-D software [56] was used for the manual reconstruction and
visualization of the 3D cell within 3D images.

4.2.8. Visualization of the 3D Epicarp (RotCrop3D)

The 3D visualization of epicarp cells from high-resolution 3D images is made difficult
by the variations in the orientation of the epicarp, the size of the images, and the potential
presence of other structures (tape and surrounding tissues). To overcome these problems,
we developed the RotCrop3D plugin for the ImageJ/Fiji software. RotCrop3D allows for
cropping and resampling a portion of a 3D image using arbitrary orientation. The user
can select the size of the result image, the center of the box, and the orientation. The
orientation can be chosen from three rotation angles. It can also be evaluated automatically
by computing the local gradient around the center point and using its direction for the
z-axis. The result is a new 3D image, where the epicarp is roughly parallel to the XY plane,
making the visualization of epicarp cells and stomata much more straightforward. The
plugin is freely available from https://github.com/ijtools/ijRotatedCrop (accessed on 21
February 2023).
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