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1  |  INTRODUC TION

Estuaries are complex and highly productive ecosystems associated 
with many ecological functions and ecosystem services (Barbier 
et al., 2011). These transition areas are characterised by the intru-
sion of coastal waters and freshwater inputs, whose fluctuation 

depends on tidal cycles, seasonal changes in freshwater inflow and 
estuarine geomorphology, and provide diverse niches to fish species 
with a variety of life history strategies (Attrill & Rundle, 2002). Some 
fish species spend their entire life cycle in the estuary (i.e. estuarine-
resident species), whereas others benefit from the estuary produc-
tivity during a particular stage of their life cycle (i.e. freshwater, 
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Abstract
Early life stages of fish (eggs and larvae) are particularly vulnerable with mortality rates 
of up to 99% recorded for a large number of species. High mortality rates result from 
the limited swimming ability of larvae preventing them from escaping sub-optimal en-
vironmental conditions, predators or low prey density areas. In this context, estuaries 
are key nursery areas for larval and juvenile fish. Estuarine habitats offer environmen-
tal conditions favourable to the survival and growth of early stages, through abundant 
good-quality prey and protection from predators. A vast literature on larvae occurring 
in temperate estuaries exists, but an overall perspective is lacking. The occurrence 
of fish larvae in temperate estuaries depends on several factors. First, the choice of 
spawning time and location is primordial, as they have evolved to optimise the entry 
and the retention of larvae in the estuary as well as the conditions experienced by 
young stages. Secondly, larval growth and survival depend on key environmental fac-
tors (e.g. salinity, water temperature, freshwater inputs, turbidity and dissolved oxy-
gen concentration). Knowledge of the larval dynamics in temperate estuaries is scarce 
for some topics and biased towards some species or geographical areas. The main 
goal of the present literature review is to synthesise existing knowledge regarding 
spawning timing and location and larval ecology for fish species occurring in coasts 
and estuaries, identifying the main patterns, consensus or conflicting hypotheses and 
highlighting major gaps. Research needs and future perspectives were outlined.
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2  |    AREVALO et al.

marine, marine–estuarine opportunist and diadromous fish species; 
see Elliott et al., 2007; Potter et al., 2015; Sheaves et al., 2015, for 
more details and reviews regarding fish species guilds classification).

Most fish species have complex life cycles, as they pass through 
different levels of the trophic network and occupy different ecologi-
cal niches during their lives (Mol, 1995; Morgan et al., 1995; Osenberg 
et al.,  1992). These ontogenetic niche changes generate a marked 
ecological distinction between life stages (Costa et al., 2002). Fish 
represent a very diverse biological group, with more than 25,000 
species, with different biological and ecological traits. Despite this 
diversity, probably the most common life cycle presents four devel-
opmental stages: egg, larvae, juvenile and adult.

For many species, eggs and larvae are planktonic, they have rel-
atively poor swimming abilities and mainly drift with water currents. 
These two stages are generally classified as ‘ichthyoplankton’. The egg 
stage begins at spawning and ends at hatching (Kendall et al., 1984). 
At hatching, fish enter the larval stage. Young larvae differ morpho-
logically from adults. They are poorly developed and possess a yolk 
sac that provides endogenous nutrition for the larvae (generally called 
‘yolk-sac larvae’). When the yolk sac is almost exhausted, larvae begin 
to feed exogenously (externally) on phytoplankton and zooplankton 
(generally called ‘post-larvae’). The transition from endogenous to ex-
ogenous feeding is identified as a critical step because larvae need 
immediate access to food to survive. The small size of larvae and their 
low stock of energy reserves do not allow them to cope with starva-
tion (Cushing, 1969, 1990). During the larval phase, the development 
of the notochord associated with the tail fin on the ventral side of the 
spinal cord allows larvae to become flexible and improves the loco-
motion and feeding activities of the larvae. Then, the larval stage can 
also be subdivided into pre-flexion, flexion and post-flexion stages. 
The development rate during early life stages varies between species, 
for example eggs hatch between 1 and 20 days after spawning in clu-
peiform fish (Peck et al., 2013). The development rate of an individual 
is closely related to water temperature, with the increase in tempera-
ture enhancing larval development. Japanese anchovy eggs (Engraulis 
japonicus, Engraulidae) hatch after 90 h, at 14°C, while they hatch in 
21 h, at 26°C (Hattori, 1983). Similarly, the yolk of newly hatched lar-
vae exhausted within 72 h, at 15°C, and 36 h, at 21°C (Fukuhara, 1990). 
The metamorphosis of larvae into juveniles is marked by the complete 
development of fin rays and of scales. Juveniles have the same mor-
phological characteristics as adults and, conversely to the larvae, ac-
tively swim. Juveniles become adults when the gonads first mature 
and when they actively reproduce.

Early life stages (i.e. eggs and larvae) are particularly vulnerable 
with mortality rates of up to 99% recorded for marine species (the 
critical period hypothesis; Hjort, 1914; Houde, 1997). High mortality 
rates result from the limited swimming ability of larvae preventing 
them from escaping sub-optimal environmental conditions, preda-
tors or low prey density. Some habitats may provide better condi-
tions for larvae and juveniles, especially favouring survival, as is the 
case of estuaries and shallow coastal areas (Cabral, 2022). Estuarine 
habitats offer environmental conditions favourable to the survival 
and growth of early stages, through abundant good-quality prey and 
the protection from predators directly with the physical protection 

of seagrasses, wetlands, oyster reefs and shallow areas or indi-
rectly using turbid waters (Barbosa & Chícharo, 2012; Cabral, 2022; 
Paterson & Whitfield, 2000; Teodósio et al., 2016). Biotic and abiotic 
features of estuaries optimise the fitness of individuals (Chícharo 
et al., 2012) and support estuarine-resident and marine populations 
(Able, 2005; Cattrijsse & Hampel, 2006).

Despite differences in morphology and functioning between 
estuaries, similarities exist in the mechanisms and processes that 
determine the presence of larvae in estuaries (Figure 1). The pres-
ence of larvae in estuaries may depend directly on the reproductive 
strategies of adults. For marine species, the timing and location of 
spawning have evolved to ensure the arrival of the offspring in the 
estuaries through favourable currents. At the same time, spawn-
ers that reproduce within estuaries have adopted mechanisms that 
allow the early stages to remain in the estuaries. Then, larvae of 
marine and estuarine species deploy a portfolio of passive and 
active strategies to use estuarine currents (influenced by tides, 
river discharges and estuary morphology) to their advantage and 
to facilitate their retention within the estuary. Finally, the location 
where larvae are found must have biotic and abiotic conditions 
favourable to their settlement, growth and survival (Figure  1). A 
vast literature on larvae occurring in estuaries exists, but data and 
results are quite disparate, and an overall and integrative perspec-
tive is lacking. Temperate estuaries shelter commercially important 
species (such as European bass, Dicentrarchus labrax, Moronidae, or 
common sole, Solea solea, Soleidae), so identifying the mechanisms 
that enable the occurrence, retention and survival of larvae in es-
tuaries is therefore crucial. These mechanisms are synthesised in 
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    |  3AREVALO et al.

this review, as well as the biotic and abiotic factors affecting their 
survival and growth.

2  |  WHICH FISH SPECIES VISITS 
ESTUARIES? CONTR A STING LIFE HISTORY 
STR ATEGIES

Fish species that occur in estuaries display a diversity of life histo-
ries (Pfirrmann et al., 2021). Several works thoroughly reviewed the 
guilds of fish that use estuary, either optionally or obligatorily (Elliott 
et al., 2007; Franco et al., 2008; Potter et al., 2015; Table 1). Marine 
category species reproduce mainly at sea and, during their early life 
stages, they use estuaries very rarely (‘marine stragglers’), regularly 
(‘marine estuarine opportunist’) or obligatorily (‘marine estuarine-
dependent’). The immigration and emigration from estuaries by ma-
rine species are often seasonal and make a major contribution to 
the pronounced annual cyclical changes in the estuarine fish fauna 
compositions (Maes et al.,  2005; Thiel & Potter,  2001). Estuarine 
category species could be classified into four guilds. Species may 
complete their entire life cycle in estuary (‘solely estuarine’) or be 
accidentally flushed out to sea and return to estuary (‘estuarine mi-
grant’). Other species may have independent populations in the sea 
(‘estuarine and marine’) or in freshwater (‘estuarine and freshwater’). 
The diadromous category includes anadromous (i.e. most of the life 
cycle at sea and spawning in rivers), catadromous (i.e. most of the 

life cycle in rivers and spawning at sea) or amphidromous species 
(i.e. frequent migrations from river to sea or vice versa, not neces-
sarily related to spawning; McDowall, 1988). Finally, the freshwater 
category includes species that occur in estuary rarely (‘freshwater 
straggler’) or occasionally (‘freshwater estuarine opportunist’).

The abundance of fish is highly variable through time and the 
species occurring at the adult stage in estuaries do not necessar-
ily reflect the species composition at the larval stage (Amorim 
et al., 2018; Martinho et al., 2012; Primo et al., 2013). Early stages 
often spend months to years in these environments before recruit-
ing to coastal adult populations (see reviews by Able,  2005; Beck 
et al.,  2001; Gillanders et al.,  2003), as observed for the Atlantic 
menhaden (Brevoortia tyrannus, Clupeidae; Kroger & Guthrie, 1973), 
the common sole (Koutsikopoulos et al.,  1995) or the European 
flounder (Platichthys flesus, Pleuronectidae; Kerstan,  1991). Thus, 
early life stages and adults of migrating fish species are spatially seg-
regated and constitute geographically separated groups which make 
connectivity a key factor (Reis-Santos et al., 2013).

3  |  TEMPOR AL DYNAMIC S OF SPAWNING

The joint action of several environmental factors, in particular 
photoperiod and water temperature, affects the reproduction of 
temperate fish, including migration to spawning grounds, game-
togenesis or spawning (Wang et al., 2010). These environmental cues 

F I G U R E  1  The occurrence of larvae in temperate estuaries is explained by the ecological guild of the species, the season and location 
of spawning. Several mechanisms allow the retention of early stages in the estuary, such as egg features (demersal and adhesive eggs), the 
deployment of parental cares or even the adoption of a portfolio of active and passive drift strategies. The survival and growth of the larvae 
can be explained by estuarine abiotic (salinity, water temperature, river discharge, turbidity or dissolved oxygen) and biotic (predation, prey 
density and quality) factors. All these processes explain the spatio-temporal dynamics of the distribution of fish larvae within temperate 
estuaries.
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4  |    AREVALO et al.

synchronise the reproductive season of most fish species to match 
peak prey production with larval occurrence (the Match-Mismatch 
Hypothesis; Cushing, 1990; Durant et al., 2007; Houde, 2016).

Fish species can be divided into two thermal groups, those that 
spawn during cool months (winter–spring) and those that spawn 
during warm months (summer-autumn). The cool assemblage is 
mainly composed of a few marine species in relatively high abun-
dance (Table 2; Nordlie, 2003). Warlen and Burke  (1990) showed 
that larval mortality was extremely high when the water tempera-
ture was below 10°C in a North Carolina Estuary. A progressive 
increase in water temperature is required to fully complete the 
maturation process and trigger spawning (Zarrad et al., 2008), as 
highlighted for the common sole (Vinagre, Ferreira, et al.,  2009; 
Vinagre, Maia, et al., 2009). During cool months, favourable ocean 
currents facilitate the navigation of the larvae towards estuary 

(Guerreiro et al., 2021; Korsman et al., 2017). In wet winters and 
springs, high river discharges spread estuary plumes, which facil-
itate larval navigation, increase nutrient supply and promote high 
abundance of zooplankton in estuaries. Cool temperatures reduce 
the metabolism of ectothermic organisms, reducing the larval 
energy requirements and starvation-induced mortality, and also 
the predator activity and predation pressure (Llopiz et al.,  2014; 
Pepin, 1991).

A significantly higher number of taxa coexist in the ichthyo-
planktonic assemblage during warm months (Álvarez et al.,  2012; 
Whitfield et al., 2008). After the spring phytoplankton bloom, sum-
mer spawning favours high growth rates in a food-rich environment 
with high turnover rates (Álvarez et al.,  2012). High growth rates 
reduce the pelagic larval duration (PLD) during which larvae are 
particularly vulnerable. In addition, low river discharges reduce the 
probability of larvae being washed out of estuary and ensure stable 
stratification of the water column, thus maintaining food patches 
(Dolbeth et al., 2007; Primo et al., 2012; Sabatés et al., 2007).

The offspring of competing species sharing the same limited re-
source has been found to be temporally or spatially segregated. Tsikliras 
et al. (2010) confirmed the successive, non-overlapping spawning of 
sympatric species, particularly for species belonging to Clupeiformes 
(families Clupeidae and Engraulidae), Sparidae and Mugilidae in the 
Mediterranean Sea. Similarly, temporal succession of spawning is re-
ported to occur among the European anchovy (Engraulis encrasicolus, 
Engraulidae) and the European pilchard (Sardina pilchardus, Clupeidae) 
in the north-west Mediterranean regions (Sabatés et al.,  2007) or 
among the five mugilid species inhabiting the northern Aegean es-
tuarine lagoons (Koutrakis, 2004). Species with wide latitudinal dis-
tributions show different seasonalities of spawning patterns among 
sub-populations over their range of distribution (Nordlie, 2003). The 
European bass reproduces from October to January in the south of 
the Iberian Peninsula, from the end of February to May in Brittany 
and from April to mid-June in Ireland (Vinagre, Ferreira, et al., 2009; 
Vinagre, Maia, et al., 2009). Several flatfish such as the common sole 
(Vinagre et al., 2008; Vinagre, Ferreira, et al., 2009; Vinagre, Maia, 
et al., 2009), the European flounder (Martinho et al., 2013) and the 
winter flounder (Pseudopleuronectes americanus, Pleuronectidae; 
Sogard et al., 2001) exhibit a delay of nearly 3 months in the onset 
of spawning between the southernmost and the northern areas. 
Spawning occurs earlier at low latitudes due to the minimum tempera-
ture threshold reach earlier as well as the maximum spawning tem-
perature. Consequently, this latitudinal cline in the spawning period 
leads to differences in the timing of colonisation of estuaries by early 
stages (Amara et al., 2000; Martinho et al., 2013; Vaz et al., 2019).

Other species produce offspring at different times within a year. 
Spawning activity of these species persists over a significant period 
of time, whether by multiple spawnings of individuals, at different 
times by different members of a population, or a combination of the 
two (Nordlie, 2003). Gobies (Pomatoschistus spp., Gobiidae) have an 
extended breeding season and several spawning periods (Dolbeth 
et al., 2007; Primo et al., 2012), which probably explains the high im-
portance of Pomatoschistus spp. larvae in most temperate estuaries 

TA B L E  1  Use of marine, estuarine and freshwater environments 
of different ecological guilds of fish. Spawning events are shown 
in black, environments supporting the young stages are shown in 
grey.

Guilds

Environments

Marine Estuary Freshwater

Marine

Marine straggler

Marine estuarine 
opportunist

Marine estuarine 
dependent

Estuarine

Solely estuarine

Estuary and marine

Estuary and 
freshwater

Estuarine migrant

Diadromous

Anadromous

Catadromous

Amphidromous

Freshwater

Freshwater straggler

Freshwater 
estuarine 
opportunist
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throughout the year. This bet-hedging strategy ensures that at least 
some offspring encounter favourable conditions and maximises fit-
ness despite the occurrence of unpredictable disturbances, which 
is particularly important for species with a short life cycle. These 
mechanisms play a major role to maintain the productivity of popu-
lations and resist to adverse conditions (Berkeley et al., 2004; Dolan 
et al., 2021; Tremont et al., 2015). The common goby (Pomatoschistus 
microps, Gobiidae) is widespread, from the Gulf of Lion in the 
Mediterranean Sea to the coast of Norway (Salgado et al., 2004). This 
plastic species has developed local adaptation along its geographi-
cal distribution (Leitão et al., 2006): northern Atlantic populations 
have a shorter reproductive season, while Mediterranean lagoons' 
populations, experiencing higher water temperature, have a wider 
reproductive season (Bouchereau & Guelorget, 1998). Temperature 
seems to be the main factor influencing this process, with spawning 
occurring between 15 and 20°C (Wiederholm, 1987) for an egg de-
velopment at 20°C, the temperature for which egg survival is higher 
(Fonds & Van Buurt, 1974).

4  |  FROM SPAWNING GROUNDS TO 
ESTUARY: MECHANISMS ALLOWING 
ESTUARINE COLONISATION AND 
RETENTION

Fish larvae occurring in estuaries may have resulted from spawning 
at shelf, shallow coastal areas or directly in estuarine habitats. The 
mechanisms involved in these three cases are extremely different: 
larvae of the shelf and coastal spawners need favourable currents to 
approach estuaries while estuarine spawners need larval retention. 
The location of marine spawning areas is selected to take advantage 
of spatially and temporally consistent circulation patterns through 
which eggs and larvae reach distant settlement areas (Table  3; 
Ciannelli et al., 2015). Marine species generally release pelagic and 
buoyant eggs, which are carried by the oceanic currents to nursery 
areas. Wind-induced variability in larval dispersal patterns could also 
be a key factor in determining subsequent year-class strength and 
recruitment (Van der Veer et al., 1998), as demonstrated for plaice 

TA B L E  2  Fish can reproduce during cool, warm, or extended periods. Each of these strategies has evolutionary advantages in terms of 
environmental conditions.

Cool periods Warm periods Extended periods

Late autumn, winter
Marine species in high abundance

Spring, summer, early autumn
High number of taxa

Several months
Mainly estuarine species

Favourable oceanic currents Spring phytoplankton blooms: Multiple spawning of the same individuals

↗ Food opportunities

↗ River discharge: ↘ River discharge: Different spawning time by different members of the 
population↗ Estuarine plume spreading ↘ Probability of being washed out

↗ Nutrient supply

↗ Food abundance

↘ Water temperatures: ↗ Water temperatures: Maintenance of the population despite unfavourable conditions

↘ Energy requirements ↗ Growth rates

↘ Starvation-induced mortality ↘ Larvae vulnerability

↘ Predator pressure

Pre-flexion 
larvae

Post-flexion 
larvae

Passive dispersion Active dispersion

Wind-induced migration Directional swimming guided by cues

Oceanic, slope, coastal currents Selective Tidal Stream Transport

Surface branches of subtropical 
gyres

Ingress strategy

Undercurrents Vertical migration

Eddies Buoyancy regulation

Flood and ebb tides Lateral migration

Residual and bottom currents

Reduced velocity near margins

TA B L E  3  To ingress estuary, fish 
larvae deploy a portfolio of passive and 
active drift strategies. Preflexion larvae 
preferentially use passive strategies while 
postflexion larvae, which have more 
developed sensory systems and better 
swimming abilities, preferentially use 
active strategies.
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6  |    AREVALO et al.

along the Danish (Nielsen et al.,  1998) and Swedish west coasts 
(Pihl, 1990).

Swimming and sensorial abilities of fish larvae improve during 
development (Atema et al.,  2015; Baptista et al.,  2020; Teodósio 
et al.,  2016). When fish larvae reach the post-flexion stage, fins 
and body musculature develop and skeleton ossification increases. 
These ontogenetic changes considerably improve larval swimming 
performances and endurance (Blaxter & Staines, 1971; Leis, 2006) 
and larvae are able to position themselves to take advantage of 
ocean currents (O'Connor et al.,  2017). It is now well established 
that the vertical distribution of fish larvae is under precise be-
havioural control from very early in the PLD (Baptista et al., 2020; 
Leis, 2007). Concurrently, the development of sensory organs allows 
them to swim directionally (Leis, 2006; Snyder et al., 2014; Tanner 
et al., 2017), guided by numerous physical cues, deeply reviewed by 
Leis (2007) and Teodósio et al. (2016).

Olfaction has been recognised as the prevalent cue for locating 
estuarine odours (Baptista et al., 2020; Dixson et al., 2008). When 
post-flexion larvae succeed in finding an estuarine plume, or hatch 
and develop inside, they swim straightforward along cue concen-
tration gradients towards the estuary, that is gradients in salinity 
(De Vries et al.,  1995; Hale et al.,  2008), temperature (Hunt von 
Herbing,  2002), turbidity (James et al.,  2022) or seagrass odour; 
the Sense Acuity And Behavioural (SAAB) hypothesis (Teodósio 
et al.,  2016). Larvae's ingress strategies are likely optimised to 
maximise ingress with the minimum expenditure of energy while 
maintaining and conciliating nycthemeral rhythms and strategies of 
feeding and avoidance of predators. Environmental cues like wind 
intensity and direction, river discharge or tidal cycle may trigger or 
influence the colonization of larvae in estuaries as demonstrated by 
Amara et al. (2000) for the common sole. The migration of sole lar-
vae is stimulated by pulses into the Bay of Vilaine (France) over a 
short single period or can be spread over several months depending 
on environmental conditions (Amara et al., 2000; Marchand, 1991; 
Marchand & Masson, 1989).

For marine species that lay pelagic eggs directly in the estuary 
or have very limited swimming abilities at the larval stage, spawn-
ers generally migrate to upstream reaches to maximise the number 
of eggs remaining in the estuary. Estuarine species have different 
strategies to allow the retention of young stages within estuary. 
Most estuarine species lay demersal and adhesive eggs (Ré, 1996). 
Estuarine spawners can also provide parental cares and other re-
productive specializations. For example, the eggs of several species 
of gobiids are guarded by the parents until the young hatch (Neira 
et al.,  1992). Oral brooding and pouch-brooding, as in most syn-
gnathids (Fritzsche, 1984), allow the young to be released at an ad-
vanced stage of development.

Larval retention within estuary involves a range of passive and 
active drift strategies to avoid being washed out, reduce energy 
costs and mortality (Boehlert & Mundy, 1988; Teodósio et al., 2016). 
The importance of different ingress mechanisms varies among spe-
cies and ontogenic stages (Hare et al.,  2005). Larvae in the early 
stages of transformation typically enter the estuary throughout 

the water column, whereas older larvae arrive deeper in the water 
column (Boehlert & Mundy, 1988). It seems that older larvae bet-
ter perceive the cues guiding the selective tidal stream transport 
(STST) due to better cognitive abilities. The perception of environ-
mental cues allows older larvae to make vertical migrations, which 
are possible due to better movement capabilities and buoyancy 
control. Creutzberg  (1961) firstly suggested an active use of the 
tide by larvae to cross the mouth of an estuary or migrate within 
the estuary through the STST hypothesis. Larvae ascend actively in 
the water column to use the fast-moving surface layer during flood 
tide, while they return to the bottom to prevent being washed out 
during ebb tide (Amorim et al., 2016; Boehlert & Mundy, 1988; Islam 
et al., 2007). Jager (1999) demonstrated the STST use by European 
flounder larvae in the Ems Estuary through high larvae concentra-
tion in the fast-moving surface layer during flood tide and high lar-
vae concentration near the bottom during the ebb tide. An increase 
in the larval concentration at the surface layer during the last 2 h 
of the ebb tide seemed optimal to achieve maximal transport with 
the tide. However, migration dynamics of larvae during tides are still 
poorly understood. More information on the use of tide currents by 
larvae could lead to a better description of the species mechanisms.

The STST occurs mainly in stratified estuaries where environ-
mental cues allow the selection of favourable currents (Sulkin, 1990). 
A combination of physical variables characterised by directional 
gradients, for example water temperature, salinity, turbidity and 
hydrostatic pressure could act as synchronizing cues (Jager, 1999). 
For example, decreasing salinity (due to freshwater runoff in the 
ebb tide) causes benthic orientation and negative rheotaxis by lar-
vae and juveniles (Bolle et al., 2009). Similarly, larvae remain swim-
ming in response to high levels of turbulence but start to descend 
when turbulence decreases (Welch & Forward,  2001). The STST 
behaviour allows organisms, particularly those with weak swimming 
abilities, such as larval stages of the Clupeiformes and especially the 
Pleuronectiformes (Teodósio & Garel, 2015), to cover long distances 
and reduce energy expenditure (Gibson, 2003). These optimal posi-
tions within the water column can be reached either through active 
swimming (Hare et al., 2005) or buoyancy regulation controlled by 
the swim bladder (Forward et al., 1998). In contrast, species pres-
ent in the whole water column regardless of the flow reversal, such 
as Atlantic menhaden, do not seem to use the STST strategy and 
they are likely to be flushed into the ocean when ebb tide is stronger 
than flood tide. Episodic meteorological events influence the current 
speed, even at the bottom layers (Simionato et al., 2008). For species 
evenly distributed in the water column, wind speed and direction are 
correlated with larval retention rates (Joyeux, 2001).

To minimise seaward movement, larvae could exhibit a preference 
for residual currents in the bottom (Primo et al., 2012) or near the 
margins (Pattrick & Strydom, 2014; Strydom, 2003; Whitfield, 1989). 
Current velocity is reduced near the margins (1–2 m deep) and the 
predominance of older larvae with definitive fin elements and ac-
tive swimming ability suggests that active migration is the means of 
accessing and selecting this more favourable-current environment 
(Kisten et al., 2020; Strydom, 2003; Strydom & Wooldridge, 2005; 
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    |  7AREVALO et al.

Wasserman et al.,  2010). Attracted by slower currents, lateral mi-
gration to the boundary zones enables post-flexion larvae to choose 
their vertical position and swim faster and longer.

5  |  FAC TORS AFFEC TING L ARVAL 
GROW TH AND SURVIVAL

Several fish species use estuarine habitats during early life stages 
to benefit from favourable environmental conditions and abundant 
trophic resources for achieving rapid growth (Shervette et al., 2007). 
Higher growth rates enable fish to move out of size classes more 
vulnerable to predation (Stunz et al., 2002). Additional indirect ben-
efits include enhanced swimming speed (Webb & Corolla,  1981), 
increased ability to detect and escape predation or harsh environ-
mental conditions (Fuiman, 1994), increased survival during the fol-
lowing months (Henderson et al.,  1988; Post & Evans,  1989) and, 
ultimately, recruitment to later life stages (Grimaldo et al., 2020). It 
is then fundamental to understand potential factors that link estua-
rine habitats to the growth and survival of early stages to assess the 
nursery habitat potential of a temperate estuary (Figure 2).

5.1  |  Salinity gradient

Salinity is an important factor affecting the survival, metabolism 
and distribution of fish species (Lima et al.,  2019; Strydom,  2015; 
Whitfield, 2015). It exerts selective pressure on all developmental 
stages, including the youngest ones (Varsamos et al.,  2001). The 
salinity gradient within estuary moves horizontally according to 
freshwater inputs and tidal influence (Barletta et al., 2005; Barletta 
& Lima, 2019). Abundances of larval fish follow the opposite pattern 
to species diversity, where peak abundance generally occurred in 
the mesohaline zones of estuaries (from 5.0 to 17.9 ppt). Mesohaline 
regions are associated with the Estuarine Turbidity Maximum areas 
(the ETM; see following sections), which support high primary and 
secondary production and, consequently, the highest densities of 
early-stage fish (Islam et al., 2006; Suzuki et al., 2014). These inter-
mediate salinity conditions appear to be attractive and favourable 
to larval concentration (Allen & Barker, 1990) and provide a growth 
advantage to larvae (Bœuf & Payan, 2001). However, the capacity 
for osmoregulation differs between ages, stages and species.

Maintaining an osmotic balance can have a significant energy cost, 
which reduces the energy available for growth (Bœuf & Payan, 2001; 
Malloy & Targett, 1991; O'Neill et al., 2011). Spontaneous activity 
and swimming behaviour as well as food consumption, digestion and 
absorption of prey can be altered under different salinity regimes 
(Bœuf & Payan,  2001; Imsland et al.,  2002). These processes can 
affect energy expenditure and therefore fish condition. Salinity tol-
erance by fish is strongly related to the interaction between tem-
perature and salinity, with the osmoregulatory abilities of even 
euryhaline species being compromised at extremely low and high 
temperatures (Hassell et al., 2008; Nicholson et al., 2008).

The osmoregulatory capacities of adult fish are relatively well 
known, however much fewer data are available on the early stages 
of development (Schreiber, 2001; Varsamos et al., 2005). It seems 
that the ability to osmoregulate at low and high salinities increases 
throughout development (Varsamos et al., 2005). In the early stages, 
the skin plays an essential role in osmoregulation due to the fact 
that surface to volume ratio is high (Moustakas et al., 2004). During 
the development, the surface area/volume ratio of the larvae de-
creases, making diffusion insufficient for gas exchange. The opening 
of the mouth is a critical step that allows the larvae to osmoreg-
ulate by drinking water and by gut water absorption (Varsamos 
et al., 2001). Then, the development of gills and excretory appara-
tus sharply improves the osmoregulatory ability of older larvae. The 
development of the gills marks the transition between cutaneous 
and branchial respiration during the post-larvae stage (Phillips & 
Summerfelt, 1999).

The entry of marine species larvae into estuaries seems to be 
synchronised with the improvement of their osmoregulatory ca-
pacity. For example, in the Cornwall and South Wales areas, larvae 
of European bass enter the estuary only after they attain a thresh-
old size of 15–20 mm, at which the osmoregulatory ability reaches 
its definite level (Jennings et al., 1991; Jennings & Pawson, 1992). 
Then, individuals are able to cope with salinity changes, from seawa-
ter to freshwater. Similarly, Smith, Denson, et al.  (1999) and Smith, 
McVey, et al. (1999) show that southern flounder (Paralichthys letho-
stigma, Paralichthyidae) eggs are able to hatch at low salinity (10 ppt) 
but newly hatched larvae die soon afterwards, while post-larvae 
(50-day-old) show no significant difference in survival at salinities 
ranging from 5 to 30 ppt. Then, euryhalinity increases with age for 
southern flounder (Nacci et al.,  1999; Smith, McVey, et al.,  1999; 
Watanabe et al., 1998) as well as for other species such as the gilt-
head bream (Sparus aurata, Sparidae; Bodinier et al., 2010). However, 
there is a crucial lack of information on the range of salinity toler-
ance of the species according to the stages, which is a key issue re-
garding ichthyoplankton distribution.

5.2  |  Water temperature

Water temperature is a determinant factor for the condition of the 
larvae at hatching (i.e. hatch length and the amount of endogenous 
resources before first feeding; Benoît & Pepin,  1999; Yanagitsuru 
et al., 2021), the duration of the pelagic larval phase, metamorphic 
success, behaviour, dispersal distance, size at settlement and growth 
rates (Green & Fisher, 2004; Spies & Steele, 2016). Estuarine water 
temperatures could be warmer than in the ocean during spring and 
summer, this may provide a metabolic advantage for species which 
settle in estuary (Able et al.,  2006). Physiological responses to 
temperature commonly follow a dome-shaped relationship, where 
a maximum is reached as rates increase with temperature, but re-
sponses thereafter decrease rapidly if temperatures exceed the 
thermal optimum (so-called thermal window; Munday et al., 2009; 
Pörtner & Knust, 2007).

 14672979, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/faf.12740 by Inrae - D

ipso, W
iley O

nline L
ibrary on [04/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



8  |    AREVALO et al.

Cool water temperatures decrease the energy required to maintain 
basal metabolism but also decrease activity and intake rates, resulting 
in reduced or negative growth (Malloy & Targett, 1991; Pepin, 1991). 
Low ingestion rate may lead to the dispersion of larvae and juveniles 
by making them less capable of migrating vertically and consequen-
tially weakening the retention mechanism within favourable areas 
(North & Houde,  2003; Shoji & Tanaka,  2007). Slow development 
during the early life of the larvae associated with decreased swimming 
performances makes them more susceptible to predation (Hunter, 
1981). Then, the prolonged larval stage due to decreased ingestion 
and growth rates increases the accumulated mortality (Houde, 1987).

An increase in water temperature may be beneficial to some ex-
tent, depending on the thermal window of the individuals. Increase 
in temperature results in more energy synthesised, higher rates 
of diffusion and more enzyme–substrate complexes, which lead 
to higher reaction rates for growth (Arula et al., 2015; Takasuka & 
Aoki, 2006). It also increases the production of suitable prey (Peck 
et al.,  2013). In the warmer environment, Spies and Steele  (2016) 
demonstrated that the arrow goby (Clevelandia ios, Oxudercidae) 
and the endangered tidewater goby (Eucyclogobius newberryi, 
Oxudercidae) were larger at age due to faster growth rates, but they 

were smaller in body size at settlement due to the shorter time spent 
in the larval phase. Then, changes in the estuarine thermal regime 
have consequences for species phenology. Additionally, when water 
temperature exceeds the species thermal window, individuals strug-
gle to maintain cardiac function, respiration and osmotic and ionic 
balance in the face of increased metabolic demands (Fuiman, 2002; 
Pörtner & Knust, 2007), resulting in mortality. Starvation of larvae 
is hypothesised to be more likely in warm seas because of their rel-
atively great ingestion requirement combined with low assimilation 
efficiency (Houde, 1989). Finally, larvae are at greater risk of devel-
opmental abnormalities.

5.3  |  Freshwater inputs

Inland hydrological processes, including precipitation regime and 
river discharge, regulate the freshwater inputs to estuaries and 
coastal areas. Then, freshwater discharge affects water temperature, 
salinity, pH, turbidity, dissolved oxygen concentrations and habitat 
diversity (Drinkwater & Frank, 1994). Freshwater inputs drive estua-
rine flux circulation, spread olfactory cues through estuarine plumes 

F I G U R E  2  Main abiotic and biotic factors influencing the physiology and behaviour of fish larvae in estuaries. The more important the 
factors are for the larvae, the thicker the lines. The connections between the different factors are also shown.
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    |  9AREVALO et al.

that trigger the spawning of estuarine and marine fish (Strydom 
et al., 2002) and guide larval and juvenile marine fish into the nurs-
ery grounds (Costa et al.,  2007; O'Connor et al.,  2017; Teodósio 
et al., 2016). Essential nutrients, carried seaward by rivers, promote 
primary and secondary productions in estuaries and coastal systems 
(Dolbeth et al.,  2007; Grimes & Kingsford,  1996). Increased phy-
toplankton productivity is usually reflected in higher zooplankton 
biomass which, in turn, supports increased ichthyoplankton density 
(Gillanders & Kingsford, 2002; Strydom et al., 2002). A correlation 
between freshwater discharge and larval growth through high prey 
production has been established for Clupeidae and Gobiidae larvae 
in South Africa (Kruger & Strydom, 2010; Strydom, 2015) as well as 
for Japanese sea bass larvae (Lateolabrax japonicus, Lateolabracidae) 
in the Chikugo River estuary (Japan; Shoji et al., 2006).

However, extreme discharges (low or high) reduce larval abun-
dance and growth. Rulifson and Manooch  (1990) reported that 
striped bass recruitment collapsed at the highest discharges of the 
Roanoke River (North Carolina, U.S.A). High river discharges gener-
ally prevent the entry of passively migrating larvae into the estuary 
and flush larvae to potentially less productive coastal areas (Barletta-
Bergan et al., 2002; Lima et al., 2019) where potential predators are 
more abundant (Shoji et al., 2006). Similarly, estuarine copepod are 
flushed out during high-flow events leading to greatly reduced food 
concentration and availability for larvae (Ueda et al.,  2004). High 
river discharges create a physical barrier to marine species by low-
ering salinity, creating osmoregulatory stress and forcing the dis-
persion of larvae from estuarine into coastal systems (Loneragan & 
Bunn, 1999; Strydom et al., 2002; Whitfield & Harrison, 2003).

In contrast, low freshwater contributions limit overall freshwater 
habitat availability. Hypersalinity and marinization are two different 
concepts related to freshwater deficits. Hypersalinity is relatively 
rare and may occur in shallow estuaries in high-evaporation geo-
graphical areas. The evaporated water is not compensated by mix-
ing with freshwater or marine water. Marinisation happens due to 
the reduced river flow (dams or climate change induced) which re-
duces the extent of oligo and mesohaline areas relative to polyhaline 
areas. The Gironde Estuary is a perfect example of this phenom-
enon of marinisation (Pasquaud et al., 2012), where the salinity of 
the estuary is sometimes higher than the surrounding seawater. This 
situation is all the most pronounced during summer months when 
precipitation is typically low, combined with a net increase in evapo-
transpiration (Spies & Steele, 2016). High salinities result in a loss of 
freshwater species, declines in estuarine-dependent species and the 
establishment of marine species in the lower reaches of estuaries 
(Baptista et al., 2010; Vivier & Cyrus, 2002). Congruently, reductions 
in the delivery of nutrient-loaded freshwaters into estuaries can lead 
to food web limitations (Bennett et al., 1995).

5.4  |  Turbidity

The effect of turbidity on fish larvae is rather unclear. Turbidity is 
generally positively correlated to the recruitment of fish larvae and 

juveniles (Harris & Cyrus, 1995). However, other variables are cor-
related with turbidity and it is challenging to disentangle the effects 
of each variable: high turbid waters are usually found in oligo and 
mesohaline areas and thus the observed effect could be attributed 
to salinity.

Moderate turbidity enhances the feeding rate of larvae by 
providing visual contrast of prey in the water, as demonstrated 
for Pacific herring larvae (Clupea pallasii, Clupeidae; Boehlert & 
Morgan, 1985), rainbow smelt larvae (Osmerus mordax, Osmeridae; 
Sirois & Dodson,  2000) or striped bass larvae (Morone saxatilis, 
Moronidae; North & Houde,  2001). The search for prey is facili-
tated by a lower risk of predation (Engström-Öst et al., 2006; Maes 
et al., 1998; Snickars et al., 2004). Moderate turbidity enables other 
‘risky’ activities, such as reduced use of the vegetative shelter, migra-
tion between habitats and increased use of open water to increased 
foraging (Snickars et al., 2004). The energy expenditure associated 
with high-activity rates to search for food in turbid conditions must 
be compensated by high prey productivity to allow good growth of 
fish larvae (Engström-Öst & Mattila, 2008).

In macrotidal estuaries (with a tidal range >  4  m), Estuarine 
Turbidity Maximum (ETM) refers to the dynamic frontal region 
where freshwater from the river mixes with saltwater from the sea 
(Sanford et al., 2001). The concentration of fine suspended sediment 
is much higher in the ETM (e.g. 10 g l−1 in the Gironde and nearly 
5 g l−1 in the Loire estuaries; Allen et al., 1977; Ciffroy et al., 2003) 
than in the upstream river or in the adjacent sea where sediment 
concentrations are generally below 10 mg l−1. Significantly higher net 
primary production in the ETM zones results in high zooplankton 
production (Kimmerer et al., 1998; Winkler et al., 2003). In addition, 
the specific hydrographic conditions of the ETM facilitate the pas-
sive accumulation of zooplankton in this convergence zone, such 
as the estuarine copepod Eurytemora affinis (Temoridae; Roman 
et al., 2001), as well as of planktonic fish eggs and larvae. The high 
concentration of prey boosts the probability of larvae encountering 
prey (North & Houde, 2006), promoting larval feeding success (Islam 
et al., 2006; Shoji, Masuda, et al., 2005). High turbidity in the ETM 
region decreases predation pressure on larvae and reduces energetic 
costs associated with predator avoidance (North & Houde,  2006; 
Shoji & Tanaka,  2007). Elevated temperature and lower salinity 
within the ETM (Strathmann,  1982), together with enhanced den-
sities of food, may allow larvae to grow rapidly, thus helping them 
to resist being dispersed by currents (Doyle et al.,  1993; Olney & 
Boehlert, 1988) and keeping them from entering osmotically stress-
ful, high salinity waters (North & Houde,  2000, 2006; Winger & 
Lasier,  1994). However, extremely high turbidity may create unfa-
vourable conditions and decrease prey capture success (Engström-
Öst & Mattila,  2008; Ljunggren & Sandström,  2007; Stuart-Smith 
et al., 2004), reduce the physiological condition of individuals and 
increase larval mortality (Griffin et al., 2009; Grimaldo et al., 2020).

The physical and biological characteristics as well as the size and 
position of the ETM depend on the relative volume of freshwater 
entering the estuary (North & Houde, 2006). A high river discharge 
results in a large ETM zone in the downstream reaches of estuaries 
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10  |    AREVALO et al.

(Whitfield & Wood,  2003). The substantial supply of freshwater 
may enhance prey productivity and increase the retention of larvae 
and their prey in the ETM region, resulting in high larval growth and 
low predation mortality (North & Houde, 2001, 2003). Fish larvae 
associated with the ETM feed more successfully, grow faster and 
experience higher survival in high river discharge years (North & 
Houde, 2006). Conversely, low river discharges may accentuate the 
accumulation of detritus from the decomposition of phytoplankton, 
especially during spring tides (Hayami et al., 2019). The respiration 
of bacteria which decomposes the organic matter consumes a large 
amount of oxygen and could lead to a phenomenon of hypoxia (i.e. a 
depletion of dissolved oxygen below the threshold concentration of 
2 mg l−1; Breitburg et al., 2003). Congruently, high turbidity prevents 
sunlight from penetrating into the water column and therefore sup-
presses oxygen production by phytoplankton (Lanoux et al., 2013).

5.5  |  Dissolved oxygen concentration

Dissolved oxygen (DO) drives physiological functions, vital meta-
bolic processes and cardiovascular regulation and affects growth 
rates, spatial distributions, behaviour and survival of aquatic or-
ganisms (Breitburg et al.,  1997, 2009; Diaz & Rosenberg,  1995). 
Due to natural cycles of nutrient and freshwater input, respiration 
and temperature, hypoxic conditions (<2 mg l−1) or anoxic condi-
tions (<0.2 mg l−1) occasionally occur (Ludsin et al.,  2009; Roman 
et al., 2019). Low DO periods are generally episodic and do not pose 
necessarily a serious threat to estuarine organisms if they occur for 
very short periods and if the periodicity is not recurrent. However, in 
recent years, human alterations to natural nutrient cycles, pollution 
and climate change exacerbate these hypoxic periods in length and 
intensity both locally and globally (Diaz & Rosenberg, 1995; Ludsin 
et al., 2009).

Once DO concentrations drop below the point where aerobic 
metabolic function becomes impossible, fish must rely on anaerobic 
respiration. Due to the reduced ATP yield from this form of respira-
tion, fish are forced to reduce non-vital functions, such as unnec-
essary movement, to maintain energy for vital metabolic processes 
(Pan et al., 2016). The effects of hypoxia also depend on the type 
of exposure (e.g. chronic or acute) and the status of the affected 
organisms (e.g. active swimming, digestion, stress exposure) which 
determine their oxygen demand (Bardon-Albaret & Saillant, 2016). 
Depending on the species, larval fish may represent a life stage 
where they may be either more resistant or vulnerable to hypoxia 
(Hanke & Smith, 2011; Nelson & Lipkey, 2015; Pan et al., 2016). For 
example, some species may be more vulnerable to hypoxia as larvae 
due to a higher dependence on cutaneous respiration and restricted 
gas exchange (Bardon-Albaret & Saillant, 2016; Elshout et al., 2013; 
Levin et al.,  2009); others, such as red drum (Sciaenops ocellatus, 
Sciaenidae), have been found to be more tolerant to hypoxia as 
larvae than adults due to physiological mechanisms, which allow 
their metabolism to function aerobically at lower dissolved oxygen 
concentrations.

Deformities and high mortality rates in embryonic and larval 
individuals exposed to hypoxia have been reported for many spe-
cies (Borgström et al.,  2017; Leonard,  2017; Levin et al.,  2009). 
Williams et al. (2020) recorded only 0.03% of survival from eggs to 
flexion larvae for black bream (Acanthopagrus butcheri, Sparidae) 
in the Blackwood River estuary during years of prolonged hypoxic 
conditions. In laboratory experiments, larval zebrafish (Danio rerio, 
Cyprinidae) exposed to hypoxia in an embryonic stage suffered from 
curved spines, reduced or absent pectoral fins, and other malfor-
mations (Shang & Wu,  2004), less growth and delayed develop-
ment (Kajimura et al., 2005). Hassell et al.  (2008) found that black 
bream embryos exposed to hypoxia exhibited reduced hatch rates, 
deformities and smaller size. The physical deformities acquired by 
larvae because of hypoxia exposure (e.g. reduced fin development 
and curvature of the spine) greatly reduce swimming efficiency and 
survival (Bardon-Albaret & Saillant, 2016; Leonard, 2017) as well as 
sensory capacities (Ragge et al.,  2007). However, the behavioural 
responses of larvae are less well understood. Southern flounder 
and largemouth bass (Micropterus salmoides, Centrarchidae) larvae 
moved vertically in response to low dissolved oxygen in laboratory 
experiments (Deubler & Posner, 1963; Spoor, 1977).

Low DO compresses the available habitat and induces variable 
responses of interacting organisms depending on their own toler-
ances (Eby et al., 2005; Nelson & Lipkey, 2015). This way, low DO 
influences predator–prey relationships (Kramer, 1987) through the 
abundance and distribution of both predators and prey, the ability 
to capture prey and to avoid predation (Breitburg et al., 1997; Ekau 
et al., 2010). Interestingly, some fish larvae could be more abundant 
in low-oxygen environments than in habitats near saturation and ac-
tively select these habitats to reduce the predation risk (Breitburg 
et al., 1994). In laboratory experiments, Breitburg et al. (1994) high-
lighted that fish predators appeared lethargic or remained motion-
less at 2 mg l−1, which drastically reduced their attack rate on fish 
larvae. Appetite depression under low oxygen conditions is also 
noted (Chabot & Dutil, 1999). However, gelatinous zooplankton, ma-
rine mammals and seabirds are not affected by low oxygen levels and 
took advantage of the slow and weak swimming of larvae to catch 
them easily (Breitburg et al.,  1994; Shoji, North, & Houde,  2005). 
Systemic hypoxia could impair brain and sensory functions, which 
are fundamental for the responsiveness or the execution of escape 
responses (Domenici et al., 2007).

5.6  |  Diet and prey availability

Eggs and young larvae feed exclusively on their endogenous re-
serves. Following yolk absorption, larvae feed on exogenous prey 
provided by the environment. The timing of the first food intake 
is critical for fish larvae: if larvae do not have access to abundant 
good-quality prey, starvation impacts negatively the nutritional 
conditions of larvae, hinders the growth of fish larvae during their 
early development and causes high mortality (Dou et al., 2002; Shan 
et al., 2008). Especially at the onset of exogenous feeding period, 
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    |  11AREVALO et al.

even a short period of food deprivation after yolk exhaustion re-
sult in severe behavioural, developmental and nutritional problems 
(Kjørsvik et al., 1991). Larvae in poor condition are not only more 
vulnerable to predation, disease or unfavourable environmental con-
ditions but also are less efficient in foraging (Amara & Galois, 2004; 
Strydom et al., 2014).

The susceptibility to starvation of fish larvae appears to be 
stage-specific and varies among species. Species whose larvae are 
relatively larger at hatching can resist starvation more successfully 
than those species with smaller larvae, because of the latter's lim-
ited energy reserves, poor hunting abilities and food size limita-
tion related to mouth gape (Miller et al.,  1988). In addition, some 
environmental factors, such as temperature and salinity, also have 
important effects on the larval ability to resist starvation: fish lar-
vae can endure longer time of starvation in an optimal environment 
(McGurk, 1984). Prolonged starvation and delayed first feeding have 
drastic consequences on fish larvae (Dou et al., 2005), despite a re-
covery in trophic availability (the Point-of-No-Return, PNR; Blaxter 
& Hempel, 1963; Hung et al., 1993). The PNR is defined as the time 
when the cumulative effects of starvation become irreversible and 
50% of starved larvae are still alive but unable to feed, and the survi-
vors could not successfully complete the ontogenetic development 
afterwards. Therefore, feeding success in the first few days of life 
(during ‘the critical period’; Hjort, 1914) plays a major role in their 
overall likelihood of survival and the synchronisation between fish 
larvae and prey abundances may be a principal factor influencing the 
nursery function of estuaries (Baldó & Drake, 2002).

Larvae are gap-limited predators and prey width is typically the 
limiting dimension for ingestion (Heath, 1992; Hunter, 1981, 1981). 
The body and mouth sizes of fish larvae are highly variable at first 
feeding between species. In general, smaller larvae eat smaller prey 
at first feeding, although larger larvae often capture prey of widely 
varying sizes at first feeding (Chesney, 2008). Their access to food 
(i.e. potential prey spectra) increases as the size of their mouth and 
oesophagus increases. Simultaneously, improvements in swimming 
performance due to fin development allow diversification of diet 
spectra, effectively increasing prey–capture efficiency. In addition, 
larvae of the majority of fish species initially have poorly developed 
alimentary tracts, typically characterised by short length, narrow 
width, simple structure, weak digestive enzymes and, thus, limited 
digestive capacity (Kolkovski, 2001; Makrakis et al., 2005). As the 
larvae develop, their alimentary tracts develop, frequently char-
acterised by an increase in length and width, differentiation of the 
gut into distinct regions and the production of potent digestive en-
zymes (Hofer & Uddin, 1985; Junger et al., 1989). Development of 
the alimentary canal, concurrent with other changes in morphology 
and behaviour (Peňáz,  2001; Werner & Gilliam,  1984), frequently 
coincides with shifts in the diet composition of young fish (Nunn 
et al., 2012). The diet of fish larvae shifts during ontogeny from phy-
toplankton or nauplii during first-feeding stages to larger prey such 
as adult copepods and cladocerans during older larval stages and 
prey that is apparently too small are ignored (Llopiz, 2013; Pepin & 
Penney, 2000).

Prey selection is driven by the ratio of energy gained over en-
ergy expended for its capture, so prey selectivity is likely to be cor-
related with prey abundance and prey size (Robert et al., 2014). This 
is in accordance with the Optimal Foraging Theory (MacArthur & 
Pianka, 1966) as the energetic content of a given prey type increases 
with its size, but there is also an associated increase in handling 
time. Fish larvae vary in their ability to capture different sizes and 
types of prey at first feeding because of differences in larval size, 
visual acuity, swimming patterns and abilities of the larvae to detect, 
approach, and attack prey (Chesney, 2008; Sabatés & Saiz, 2000). 
Other prey characteristics such as colouration, swimming speed and 
biochemical composition/nutritional quality may also contribute to 
prey selection (Nunn et al., 2012; Robert et al., 2014; Young, 1992).

Larvae are opportunistic predators and exhibit a flexible diet. 
Being able to utilise a wide variety of prey items in a highly variable 
environment is a critical survival strategy to enhance the chances 
to feed sufficiently (Baldó & Drake, 2002; Schmitt, 1986; Strydom 
et al., 2014). Diet diversity seems to reflect the seasonal availability 
of prey: when prey is abundant, there is less competition between 
larvae and they access the preferred resource easily; when prey is 
scarce, the low densities of the main prey make a certain diversi-
fication of diet necessary. Copepods, mysids, brachyuran zoea or 
euphausiids tend to be more abundant in the diets of marine rather 
than freshwater species, largely because they are usually more 
abundant or only present in marine environments, whereas rotifers, 
cyclopoid copepods, cladocerans and insects are most important in 
the diets of freshwater species (Nunn et al., 2012). The diet of larvae 
and juveniles of fish inhabiting estuarine environments, such as the 
common goby revealed that they feed both on marine and fresh-
water prey according to their abundance (Baeta et al., 2017; Nunn 
et al., 2012).

Although fish species composition may differ considerably be-
tween temperate estuaries, the basic trophic structure within them 
is generally very similar (Elliott et al.,  2002). Most pelagic larval 
fish species feed on similar prey (nauplii and early stages of cope-
pods) throughout much of the larval phase (Pepin & Penney, 2000; 
Whitfield, 1985). Numerous diet studies in the field showed that co-
pepods are important prey items of many larvae, typically making 
up greater than 50% or more of their stomach contents (Houde & 
Lovdal, 1984; Hunter, 1981; Munk & Nielsen, 1994). During develop-
ment, post-larvae of some species settle on the bottom and switch 
their diet preferentially to mysidae, such as Mesopodopsis slaberii and 
Neomysis integer (Drake et al., 2002).

Active selectivity upon copepods by larvae is related to sev-
eral factors. First, copepods are found in all periods, frequently in 
very high abundance. Copepods of different stages and sizes are 
available to match larval restrictions: pre-flexion larvae feed on 
small preys as copepods eggs and nauplii, while postflexion larvae 
tended to switch to adults of small-sized copepod species or large-
sized species. Secondly, adult copepods offer a nutritional benefit 
through a rich supply of amino and fatty acids, which are particu-
larly important for larval development and acquired only through 
diet (Izquierdo et al., 2000; Sargent et al., 1999). Therefore, positive 
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selectivity on copepods by fish larvae could arise from a prefer-
ence for food of relatively high nutritional quality in comparison to 
other coexisting zooplankton groups. Several works noted that the 
spatial variations in larvae condition were related to the distribu-
tion of high-quality prey, mostly represented by copepods. Larvae 
were defined in ‘good’ nutritional conditions only in the estuary 
reaches where copepods were very abundant (Davis & Olla, 1992; 
Islam & Tanaka,  2005). Moreover, copepods increase their fatty 
acids content along their life-span (Evjemo et al., 2003; Kattner & 
Hagen, 2009), meaning that adults could represent better quality 
prey than more abundant items like eggs and nauplii (Machado 
et al., 2017). Finally, as small fish larvae do not have well-developed 
optical systems, adult copepods may be more apparent to fish lar-
vae due to their larger size (Blaxter, 1988; Li et al., 1985), pigmenta-
tion (Loew et al., 1993), or movement (Kerfoot et al., 1980; Limburg 
et al., 1997).

5.7  |  Predation

Two primary factors resulting in mortality are starvation and preda-
tion (Hunter, 1981). Starvation probably does not contribute to mor-
tality in the egg and yolk-sac stages, because they rely on their yolk 
reserves for nutrition. Predation seems to be the major source of 
mortality in these early stages and can be up to 99% (Hunter, 1981, 
1984). The relative contribution of predation to mortality remains 
very high during the later stages when other sources of mortality 
(physical processes, starvation, disease, etc.) become less significant 
with fish growth (Kinoshita et al., 2014). Other factors such as de-
clines in dissolved oxygen concentrations to hypoxia (ca. 1–2 mg l−1) 
reduce the larval ability to escape from predators and increase 
mortality due to predation (Breitburg et al.,  1994; Shoji, Masuda, 
et al., 2005).

Vulnerability of fish larvae to predators is a trade-off between 
predator and prey size (as described by Fuiman, 1989; Sogard, 1997). 
As the larvae develop, their swimming ability and mobility improve 
significantly. Larvae generally display an increase in critical speed 
and endurance with length and around 10 mm seems to be an im-
portant threshold above which larvae are better swimmers (Pattrick 
& Strydom, 2009). The predation rate is decreased because larger 
larvae have a better ability to escape and survive a predator as-
sault (Bailey & Houde,  1989). However, the predation rate can be 
intensified because larger larvae become more visible and they 
have a greater chance to encounter predators. Larvae may success-
fully evade capture if they detect the predator. They exhibit sev-
eral sensory systems including visual, mechanoreceptive, auditory 
and tactile systems. However, these systems are not all functional 
throughout post-hatching development (Blaxter, 1988). Immediately 
after hatching, most fish larvae have unpigmented and non-
functional eyes (Blaxter, 1986). As larvae develop, their visual ability 
improves. The improvement of the movement perception during lar-
val development also explains a better ability to avoid predators of 
a certain size.

Estuarine conditions may contribute to reduce predation on fish 
larvae. For example, turbid conditions reduce the effectiveness of 
visual predators (Cyrus & Blaber, 1992; Maes et al., 1998) but many 
predators are not limited to visual prey detection and possess a range 
of sensory options. Many studies showed that fish larvae are con-
centrated in shallow waters to reduce predation (Lyse et al., 1998; 
Munsch et al., 2016; Yozzo & Smith, 1998). Predation on indigenous 
juvenile fish in estuaries by alien fish species is poorly documented, 
but invasive striped bass, largemouth bass and Sacramento pike-
minnow (Ptychocheilus grandis, Cyprinidae) have all been recorded 
preying on native juvenile fish in shallow estuarine habitats of the 
Sacramento-San Joaquin Delta (USA; Nobriga & Feyrer,  2007; 
Whitfield, 2020).

Cannibalism is suggested as a source of mortality for young fish 
(Henderson & Corps, 1997). For instance, cannibalism by 15–35 mm 
larvae of Japanese anchovy on eggs and small larvae could be signif-
icant (Bailey & Houde, 1989). According to prey availability, a vari-
ety of non-fish predators have the potential to switch on fish larvae. 
Thus, chaetognaths, copepods and macro-crustaceans (such as the 
brown shrimp Crangon crangon, Crangonidae, and the shore crab 
Carcinus maenas, Portunidae) can feed extensively on small larvae 
(Baier & Purcell, 1997; Van Der Veer et al., 1994).

Abundances of gelatinous predators such as cnidarians, cteno-
phores and scyphomedusae have increased in many marine systems 
worldwide (Brodeur et al., 2002; Purcell & Arai, 2001). Gelatinous 
zooplankton constitutes a significant part of the total predator pop-
ulation (Breitburg et al., 1994; Rilling & Houde, 1999). Purcell (1981) 
evaluated the rate of predation of a cnidarian species (Rhizophysa 
eysenhardtii, Rhizophysidae) to 8.8 larvae/animal/day in the Gulf of 
California and daily consumption was equal to 28.3% of the avail-
able fish larvae. In another study, Purcell (1984) estimated that the 
population of Portuguese man o'war (Physalia physalis, Physaliidae) 
might daily consume 60% of the available fish larvae at a single 
site in the Gulf of Mexico. Similarly, in the Guadiana Estuary, max-
imum abundance of anchovy eggs and larvae registered in 2002 
decreased by 14.5 times, compared to the maximum registered in 
1988 (Chícharo et al., 2009; Muha et al., 2017). This drastic decrease 
was directly attributed to a very high abundance of the jellyfish 
Blackfordia virginica (Blackfordiidae) in 2002 (about 3300 ind. m−3; 
Muha et al., 2012) whose diet can consist of 50% of ichthyoplankton 
(Morais et al., 2015; Wintzer et al., 2013).

6  |  CONCLUSIONS

The early life stages are a critical phase in fish lifecycles because 
they are extremely vulnerable and their survival directly affects 
the number of adults in the population. However, it appears com-
plex to collect or observe them, and therefore many aspects of 
their ecology are still unknown or limited to a few commercially 
important species. We highlighted in this review that adult re-
productive strategies are optimised, in terms of timing and loca-
tion, to ensure that the early life stages evolve in a favourable 
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environment. However, for the same species, we noted different 
spawning periods depending on latitude, which implies a poten-
tially variable period of occurrence of larvae in estuaries. For a 
long time, larval transport was considered to be totally passive but 
it is recognised now that larvae deploy a portfolio of drift strate-
gies, both active and passive. Therefore, more information on the 
timing of larval entry into estuaries and, more importantly, on the 
environmental cues motivating their entry are crucial. Finally, the 
estuarine conditions influence the distribution of the larvae (e.g. 
salinity gradient) and their survival (e.g. trophic availability). There 
is still a lack of knowledge, especially about the osmoregulatory 
capacity of larvae and the interactions between factors (e.g. os-
moregulatory capacity according to temperature). All this knowl-
edge is crucial, particularly in the context of global change and 
considering the anthropogenic pressures on estuaries, to identify 
key nursery habitats.
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