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Table 1. Non-exhaustive list of publications presenting an environmental assessment of sustainable aviation (SA) systems.
	[bookmark: _Hlk118192220]Reference
	Goal and scope
(Main contributions)
	Technologies included
	Data sources (foreground and background)
	Functional unit
	System boundaries (SBs) and multi-functionality (MF)b
	LCIA method, impact categories, and LUC

	Alternative hydrocarbon liquid fuels 
	 
	 
	 
	 
	 

	[1] 
	• Investigate the GHG emissions of liquid bio-based fuel and discuss different allocation methods for multi-functionality
	• HEFA from oilseed crops
• FT from maize stover, co-feeding with coal
• Pyrolysis from maize stover
	• GREET database
• Literature reviews
	1 MJ fuel combusted
	SB: Cradle-to-Gate from feedstock cultivation to fuel combustion in aircraft engine; MF: Both SE and Alloc. (mass and energy)
	GWP (presumably GWP100, but not clearly stated; IPCC AR4), LUC emissions explicitly excluded

	[2] 
	• Analyze the overall environmental impacts of biodiesel (road) and jet HEFA applying system expansion to handle multi-functionality 
	• HEFA from camelina oil
	• ecoinvent database
• Literature reviews

	1 MJ fuel combusted
	SB: Cradle-to-Gate from camelina cultivation to diesel or jet fuel production from transportation of fuel to market to fuel combustion in aircraft engine; MF: SE
	• Impact 2002+
• Climate change and endpoint impacts of the method (human health, ecosystem quality, and resources); LUC emissions not mentioned

	[3] 
	• Identify the GHG emissions of microalgae-based jet fuels; multi-functionality method explicitly excluded
	• HTL of microalgae and upgrading via traditional refinery processes
	• Source of applied background data not specified
• Experimental data
	1 GJ fuel produced and combustedc
	SB: Cradle-to-Gate from microalgae production to combustion in aircraft engine; MF: Alloc. (mass)
	• TRACI 2.0
• GWP (presumably GWP100, but not clearly stated; IPCC AR3); LUC emissions explicitly excluded

	[4] 
	• GHG emissions of bio-based renewable middle distillate jet fuel and biodiesel (road) from fermentation technologies with different allocation methodologies
	• Simultaneous saccharification and fermentation of sugar cane, maize grain, and switchgrass and upgrading to MD fuels via the HEFA process
	• GREET database
• Literature reviews
	1 MJ middle distillate (referring to diesel and jet fuel) produced and combustedc
	SB: Cradle-to-Gate from biomass cultivation to MD fuel combustion in aircraft engine; MF: SE, Alloc. (market)
	GWP100a; IPCC AR5; direct LUC emissions from carbon debt scenarios [5]

	[6] 
	• Investigate GHG emissions of different biofuels for aviation and compare allocation methods
• Reveal water consumption
	• Ethanol-to-jet (ETJ) (biological conversion) from corn and corn stover
• Sugar-to-jet (STJ) (catalytic conversion) from corn and corn stover
	• GREET database
• Literature reviews
	1 MJ fuel combusted and 1-tonne maize stover
	SB: Cradle-to-Gate from feedstock cultivation to fuel combustion in aircraft engine; MF: SE, Alloc. (energy) 

	GWP (presumably GWP100 and IPCC AR4, but not clearly stated); and LUC-related emissions (domestic and international) from GTAP and CCLUB model of GREET

	[7] 
	• Analyze and compare GHG emissions of different biofuels for aviation, using both allocation and system expansion 

	• Six conversion technologies: HEFA, FT, HTL, pyrolysis, ATJ, and DSHC with the following biomasses: jatropha, camelina and used cooking oil, willow, poplar and corn stover, forestry residue, corn and corn stover, and sugarcane
	• GREET database
• Literature reviews
	1 MJ fuel combusted
	SB: Cradle-to-Gate GHG emissions from feedstock cultivation to fuel combustion in aircraft engine; MF: SE, Alloc. (market, energy, and mass)
	GWP100a (presumably IPCC AR5, but not clearly stated); LUC emissions explicitly excluded

	[8] 
	• Conduct a techno-economic and environmental assessment (GHG only) of one specific biofuel pathway for aviation
	• DSHC from sugarcane bagasse (farnesane production)
	• ecoinvent database
• Literature reviews
	1 MJ fuel combusted
	SB: Cradle-to-Gate from sugarcane cultivation to product end-use; MF: SE, Alloc. (energy)
	GWP100a (presumably AR5); LUC emissions explicitly excluded

	[9] 
	• Environmental assessment of one specific biofuel pathway for aviation with both allocation (mass) and system expansion methods
	• ATJ from residual woody biomass along with the generation of lignosulfonate
	• ecoinvent database
• NREL Life Cycle Inventory data for lignocellulosic biomass conversion into ethanol
• Literature reviews
	1 GJ fuel combusted
	SB: Cradle-to-Gate from residual collection to fuel combustion in aircraft engine; MF: SE, Alloc. (mass)
	• TRACI 2.1
• ACD, EUT, SMOG, RES, CC, carcinogens, noncarcinogens, and ecotoxicity; LUC emissions not mentioned

	[10] 
	• Analyze the environmental impacts of 1G/2G feedstock in Brazil for aviation biofuels using the economic allocation method
	• HEFA, FT, and ATJ with different feedstock generations
	• ecoinvent, USLCI, and GREET databases
• Literature reviews
	1 MJ fuel combusted
	SB: Cradle-to-Gate from feedstock cultivation to fuel combustion in aircraft engine; MF: Alloc. (market and energy)
	ReCiPe midpoint (H) method v.1.13; LUC emissions explicitly excluded

	[11] 
	• LCA (GHG emissions only) for electrofuels (aviation and road) production with C from direct air capture (DAC)
	• Solvent-based DAC and water electrolysis for hydrogen production, and FT for fuel production
	• DAC pilot plant data from Carbon Engineering Ltd.
• Literature reviews
	1 gCO2 captured and 1 MJ fuel combusted
	SB: Cradle-to-Gate from raw material supply to fuel combustion in aircraft engine; MF: SE, Alloc. (mass and emission)
	GWP100a; IPCC AR5

	[12]
	• Analyze carbon footprint and investigate the economic performance of sugar fermentation through an acetone-butanol-ethanol (ABE) route to jet fuels, derived from agricultural by-products from food processing
	• ABE fermentation of potato by-product and sugar beet, followed by alcohol condensation and hydrotreatment, to jet fuels
	• ecoinvent database 
• Experimental data
	1 MJ fuel produced
	SB: Cradle-to-Gate from feedstock cultivation to fuel distribution; MF: Alloc. (market, energy, and mass)
	GWP100; IPCC AR5

	[13]
	• Environmental assessment of different alternative technologies with various (passenger and freight) aircraft classes
	• Three conversion technologies: FT with natural gas, coal, and biomass; fast pyrolysis of cellulosic biomass; and HEFA from vegetable and algal oils
	• GREET database
	MJ fuel combusted, kg of payload for each km of great-circle distance, and number of passengers for each km of great-circle distance
	SB: Cradle-to-Gate from aviation fuel productions to fuel combustion in aircraft; MF: SE, Alloc. (mass)
	GWP100 (presumably AR5); LUC emissions not mentioned

	Electric aviation (battery-based)
	 
	 
	 
	 
	 

	[14] 
	• Environmental assessment of hybrid-electric propulsion
	• Lithium-based technologies including Li-sulfur and Li-air
	• ecoinvent database
• Literature reviews
	• Flight missions over battery lifetime (charging number = number of missions)
	SB: Cradle-to-grave from raw material extraction, including battery system production, electricity consumption, and hybridization in an aircraft, to the end-of-life of the batteries; MF: SE
	• ReCiPe midpoint (H) method v.1.11
• CC, HUT, ACD, EUT, SMOG, PMF, OZD

	Hydrogen-powered aviation
	 
	 
	 
	 
	 

	[15] 
	• Conceptual design for hydrogen-powered aircraft
• Environmental assessment of a hydrogen-electric aircraft in comparison with a traditional aircraft
	• Solid oxide cell water electrolysis and solid oxide fuel cells (H2 production and electricity generation on-board, respectively)
	• ecoinvent database
• Literature reviews
• Piano-X software for conceptual aircraft design
	MJ energy consumed per km travelled
	SB: Cradle-to-Gate from hydrogen production to the use phase with fuel cells in the aircraft; MF: the multi-functionality method is not defined. 
	• ReCiPe midpoint (E) method V1.13 
• GWP, OZD, HTP, PMF, POF, MED

	Alternative hydrocarbon liquid fuel, electric (battery), and hydrogen

	[16]
	• Conceptual aircraft design
• Environmental assessment of different alternatives, including alternative liquid fuels, electric (battery), and hydrogen
	• Alternative liquid fuels produced via vegetable oil hydration from algae
• Natural gas steam reforming for hydrogen production
• Li-ion batteries applied in the Ce-Liner electric-aircraft project
	• Literature reviews
• PrOPerA software for conceptual aircraft design
	• Passenger kilometer
	SB: Cradle-to-grave from energy sourcing production to the use phase in the aircraft; MF: the multi-functionality method is not defined.
	ReCiPe method (perspective used, whether individualist, hierarchical, or egalitarian, is not specified.); LUC emissions not mentioned


a Non-CO2 emissions from aviation fuel combustion are stated as being excluded in the study. b The displacement accounts for the system expansion method. 
c The “and combustion” portion is not expressively phrased by the authors of the original study, but the results shown were included in the functional unit
Acronyms for: 
(I) Production technologies: ATJ: Alcohol-to-Jet; DSHC: Direct sugar to hydrocarbon; FT: Fischer–Tropsch process; HEFA: Hydroprocessed esters and fatty acids; 
HTL: Hydrothermal liquefaction; 
(II) Impact categories: ACD: Acidification potential; CC: Climate change; EUT: Eutrophication potential; HUT: Human toxicity; GWP: Global warming potential; 
GWP100: Global warming potential on a 100-year horizon; MED: Metal depletion; OZD: Ozone depletion; PMF: Particle matter formation; 
POF: Photochemical oxidant formation; 
RESP: Respiratory effects; SMOG: Smog formation; 
(III) Others: AR: Assessment Report; CCLUB: Carbon Calculator for Land Use Change; GHG: Greenhouse gases; 
GREET: Greenhouse gases, Regulated Emissions, and Energy use in Transportation; 
GTAP: Global Trade Analysis Project; USLCI: U.S. Life Cycle Inventory; IPCC: Intergovernmental Panel on Climate Change; LCIA: Life Cycle Impact Assessment; 
LUC: Land use change; NREL: National Renewable Energy Laboratory;
(IV) Multi-functionality (MF) methods: SE: System expansion; Alloc: Allocation. 
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