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Abstract: We analyze the identifiability and observability of the well-known SIR epidemic
model with an additional compartment Q of the sub-population of infected individuals that are
placed in quarantine (SIQR model), considering that the flow of individuals placed in quarantine
and the size of the quarantine population are known at any time. Then, we focus on the problem
of identification of the model parameters and review different techniques.
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1. INTRODUCTION

Many papers in epidemiology proposing a mathemati-
cal model using dynamical systems, face the problem of
parameter estimation. In general, some parameters are
given, extracted from the literature, while the remaining
unknown parameters are estimated by fitting the model to
some observed data, usually by means of an optimization
algorithm based on least squares or maximum likelihood
methods. Nevertheless, there is relatively few studies about
the intrinsic property of a model to admit a unique set of
parameters values for a given choice of measured variables.
On the other hand, this is a question that is well known in
automatic control. Investigation of identifiability in math-
ematical epidemiology is relatively recent Tuncer et al.
(2016); Perasso et al. (2011); Xia and Moog (2003); Sac-
comani (2011); Miao et al. (2011); Eisenberg et al. (2013);
Evans et al. (2005). Indeed, to the best of our knowledge,
the first paper considering the identifiability problem in a
epidemic model is the paper of Xia and Moog (2003). It
is also surprising that the observability and identifiability
of the original Kermack-Mckendrick model has not been
more studied, since this system has been widely used to
model an outbreak of an infection. The observability and
identifiability of the classical model SIR, with demography
and constant population, was first studied in 2005 Evans
et al. (2005). For practical parameters identification with
state reconstruction, different approaches can be consid-
ered, most of them using observers (Bichara et al. (2014);
Diaby et al. (2015); Degue et al. (2021); Iggidr and Souza
(2019); Hamelin et al. (2020); Fang et al. (2022) and refer-
ences therein) but these approaches are rarely considered
in the literature compared to least-square methods, differ-
ently to other applications domains, such as bio-processing
or manufacturing industries.

The global health crisis of COVID-19 outbreak has led to
a spectacular resurgence of interest in this type of models,
but with specificities related to the detection and isolation
of infected individuals. This is why we revisit here the
issues of identification and observability for an extended
‘SIQR’ model (Hethcote et al. (2002)) for which such an
analysis has not yet been performed (to the best of our
knowledge). Once the question of identification has been
settled (Sections 3,4,5), we tackle in Section 6 the task of
proposing a practical strategy for reconstructing the values
of the parameters.

2. THE MODELS

Inspired by Hethcote et al. (2002), we consider the classical
SIR model, where S, I, R denote the size of the popu-
lations of respectively susceptible, infected and recovered
individuals, with an additive compartment where Q de-
notes the size of the population of identified and isolated
infectious individuals that have been removed from the
infected population and placed in quarantine: Ṡ = −βS

I

N −Q
, İ = βS

I

N −Q
− (ρ+ α)I

Q̇ = αI − ρQ, Ṙ = ρI + ρQ.
(1)

When the size of the total population N is large and the
size of the population placed in quarantine remains small
compared to N during the considered interval of time, one
can consider a simplified model:{

Ṡ = −βS
I

N
, İ = βS

I

N
− (ρ+ α)I,

Q̇ = αI − ρQ, Ṙ = ρI + ρQ.
(2)

For both models, one has S(t) + I(t) + Q(t) + R(t) =
N, ∀t ≥ 0 . Since S(t) + I(t) + Q(t) + R(t) is constant



and R has no influence on the first three equations, it is
sufficient to consider the following system{

Ṡ = −βS
I

N
, İ = βS

I

N
− (ρ+ α)I,

Q̇ = αI − ρQ,
(3)

It can be proved that the open set Ω = {S > 0, I >
0, Q > 0, S + I +Q < N} is positively invariant.

These models have three parameters: the infectivity pa-
rameter β, the recovery rate ρ, that we assume to be
identical for the infected populations placed in quarantine
or not, and the rate of placement in quarantine α. Theses
parameters are unknown but we assume the following
hypothesis.

Assumption 1. The reproduction number R0 verifies

R0 :=
β

ρ+ α
> 1 .

This assumption implies that the epidemic can spread in
the population i.e. at initial time with S(0) = N − I(0)

close to N one has İ(0) > 0.

3. THE IDENTIFICATION PROBLEM

We assume that

• the flow αI(t) of infected people placed in quarantine
is known at any time t ≥ 0

• the size Q(t) of the population placed in quarantine
is perfectly known at any time t ≥ 0

• the size N of the total population is known
• at initial time 0, one has S(0) = N − ε, I(0) = ε,
Q(0) = 0, R(0) = 0 with ε ∈ (0, N).

We consider then the observation function

y(t) =

[
y1(t)
y2(t)

]
:=

[
αI(t)
Q(t)

]
(4)

and follow the usual definitions of identifiability and ob-
servability of systems Walter and Pronzato (1997); Gau-
thier and Kupka (1996). However, note that when Q = 0
or I = 0 the system is not infinitesimally identifiable: the
knowledge of the outputs and all its derivative do not allow
to determine formally ρ. We adopt the following definition
of identifiability for these models.

Definition 2. Given N > 0 and ε ∈ (0, N), we shall say
that system (1) resp. (2) is identifiable for the observation
(4) if there exists t > 0 such that the map

( α, β, ρ ) ∈
(
R⋆

+

)3 7−→ y(·) ∈ C∞([0, t],R2
+)

is injective, where (S(·), I(·), Q(·), R(·)) is solution of the
Cauchy problem for the differential system (1) resp. (2)
with S(0) = N − ε, I(0) = ε, Q(0) = 0 and R(0) = 0.

If moreover the map

( α, β, ρ, ε ) ∈
(
R⋆

+

)3 × (0, N) 7−→ y(·) ∈ C∞([0, t],R2
+)

is injective, then the system (1) resp. (2) is identifiable and
observable for the observation (4).

4. ANALYSIS OF THE FIRST MODEL

Proposition 3. System (1) is identifiable and observable
for the observation (4), in the sense of Definition 2.

Proof. It consists in showing that parameters and un-
measured state variables S, I and R can be expressed as
functions of the successive derivatives of the output vector
y. As the variable I cannot reach 0 in finite time, we shall
assume I ̸= 0 in the following.

Note first that with Q(0) = 0 one has Q̇(0) > 0 and then
y2(t) = Q(t) > 0 for any t > 0. The dynamics of Q gives
directly the expression of the parameter ρ as:

ρ =
y1(t)− ẏ2(t)

y2(t)
, t > 0. (5)

Posit h1 :=
ẏ1
y1

. One has from the dynamics of I

h1 =
β S

N −Q
− α− ρ. (6)

and then

(N −Q) ḣ1 =
β S

N −Q

(
−β I + Q̇

)
. (7)

Using the equality
β S

N −Q
= α + h1 + ρ from (6), one

obtains from (7)

h2 := (N − y2) ḣ1 = (h1 + α+ ρ) (−β I + Q̇). (8)

Let us write the derivative of h2:

ḣ2 = ḣ1 (−β I + Q̇)

+(h1 + α+ ρ)

[
−β

β S

N −Q
I + β (α+ ρ) I + Q̈

]
which can be also expressed as

ḣ2 = ḣ1 (−β I + Q̇) + (h1 + α+ ρ) (−h1 β I + Q̈).

Then, using relation (8), one obtains the expression

ḣ2 = ḣ1 (−β I + Q̇)

+
h2

(−β I + Q̇)

[
h1 (−β I + Q̇)− h1 Q̇+ Q̈

]
which implies

ḣ1 (−β I + Q̇)2 + (h2 h1 − ḣ2)(−β I + Q̇)

+h2 (−h1 Q̇+ Q̈) = 0

Observe that this last equation is a second order polyno-
mial in the variable X = −β I + Q̇. Since I(0) = ϵ, R(0) =
Q(0) = 0 and S(0) = N − ϵ. From this and R0 > 1, one
has (using expression (7))

ḣ1(0) =
β ε

N
(−β + α)

(
1− ε

N

)
< 0 (9)

and this allows us to show that one also has

h2(0)
(
− h1(0) Q̇(0) + Q̈(0)

)
= α β ρ ε2(β − α)

(
1− ε

N

)
> 0

(10)

Observe also that one has X(0) = −β I(0) + Q̇(0) =
ε (−β+α) < 0. Therefore, by continuity w.r.t. t, we obtain



that for t > 0 small enough, X is the unique negative
solution of

ḣ1 X
2 + (h2 h1 − ḣ2)X + h2 (−h1 Q̇+ Q̈) = 0.

that is

X =
−(h2 h1 − ḣ2)−

√
(h2 h1 − ḣ2)2 + 4ḣ1(h1 ẏ2 − ÿ2)

2ḣ1

.

The parameter α can be then obtained from equations (6)-
(7)

α =
(N − y2)ḣ1

X
− h1 − ρ

where ρ is given by (5). The initial condition ε is simply
reconstructed by ε = y1(0)/α and finally one obtains the
parameter β = α−X(0)/ε.

5. ANALYSIS OF THE SIMPLIFIED MODEL

Proposition 4. System (2) is identifiable and observable
for the observation (4), in the sense of Definition 2.

Proof. The proof is somehow simpler than the precedent.
Using similar arguments we show that the parameters can
be expressed as follows:

ρ =
y1(t)− ẏ2(t)

y2(t)
, t > 0,

α = −Nġ1(t)

βI(t)
− g1(t) = −Nġ1(t)

g2(t)
− g1(t) := g3(t),

β = α
βI(t)

y1(t)
= g3(t)

g2(t)

y1(t)
=

−Nġ1(t)− g1(t)g2(t)

y1(t)
.

Where



g1(t) :=
ẏ1(t)

y1(t)
+ ρ,

g2(t) := −N

(
g̈1(t)

ġ1(t)
− g1(t) + ρ

)
= βI(t),

g3(t) := −Nġ1(t)

g2(t)
− g1(t).

At last, the initial condition is recovered as ε = y1(0)/α.

6. PRACTICAL ESTIMATION OF THE
PARAMETERS

Till now we have studied structural observability / iden-
tifiability. While structural identifiability is a property
of the model structure, given a set of outputs, practical
identifiability is related to the experimental data. A model
can be structurally identifiable, but still be practically
unidentifiable due to poor data quality, e.g., bad signal-to-
noise ratio, errors in measurement or sparse sampling Raue
et al. (2009). This means parameters are identifiable with
ideal data (in continuous time, noise-free data). However
it does not guarantee that they will be practically identi-
fiable with a finite number of noisy data points. Moreover
estimation of parameters will use numerical algorithm and
the distance, for the problem considered, to the nearest ill-
posed problem (Demmel (1987)). Particularly this is the
case when the system is near a non-observable equilibrium
Banks et al. (2007). The main difficulty with epidemic
models is that often parameters need to be reconstructed

as early as possible at the beginning of the epidemic,
in other words in the neighborhood of the Disease Free
Equilibrium (DFE), which is a non-observable equilibrium.

Here after, we assume that the initial condition of model
(1) or (2) is (N − ε, ε, 0, 0) with unknown small ε > 0.
Table 1 gives the parameters values used for data genera-
tion. We have considered daily measurements of variables

Table 1. Parameters used for the simulations

N α β ρ I(0)

106 0.1 0.4 0.1 20

y1 and y2 over a period of 30 days, first as ”perfect” data
(i.e. without noise) generated by the integration of model
(3) (indeed data produced by model (1) or (2) are almost
indistinguishable over this time period).

6.1 The classical least-square method

We have first tested the classical least-square method
on the perfect data (without noise) over increasing time
intervals [0, T ] with T = 2, · · · , 30, using the Levenberg-
Marquardt algorithm (lsqrsolve function in Scilab soft-
ware). Fig. 1 shows that parameters values found by the
algorithm are quite unstable depending on the time inter-
val, making this method practically unreliable. Yet, one
can see on Fig. 2 that the variables y1 and y2 are quite
well reproduced (apart a few unrealistic points that are
not represented).

Fig. 1. Application of the least-square method with perfect
data on increasing time intervals.

6.2 An alternative method

Here, we aim at exploiting the structure of the model (3)
by decoupling the reconstruction of the parameter ρ from
the estimations of α and β, and using an approximation
of the dynamics of the variable I that is valid as long as S
stays very large compared to I, for the reconstruction of
α and β once ρ has been estimated.



Fig. 2. Observations predicted by the least square estima-
tion (output variables of the system in plain lines).

Reconstruction of parameter ρ. Following the identifi-
ability analysis, parameter ρ can be easily identified in-
tegrating expression (5). Thus, the parameter ρ can be
obtained by linear regression using the available values of
the two outputs at the measurement times ti by

ti+1∫
ti

y1(τ)dτ + y2(ti)− y2(ti+1) = ρ

ti+1∫
ti

y2(τ)dτ

Assuming that measurements are done daily (the unit of
time here is a day) the latter can be approximated by the
expression

y1(t+ 1) + y1(t)

2
+ y2(t)− y2(t+ 1) = ρ

y2(t+ 1) + y2(t)

2

for t = 0, 1, ..., n.

Reconstruction of parameters α and β. Here, we suppose
that ρ is known, i.e. we use the approximation of ρ given
before. Posit

η :=
β

Nα
.

Observe that the solution S(·) of model (2) satisfies

S(t) = S(0)e
−η

∫ t

0
y1(τ)dτ , t > 0

and thus the solution I(·) fulfills

İ(t) =

(
β
S(0)

N
e
−η

∫ t

0
y1(τ)dτ − (α+ ρ)

)
I(t), t > 0.

Under the assumption that I(0) = ε is small compared to
N , the dynamics of y1(·) can then be approximated by the
expression

ẏ1(t) =

(
βe

−η
∫ t

0
y1(τ)dτ − (α+ ρ)

)
y1(t) (11)

for small time t > 0, from which one can straightforwardly
check that one has also

log

(
d

dt
log y1(t) + α+ ρ

)
= log(β)− η

t∫
0

y1(τ)dτ.

Therefore, the parameter α possesses the property that
the variables

Y (t, α) := log

(
d

dt
log y1(t) + α+ ρ

)
, X(t) :=

t∫
0

y1(τ)dτ

fulfill a linear dependency: Y (t, α) = log(β) − ηX(t).
Consequently, parameter α can be determined as the value
that gives a linear regression between variables Y (t) and
X(t) for a set of values t close to 0. Then parameter β can
be determined from the Y -intercept of the regression line.
Practically, one filters the data log y1(·) to estimate the
derivative of log y1(·) (for instance with moving average
or polynomial adjustment methods) and then α is sought
to minimizing the residual sum of squares in the linear
regression of the {Y (·), X(·)} data (see for instance Walter
and Pronzato (1997)). The alternative method has been
applied first on the same ”perfect” data set (without noise)
as before, and the parameters estimation is given on Fig. 3.
As expected, the estimation of ρ is quite faithful and

Fig. 3. Application of the alternative method on perfect
data (without noise).

fast, while the estimation of α, β follows in sequence. We
have also tested this method on the same data set but
corrupted by an additive noise with a normal distribution
of null mean value and standard deviation of 0.5 and 5 (see
Fig. 4 and 5). In all cases, data have been filtered with a
mobile average followed by a Lagrange interpolation. Time
derivatives have been then computed analytically on the
interpolated polynomial. One can see that the estimation
of ρ remains always reliable, but requires a longer time to
stabilize, which impacts the reconstruction of the other
parameters, especially under large noise. However, the
reproduction number R0 is estimated with a relatively
good accuracy. Indeed, after 30 days, we move away from
the validity of the approximation (11), which explains the
bias obtained on α and β under large noise.

6.3 Numerical differentiation

For larger time windows, when the approximation (11)
becomes less accurate, we investigate another approach
based on numerical differentiation without any approxima-
tion of the system. Those techniques become today more



Fig. 4. Application of the alternative method on data with
small noise.

Fig. 5. Application of the alternative method on data with
large noise.

prominent due to increasing interest in data driven models
— cf. Kaiser et al. (2018) and references therein. Indeed,
when the signals y1(·) and y2(·) become significantly larger
(after 30 days in our simulations), we expect their time
derivatives to be better estimated despite some noise.

Here we shall use a Total Variation Regularization (TVR)
method for numerical differentiation firstly presented in
Chartrand (2011) (see also Rudin et al. (1992)) for the
original development of TVR applied to noise reduction in
images. In what follows, we will refer to this approach to
numerical differentiation as TVRD.

A brief review of TVR and numerical differentiation
The use of Total Variation Regularization, as its name it-
self indicates, is a regularization approach of the following
type:

F (u) = κR(u) +M(Au− f),

where R is a functional that penalizes irregularity, A is
the antiderivative operator and M is a metric functional
that penalizes discrepancy between Au and f — κ is
the regularization parameter that weighs both penalties.

For TVR, as presented in Chartrand (2011), the metric
functional is the L2 norm, whereas the regularizing one is
the total variation norm — namely, we have

F (u) = κ

L∫
0

|u′|dx+
1

2

L∫
0

|Au− f |2 dx. (12)

For the numerical implementation of (12) we follow the
original presentation in Chartrand (2011), for which we
refer the reader for further details. In addition, we also use
the selection framework developed in Van Breugel et al.
(2020).

Estimation of ρ. We have

ρy2 = y1 − ẏ2 (13)

The right hand side of (13) is computed by applying the
TVRD to measurement y2. An estimate ρ̂ is then obtained
by performing a linear regression.

Estimation of α and β. These parameters require a more
involved estimation. We use the derivative of h1 written in
a convenient way as follows

−ḣ1 = ηy1 (h1 + α) , η =
β

Nα
. (14)

We then estimate η and α using a non linear least squares
fitting. This estimation is usually accurate for η but
not always for α. Thus we further estimate α by first
computing

y3 = η̂y1,

which is an estimation of βI
N .

In the sequel we then use a linear regression to estimate α
using (14) in the following form∣∣∣−(

ḣ1 + y3h1

)∣∣∣ = αy3 (15)

in order to obtain α̂. The absolute value is applied to
ensure that the left hand side is non-negative and it works
as a kind of filter for the errors introduced in the numerical
differentiation.

Some numerical examples We simulated System (3)
using the parameters ρ = 0.1, α = 0.07, β = 0.4 and
N = 105. The initial condition is i0 = 150N−1, r0 = 0
and s0 = 1 − i0. This will be referred to as synthetic
data. From this data we obtain the measurements y1 and
y2. We also perturbed these measurements in two ways: a
deterministic high frequency sinusoidal perturbation and
a random one.

With synthetic data In this case, we plot the power
spectra density of the data to be differentiated together
with the cut off frequency used in each case. For data
with slow decaying the power spectra we used half of
the frequency of the grid, unless a sharper transition was
identified. For data with fast decaying — typically ln y1
and h1 we used either 10 or 20 times the grid frequency
depending on how fast it is decaying. For these choices, we
get the following estimates

ρ̂ = 0.107, α̂ = 0.0748, and β̂ = 0.413



With deterministic perturbation In this case we
obtain, using a time sample of 40 days, the following
estimates:

ρ̂ = 0.0972, α̂ = 0.0646, and β̂ = 0.375

In this case, the cutting frequency was first estimated
as above, and if the result was still excessive wiggling
(oscillations considerably greater than the average data
magnitude) it was reduced until these oscillations were
brought to this typical size.

With random perturbation. Selection of the cutting
frequency was done in the same way as in the case of the
deterministic perturbation.

Days ρ̂ α̂ β̂

40 0.0987 0.162 0.659

50 0.098 0.0849 0.455

60 0.0996 0.0845 0.451

80 0.0987 0.0802 0.438

Further remarks

• The TVR method does not use any linear approxi-
mation and it is already in discrete form;

• TVR method can be improved by using TV of jerk
(third derivative) which would give a smother differ-
entiation;

• Integral version of the procedure can be also imple-
mented — h1 still need to be computed by differenti-
ation however.

7. CONCLUSION

In this work, we have established the structural identifia-
bility and observability of the SIR model with a quarantine
compartment. We have also derived several methods to
practically estimate the various parameters of the model.
In particular, we have developed two complementary ap-
proaches adapted to the beginning of an epidemic or to its
later development. In a forthcoming work, we shall inves-
tigate the practical estimation of these parameters using
observers with application to some real data of COVID
epidemics provided by various territories.
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