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Abstract: We propose the derivation of asymptotic observers for the estimation of parameters
of systems whose solutions converge to a set of steady-states that are not identifiable, under
some hypotheses. The proposed observer generalizes a former work for batch bioprocess. It is
illustrated on a two dimensional models, and its performance is compared with the least squares
method.
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1. INTRODUCTION

System identification has received a great attention in
the literature (see e.g. Walter and Pronzato (1997)).
Once the system is identifiable, the least squares tech-
nique is the widely-used method to reconstruct unknown
parameters from measurements. Other approaches based
on observers (e.g. Gauthier and Kupka (1994); Krener
(2004)) have also some interest in terms of robustness
and noise sensitivity, especially when the state is only
partially observed (It might important to briefly recall
that in that case the unknown parameters are considered
as additional state variables with dynamics equal to zero,
and therefore the estimation problem is considered as a
pure observability problem). In any case, the requirement
of identifiability/observability imposes the system to be
identifiable at any steady-state that can be reached by the
system (according to the definition of identifiability (Wal-
ter and Pronzato (1997)) or observablity (Gauthier and
Kupka (1994))). However, in some applications, systems
are identifiable only away from steady states, while the tra-
jectory solutions converge asymptotically to one of these
steady-state (and therefore the system is not detectable
neither). This is typically the case of batch processes,
which stop when all the resources are consumed (Bastin
and Dochain (1990); Rapaport and Dochain (2020)).
In practice, those situations lead to several issues when
applying the usual estimation techniques, especially when
the initial condition is not known to be closed or not to
an attractive equilibrium. In this context, there is no the-
oretical ground to ensure that a least squares estimation is
reliable. A Luenberger-like observer (Luenberger (1971);
Kazantzis and Kravaris (1998)) is no longer guaranteed
to converge with a null error (in the best case one may
expect to obtain a ”practical” convergence). The gains of
the high-gain observer (Gauthier et al (1992)) explode
when the estimation is close to the singularities of the

observability map (which are precisely the non-identifiable
steady-states).

Recently, the authors have proposed an asymptotic ob-
server for the state reconstruction of a bioprocess model,
whose solutions converge asymptotically to a set of non-
observable states (Rapaport and Dochain (2020)). This
observer have been shown to converge asymptotically
without any bias, whatever is the initial condition away
from steady-state, differently to classical observers. Nu-
merical implementations have shown the benefit of this
observer. The aim of the present work is to generalize this
approach to the parameters estimation with lack of asymp-
totic identifiability for a large class of systems. We shall
consider systems for which observation variables consist
in time derivatives of some functions of the state. This
is typically the case of batch process when one measures
the flux of a product of the reaction, but this can be also
the case for other systems when it is possible to write
(less directly) the observation variables in this way, as
we shall illustrate it on a mechanical example. If some
state variables of the system converge to a steady-state
value, one may also have the convergence of their deriva-
tive to zero when applying Barbalat’s Lemma. Then, any
observation variable which is the derivative of a function
of these variables will also converge to zero, whatever is
the asymptotic steady-state of the system. When these
steady-states are indistinguishable, the system is thus non
asymptotically identifiable, which is exactly the framework
we targeted to investigate in this work. This lack of asymp-
totic identifiability prevents the usual approaches, which
give weight on incoming measurements and progressively
forget the initial measurements, to ensure an unbiased
estimation of the parameters. We propose here another
approach which on the contrary give a permanent weight
on the initial measurement, because in some sense we look
for a backward filtering i.e. from present time to initial
one.



In the next section, we define more precisely the problem
to be investigated. in Section 3, we expose the estimator
construction. Section 4 is devoted to examples along with
numerical illustrations and discussions.

2. DESCRIPTION OF THE PROBLEM

Consider a dynamics in Rn

ẋ = f(x, p), x(t0) = x0 (1)

where x0 is unknown, and p is an unknown vector of
parameters which belongs to a subset P of Rm. Along the
solutions, we consider an observation variable in Rq

y(t) = h(x(t), p), t ≥ t0, (2)

The maps f and h are smooth, say C∞.

Assumption 1. There exists a domain D of Rn which
contains 0 that is forward invariant by (1) for any p ∈ P .
Moreover, for any p ∈ P , one has f(0, p) = 0 and h(0, p) =
0, and any solution of (1) in D converges asymptotically
to 0.

This assumption implies that the system is not identifiable
at 0 i.e. the observation y does not allow to reconstruct
the parameters vector p when the system is at the steady
state 0, and moreover its solutions converge locally to this
steady state. In such situations, it is well known that even
if the system is identifiable and observable everywhere
away from steady state, a construction with a classical
smooth observer (such as Luenberger, extended Kalman
or high gain) cannot guarantee an exact asymptotic esti-
mation of the parameters because of the asymptotic lack
of identifiability and observability. Non-smooth observers
(such as sliding mode observers (Spurgeon (2008))) or
numerical differentiators (Levant (1998)) could be al-
ternatives that provide finite time convergence. However,
these constructions are known to be poorly robust to noise,
especially when the system is close to a singular point of
the observability map, which is the case of the steady state.

Our objective is to construct, under some conditions,
a smooth estimator that provides an exact asymptotic
estimation of x0 and p from the single measurements
y(·), for unknown initial conditions x0 6= 0 in D (even
arbitrarily close to 0).

3. ASSUMPTIONS AND CONSTRUCTION OF THE
ESTIMATOR

We first assume the following condition on the dimension
of the observation set, which will plays a crucial role in the
method.

Assumption 2. One has n+m = 2q.

We also assume that each coordinate yi of the observation
vector y can be written as a Lie derivative of a certain
function Fi with respect to the vector field f(·, p), for any
p ∈ P , as expressed in the assumption below.

Assumption 3. There exists a smooth map

F : (x, p) ∈ Rn × Rm 7→ F (x, p) ∈ Rq

with F (0, p) = 0 for any p ∈ P that fulfills

h(x, p) =
∂F

∂x
(x, p).f(x, p), (x, p) ∈ D × P. (3)

Under these two assumptions, we define the map

Γ : (x, p) ∈ Rn × Rm 7→ (h(x, p), F (x, p)) ∈ R2q (4)

Let us underline that under Assumption (2), Γ can be
considered as a map from Rn+m to itself.

Here is our main result.

Proposition 4. Let Q be a subset of D × P such that Γ
is onto on Q, and Ψ a continuous map on W ⊂ R2q such
that Γ(Q) ⊂ W with Ψ = Γ−1 on Γ(Q). For any x0 ∈ D
and t0 ≥ 0 such that for any p ∈ P , the solution of (1)
with x(t0) = x0 satisfiesh(x(t0), p),−

t∫
t0

h(x(τ), p)dτ

 ∈ W, t > t0 (5)

and h(x(t0), p),−
+∞∫
t0

h(x(τ), p)dτ

 ∈ Γ(Q) (6)

the following system{
v̇ = y(t), v(t0) = 0

(x̂0(t), p̂(t)) = Ψ(y(t0),−v(t)), t > t0
(7)

is an asymptotic exact estimator of x0 and p i.e. one has

lim
t→+∞

x̂0(t)− x0 = 0, (8)

lim
t→+∞

p̂(t)− p = 0. (9)

Proof. Take p ∈ P and an initial condition (t0, x0) with
x0 ∈ D. Let x(·) be the corresponding solution of (1)
and y(·) the output given by (2). Then the solution of
(7) verifies, from Assumption 3

v(t) =

t∫
t0

h(x(τ), p) dτ (10)

=

t∫
t0

∂F

∂x
(x(τ), p).f(x(τ), p) dτ (11)

= F (x(t), p)− F (x0, p) (12)

for any t ≥ t0. Under condition (5), (y(t0),−v(t)) belongs
to W for any t > t0 and thus the pair (x̂0(t), p̂(t)) =
Ψ(y(t0),−v(t)) is well defined for t > t0.

From Assumptions 1 and 3, we get

lim
t→+∞

F (x(t), p) = 0

and thus v(·) is bounded with

lim
t→+∞

v(t) = −F (x0, p).

By continuity of Ψ on W and condition (6), one obtains

lim
t→+∞

Ψ(y(t0),−v(t)) = Ψ(y(t0), F (x0, p)) = Γ−1(x0, p)



that is the desired convergence

lim
t→+∞

(x̂0(t), p̂(t)) = (x0, p).

In the next section, we present examples for which the
observation has the structure (3) and show how to define
the set W and construct the map Ψ that fulfill conditions
(5) and (6) of Proposition 4.

4. EXAMPLES

We first show that the model treated in Rapaport and
Dochain (2020) is a particular case of application of
Proposition 4. Then, we develop a new example in dimen-
sion two with two unknown parameters and an observation
of dimension two.

4.1 A bioreactor model

We revisit the state estimation problem in the batch
bioreactor model when measuring the biogas:{

ẋ = µ(s)x

ṡ = −µ(s)x
(13)

y = µ(s)x (14)

Here the function µ, which is null at 0 only, is assumed
to be known, while the initial condition is not known. We
show that the asymptotic observer proposed in Rapaport
and Dochain (2020) for this system is a particular case of
the methodology that we propose here. Let us pose

z = x+ s (15)

one has

ż = 0 (16)

Therefore, the system can be expressed equivalently as the
one dimensional dynamics

ṡ = f(s, z) = −µ(s)(z − s)

with observation

y(t) = h(s(t), z) = µ(s(t))(z − s(t)), t ≥ 0

where z is an unknown parameter. Clearly all positive
solutions with s < z converges asymptotically to the
steady state s = 0, where parameter z is not identifiable.
Here one has

h(s, z) = −f(s, z) (17)

which leads to

F (s, z) = −s (18)

as a function that verifies

h(s, z) =
∂F

∂s
F (s, z)f(s, z) (19)

with F (0, z) = 0 whatever is z. Then we consider the map

Γ(s, z) =

[
µ(s)(z − s)
−s

]
and the set

Q = {(s, z) ∈ R2; z > s > 0} (20)

For any ξ ∈ Γ(Q), one has

s = −ξ2, z = s+
ξ1
µ(s)

which shows that Γ is invertible on Γ(Q). We define the
function

Ψ(ξ) =

 −ξ2
ξ1

µ(−ξ2)
− ξ2


that is well-defined and continuous on the set

W = {ξ ∈ R2; ξ2 < 0} (21)

which contains Γ(Q), and coincides with Γ−1 on Γ(Q).
Note that for any initial condition (t0, s0) with s0 ∈ (0, z),

one has −
t∫

t0

y(τ)dτ < 0 for any t > t0. Conditions of

Proposition 4 are thus fulfilled for any initial condition
(t0, s0) such that s0 > 0 and s0 < z.

Finally the estimator of z
v̇(t) = y(t), v(t0) = 0

ẑ(t) =
y(t0)

µ(v(t))
+ v(t), t > t0

is exactly the one proposed in Rapaport and Dochain
(2020). In this last reference, the benefits of the estimator
are discussed in comparison with classical Luenberger or
high gain observers for various growth functions µ.

4.2 A mechanical model

Consider the classical harmonic oscillator with damping

mz̈ + kz + cż = 0

where the mass m and the damping coefficient c are
unknown positive parameters (the spring constant k is
assumed to be known). We assume that the position
and the damping force are measured. The system with
x = (z, ż)> in R2 writes

ẋ = f(x, p) =

[
0 1

− k
m
− c

m

]
︸ ︷︷ ︸

A(p)

x, p =

[
m
c

]

y = h(x, p) =

[
x1
cx2

]
One can check that the matrix A(p) is Hurwitz and thus
all solutions converges to the steady state 0, whatever is
the positive vector p. At steady state, one has f(0, p) = 0
and h(0, p) = 0 and the system is thus not identifiable at
0. However, let us show that the system is infinitesimally
identifiable away from 0.

• If y2 6= 0, ẏ1 = y2/c is non null and one has c =
y2
ẏ1

.

If moreover ẏ2 6= 0, one gets m = − (ky1 + y2)y2
ẏ1ẏ2

. If



ẏ2 = 0, then ẏ1 = x2 is non null and ÿ2 = −kc
m
ẏ1 as

well. We get m = −ky2
ÿ2

.

• If y2 = 0, y1 is non null away from steady state. then

ẏ2 = −kc
m
y1 is non null and ÿ1 = −ky1

m
as well. We

get m = −ky1
ÿ1

and c =
ẏ2
ÿ1

.

We show now how to apply the methodology exposed in
Section 3. The map h can be written as

h(x, p) =

[
− c
k
−m
k

c 0

]
︸ ︷︷ ︸

J(p)

f(x, p)

and then

F (x, p) =

[
− c
k
x1 −

m

k
x2

cx1

]

verifies

∂F

∂x
(x, p) = J(p) (22)

with F (0, p) = 0 for any p. The next step is to define

Γ : (x, p) 7→


x1
cx2

− c
k
x1 −

m

k
x2

cx1


and consider the set

Q = {(x, p) ∈ R2 × R2; x1 6= 0, x2 6= 0, m > 0, c > 0}.

For ξ = Γ(x, p) in Γ(Q), one obtains

x1 = ξ1, x2 =
ξ2
c
, c =

ξ4
ξ1
, m = −kξ3 + ξ4

x2

showing that Γ is invertible on Γ(Q). However, the map

Ψ(ξ) =



ξ1

ξ2ξ4
ξ1

− (kξ3 + ξ4)ξ4
ξ1ξ2
ξ4
ξ1


is well-defined and continuous on the set

W = {ξ ∈ R4; ξ1 6= 0, ξ2 6= 0}

which contains Γ(Q) and coincides with Γ−1 on Γ(Q).
Conditions of Proposition 4 are thus verified, provided
that the initial condition verifies x1(t0) 6= 0 and x2(0) 6= 0.
However, note that for any solution x(·) of (1) that is not at
steady state, x1(t) and x2(t) are both non null for almost
any t. Therefore, one can initialize the system (7) with
t0 as closed as desired to the initial time, such that the
observation at t0 verifies y1(t0) 6= 0 and y2(t0) 6= 0.

Finally, the estimator is as follows
v̇i(t) = yi(t), vi(t0) = 0 (i = 1, 2)

m̂(t) = − (kv1(t) + v2(t))v2(t)

y1(t0)y2(t0)

ĉ(t) = − v2(t)

y1(t0)

We have compared this asymptotic observer with a least-
square estimation of the parameters, provided from 1000
measurement points over the same time window [0, T ] us-
ing the Levenberg-Marquardt algorithm (lsqrsolve func-
tion in Scilab software). Initial condition and parameters
values used for the simulations are given in Table 1. We
have compared the estimations on different time horizons
T , without and with measurement noise (normal distribu-
tion with 0 mean and 0.01 standard deviation).

Table 1. Initial condition and parameter values
used for the simulations

x1(0) x2(0) m k c

0.2 −2 1 1 0.4

Time-varying estimations provided by the asymptotic ob-
server are depicted on Fig. 1 and 2. The final estimation
errors are given on Tables 2 and 3.

Table 2. Estimation errors on parameters m
and c (without noise)

T least square observer

20 (em, ec) = (3.3%, 1.7%) (em, ec) = (9.7%, 11.1%)
30 (em, ec) = (7.0%, 3.2%) (em, ec) = (2.0%, 2.1%)
40 (em, ec) = (1.75%, 0.67%) (em, ec) = (0.33%, 0.33%)
50 (em, ec) = (4.3%, 2.6%) (em, ec) = (0.05%, 0.04%)
70 (em, ec) = (3.7%, 2.3%) (em, ec) = (0.0006%, 0.0005%)

Table 3. Estimation errors on parameters m
and c (without noise)

T least square observer

20 (em, ec) = (3.1%, 1.9%) (em, ec) = (8.2%, 9.6%)
30 (em, ec) = (2.0%, 1.9%) (em, ec) = (0.69%, 0.81%)
40 (em, ec) = (2.7%, 0.60%) (em, ec) = (0.057%, 0.13%)
50 (em, ec) = (4.2%, 2.3%) (em, ec) = (1.7%, 1.6%)
70 (em, ec) = (4.2%, 1.5%) (em, ec) = (0.5%, 0.5%)

The comparisons leads to the following comments.

• the asymptotic observer has a relatively slow conver-
gence: it needs T > 30 to give an accurate estimation
which improves with larger time windows even with
presence of noise.

• the least square estimator does not provide an esti-
mation as good as the asymptotic observer on large
time horizons.

• the least square estimator is less affected by noise,
but the quality of its estimation is deteriorating over
large time horizon, when the state get closer to the
equilibrium point.

Remark 5. Note that the dynamics can be written as{
ẋ1 = x2
ẋ2 = −θ(ky1(t) + y2(t))



Fig. 1. Simulation of the system and the estimation pro-
vided by the observer (without noise)

Fig. 2. Simulation of the system and the estimation pro-
vided by the observer (with noise)

where we pose θ = 1
m . Therefore, one may consider the

”naive” Luenbeger observer

d

dt
x̂1 = x̂2 +G1(x̂1 − y1(t))

d

dt
x̂2 = −θ̂(ky1(t) + y2(t)) +G2(x̂1 − y1(t))

d

dt
θ̂ = −G3(x̂1 − y1(t))

with

m̂ =
1

θ̂
, ĉ =

y2
x̂2

to estimate parameters m and c. However, the error
dynamics

d

dt
e =

[
G1 1 0
G2 0 −ky1(t)− y2(t)
G3 0 0

]
︸ ︷︷ ︸

M(t)

e

has a matrix M(·) that is periodically singular and that
converges to a singular matrix, whatever is the choice of
the gains G1, G2, G3. Then, the convergence of the error
cannot be obtained. As an illustration, we have simulated
this observer without measurement noise, for the gains
G1 = −13, G2 = 32, G3 = −20 which gave the best results
for the estimation of m. As one can see on Fig. 3, the
estimation of m is biased. While the innovation x̂1 − x1 is
rapidly small, we did not obtain a fast enough convergence
of the error on x2 with this observer, which explains the
bad behavior of the estimation of c.

Fig. 3. Simulation with the Luenberger observer (without
noise). Estimations are in blue

5. CONCLUSION

We have proposed the derivation of an asymptotic observer
for the estimation of parameters of systems that are not
asymptotically identifiable. Although it takes the form
of an observer, its philosophy is quite different from the
conventional observers, in the sense that it can be con-
sidered as an expression that combines initial observation
and integrals of the observed variables, without innovation
(and gain) terms. As a consequence, its convergence speed
cannot be tuned. We believe that it is the price to pay
to obtain an asymptotic estimation without bias, in this
precise context of lack of asymptotic identifiability.

Numerical simulations show that this approach is more
reliable than a classical least-squares method, especially
in the long term, with or without noise. However, the
structure of the proposed observer relies strongly on the
initial observation which is prone to noise measurement.
A future work will deal with robustness issues of this
observer under stronger noises that the ones considered
in this preliminary work.
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