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A B S T R A C T   

The use of remote sensing data methods is affordable for the mapping of soil properties of the plowed layer over 
croplands. Carried out in the framework of the ongoing STEROPES project of the European Joint H2020 Program 
SOIL, this work is focused on the feasibility of Sentinel-2 based approaches for the high resolution mapping of 
topsoil clay and organic carbon (SOC) contents at the within-farm or within-field scales, for cropland sites of 
contrasted climates and soil types across the Northern hemisphere. Four pixelwise temporal mosaicking methods, 
using a two years-Sentinel-2 time series and several spectral indices (NDVI, NBR2, BSI, S2WI), were developed 
and compared for i) pure bare soil condition (maxBSI), ii) driest soil condition (minS2WI), iii) average bare soil 
condition (Median) and iv) dry soil conditions excluding extreme reflectance values (R90). Three spectral 
modeling approaches, using the Sentinel-2 bands of the output temporal mosaics as covariates, were tested and 
compared: (i) Quantile Regression Forest (QRF) algorithm; (ii) QRF adding longitude and latitude as covariates 
(QRFxy); (iii) a hybrid approach, Linear Mixed Effect Model (LMEM), that includes spatial autocorrelation of the 
soil properties. We tested pairs of mosaic and spectral approaches on ten sites in Türkiye, Italy, Lithuania, and 
USA where soil samples were collected and SOC and clay content were measured in the lab. The average RPIQ of 
the best performances among the test sites was 2.50 both for SOC (RMSE = 0.15%) and clay (RMSE = 3.3%). 
Both accuracy level and uncertainty were mainly influenced by site characteristics of cloud frequency, soil types 
and management. Generally, the models including a spatial component (QRFxy and LMEM) were the best per-
forming, while the best spatial mosaicking approaches mostly were Median and R90. The most frequent optimal 
combination of mosaicking and model type was Median or R90 and QRFxy for SOC, and R90 and LMEM for clay 
estimation.   

1. Introduction 

For more effective farm management, updated soil maps of soil 
properties are crucial, and there is increasing demand for up-to-date and 
detailed soil information for the adoption of agricultural practices that 
are recommended through several policies (Tziolas et al., 2021), espe-
cially in the framework of European Green Deal, Common Agricultural 

Policy (CAP), EU Soil Thematic Strategy, and Food Safety and Food 
Security (FAO) programs (Chabrillat et al., 2019). For instance, the so- 
called “carbon farming” approaches need accounting for soil carbon 
estimation and changes to efficiently manage soil carbon storage 
(Brockett et al., 2019). However, the implementation of these ap-
proaches raises some issues related to the mapping of the soil properties 
and its updating over time in conjunction with agronomic and climatic 
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dynamics which influence the evolution of soil properties such as soil 
organic carbon (SOC) content. In this regard, satellite approaches in the 
optical domain are not only promising but also affordable, for deriving a 
number of soil properties of the ploughed layer over croplands, espe-
cially SOC at several scales from local to national and higher (Vaudour 
et al., 2022). Indeed, along with clay, iron, calcium carbonate and soil 
moisture, SOC content is one of the most influential properties on the 
reflectance of bare soil surface in the visible-near infrared-shortwave 
infrared domains (400–2500 nm) (Ben-Dor, 2002; Chabrillat et al., 
2019) and hence one of the most easily quantifiable via remote sensing. 
According to a recent cost-accuracy analysis (Andries et al., 2021), a 
combination of earth observation technology and in situ sampling has 
the potential to offer a reliable, cost-effective approach for monitoring 
and reporting of SOC stocks at local scale, i.e within-farm or within field- 
scale. 

While SOC strongly influences soil surface reflectance, it shall be 
mentioned that such relation is very straightforward for dry samples of 
2 mm-sieved fine earth in the lab, but far more complex for undisturbed 
topsoil in the field, especially for cultivated soils with soil technical 
operations modifying its mineral and organic composition as well as the 
microtopography of the soil surface and the vegetation lying on it, 
having direct impact for satellite approaches (Vaudour et al., 2022). The 
feasibility of satellite-based digital mapping of topsoil properties raises 
several interconnected issues related not only to soil surface condition, 
the influence of soil composition according to soil type, the influence of 
soil management practices, but also to sampling design (Castaldi et al., 
2019b), and finally the availability of adequate reflectance image 
spectra over time. Spectral models relating image reflectance spectra of 
bare soils with topsoil properties may rely on a single-date image (e.g. 
Gholizadeh et al., 2018; Mzid et al., 2022) or on a composite image 
made of several dates, a temporal mosaic of a satellite time series 
(Castaldi, 2021; Dvorakova et al., 2021; Vaudour et al., 2021; Shi et al., 
2022). In this regard, the frequency of cloudless satellite images affects 
the possibility of acquiring pixels with bare soils across a time-series 
over the entire fields and/or farm. Indeed, according to both soil sur-
face and weather conditions, single-date images are prone to varying 
SOC prediction performance (Vaudour et al., 2019; Urbina-Salazar et al., 
2021; Dvorakova et al., 2021) and the use of a time-series is more likely 
to identify the optimal dates for SOC mapping. Furthermore, for annual 
cropping systems, the extent of bare soil exhibits seasonal changes ac-
cording to crop rotations. 

Bare soils are usually delineated by thresholding a spectral vegeta-
tion index, the Normalized Difference Vegetation Index (NDVI) being 
the index commonly employed for such a purpose (Vaudour et al., 
2022). Other spectral indices may be used to identify the bare soils pixels 
with the least possible influence of other disturbing factors besides green 
vegetation, such as Normalized Burn Ratio 2 (NBR2) which aims to 
discard those pixels having dry vegetation on the surface (Castaldi et al., 
2019a), or soil moisture index (S2WI) that aims to discriminate between 
very moist bare soils and other bare soils (Vaudour et al., 2019), or the 
bare soil index (BSI) that has been mainly conceived to discriminate 
between bare soil and other land covers (Diek et al., 2017; Rikimaru 
et al., 2002). With the aim to detect bare soil with minimum topsoil 
roughness, Dvorakova et al. (2021) successfully tested the greening-up 
approach over Sentinel-2 collection to select images acquired at 
seedbed conditions using both NDVI and NBR2 indices. Vaudour et al. 
(2021) obtained improved SOC prediction accuracy when combining 
the use of NDVI, NBR2 and S2WI indices, nevertheless the threshold 
value for these indices required to drop a large part of the cropland 
pixels. 

As the extent of bare soil varies seasonally, particularly under annual 
cropping systems, soil rarely appear as bare over an entire farm area at a 
given single date. Temporal mosaics enable extending the bare soil area 
and consequently increasing the soil properties mapping area by 
mosaicking the available images. In this regard, the short revisit time of 
the NASA and Copernicus-ESA multispectral satellite missions, Landsat 

8 and Sentinel-2, respectively, make it possible for large satellite 
collection in a short period of time. This increases the chance of finding 
cloud-free images at bare soil condition (Castaldi, 2021; Demattê et al., 
2018). Temporal mosaicking may rely on per-pixel reflectance aver-
aging (e.g. Demattê et al., 2018) or index minimizing or maximizing (e. 
g. Loiseau et al., 2019; Vaudour et al., 2021) across a time series. As 
disturbing factors such as soil moisture or vegetation cover may vary 
with time, the incorporation of pixels from dates with “bad conditions” 
into a given mosaic may jeopardize reflectance-based models of soil 
properties (Vaudour et al., 2021). Amongst those topsoil conditions 
which can be considered “bad”, or unfavorable for a reasonably accurate 
soil property prediction, soil moisture is considered key (Stenberg et al., 
2010): it leads to worsen SOC prediction models, as verified in lab 
conditions (Rienzi et al., 2014; Cao et al., 2020; Mirzaei et al., 2022; 
Knadel et al., 2022). As soil surface conditions vary at several time steps, 
especially hourly, the retrieval of soil moisture is tricky. There exist soil 
moisture products derived from Sentinel-1 and semi-empirical radar 
model inversion (El Hajj et al., 2017), which proved to facilitate the 
identification of driest dates for efficient temporal mosaicking at 
regional scale (Vaudour et al., 2021); however, Sentinel-1 images are 
not acquired at the very date and hour of the Sentinel-2 images, and such 
soil moisture products are not currently available across the world. In 
this study, it is assumed that spectral indices related to soil moisture 
absorption bands such as S2WI or NBR2 might be used as easily avail-
able proxies of soil moisture derived from Sentinel-2. Furthermore, 
because the drier the soil the higher is soil reflectance, we tested a 
completely new approach assuming that the spectra reaching the 90- 
percentile reflectance values across a given time series are those 
exhibiting the driest soil surface condition while excluding extreme 
values which may be due to clouds or snow cover. 

Validating model performance and the resulting maps is important in 
all modeling approaches in order to evaluate the usefulness for practical 
applications or for comparisons between models (Piikki et al., 2021), as 
well as to comply with the Global Soil Map requirements (Arrouays 
et al., 2014). Accuracy, defined as a measure of how close the pre-
dictions are to known values, but also model stability, or uncertainty, 
often defined in spatial models as the expected, or observed, variation in 
the predictions, are important and can give valuable information about 
generalization and applicability of the models. Through the geo-
statistical approach, the production of the quantitative accuracy map is 
inherent in the model and usually expressed as the variance of the ex-
pected value. Uncertainty of soil properties prediction and soil mapping 
is generally underestimated or most often not shown (Arrouays et al., 
2014; Vaysse and Lagacherie, 2017). Other approaches such as Quantile 
Regression Forests (QRF), considering the spread of the response vari-
able from which prediction intervals are constructed, are recommended 
as they provide accurate and interpretable predicted patterns of uncer-
tainty (Vaysse and Lagacherie, 2017). 

Carried out in the framework of the ongoing STEROPES project of the 
European Joint H2020 Program SOIL (https://ejpsoil.eu/soil-research/ 
steropes/https://ejpsoil.eu/soil-research/steropes/), this paper is 
focused on the feasibility of Sentinel-2 based approaches for the detailed 
mapping of topsoil clay and SOC contents at the local field scale, 
compatible with carbon farming approaches. Most satellite approaches 
of SOC mapping have been carried out in Temperate agroecosystems, at 
the scale of small regions covering some tens of km2 and a limited range 
of soil types dominated by Luvisols and Cambisols (Vaudour et al., 
2022). To the best of our knowledge, the previous local scale studies that 
have been carried out, have not included in the same study several 
environmental conditions (climate and soil type) and cropping systems. 
This study tests the robustness of such spectral approaches across a 
dataset encompassing varied annual cropping systems covering semi- 
arid, temperate to temperate continental and close to boreal climates 
and a large variation in soil types including the above-mentioned 
dominant soil types as well as other less often studied soil types: Fluvi-
sols, Vertisols, Chernozems, Gleysols, Retisols. Calcisols. Previous 
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studies highlighted the need to fine-tune the methods for mosaicking 
bare soil pixels from large satellite collections (Castaldi, 2021; Dvor-
akova et al., 2021), thus finding a deal between accuracy/uncertainty 
and spatial coverage of soil propertie maps. In accordance with the 
above-mentioned research lines, our approach is original in developing 
and comparing four pixelwise temporal mosaicking methods aiming for 
i) pure bare soil condition, ii) driest soil condition, iii) average bare soil 
condition and iv) driest soil conditions excluding extreme reflectance 
values. Knowing that the predicted soil properties from Sentinel-2 
exhibit spatial structure (Castaldi et al., 2019c), three modeling ap-
proaches were tested, two Quantile Regression Forest (QRF) algorithms 
were used with one including longitude and latitude coordinates, and a 
third hybrid model, the Linear Mixed Effect Model (LMEM), that in-
cludes spatial autocorrelation of the soil properties was tested and 
compared. Both types of models provide measurements of the uncer-
tainty of the model predictions which were further used in the analysis 
to evaluate the capabilities of the different combinations of mosaicking 
methods and prediction models. 

Hence our approach is trifold: i) testing local approaches in ten fields 
within four agroecosystems with annual crops; ii) elaborating a new 
temporal mosaicking for use in such local context; iii) accounting for 
spatial uncertainty as recommended for digital soil mapping. 

2. Materials and methods 

2.1. Study areas and soil dataset 

The sites that were collected for this study were sites available 
through a trade-off between agroecosystem diversity, spatial density 
and also the recent collection period for the SOC analyses, known to be 
influential for SOC prediction accuracy (Urbina-Salazar et al., 2021). For 
all sites (Fig. 1), climate is described according to the Köppen climate 
classification (Peel et al., 2007). Soil types are named according to the 
Word Reference Base (IUSS Working Group WRB, 2015). Site location 
(longitude and latitude), climate region and main soil types, for each test 
site, are summarized in Table 1. Türkiye and USA sites cover areas and 
sampling densities ranging from 102 to 425 ha and from 0.3 to 0.8 
samples/ha respectively; Italian sites cover about 30 ha each with a 
sampling density close to 2 samples/ha while Lithuanian sites extent is 
around 2 ha only with the highest sampling density close to 25 samples/ 
ha (Fig. 2). 

2.1.1. Turkish test sites 
Two agricultural areas, Dalaman (TUR_DAL) and Kocas (TUR_KOC), 

were chosen in Türkiye regarding their different climatic conditions, soil 
characteristics, SOC content, soil and crop management (Fig. 1; Table 1). 

TUR_DAL site is located in the south-western part of Türkiye near the 
Aegean Sea in alluvial deposits. The climate of the region is classified as 
Hot-summer Mediterranean climate (Csa) with an annual precipitation 
of 1030 mm and mean temperature of 18.1 ◦C (mean values over the 30 
years period). Common soil type in the study area is Calcaric Fluvisols 
(Drainic). In the sampling area both corn (Zea mays L.) -wheat (Triticum 
aestivum L.) or wheat- sunflower (Helianthus annuus L.) crops are raised 
in the same year. 

TUR_KOC study area is located in the alluvial deposits of the Konya 
Closed Basin, 30 km southeast of Salt Lake (Tuz Gölü). The climate is 
classified as a Cold semi-arid climate (Bsk) with an average annual 
precipitation of 362 mm and temperature of 12.2 ◦C (mean values over 
the 30 years period). The common soil types in this area are Calcaric 
Fluvisols (Drainic) and Eutric Vertisols. The main crops are irrigated 
corn and wheat with annual rotation. 

Soil sampling was done in summer 2021 (Fig. 2) in both study areas 
regarding soil types and sampling locations in order to achieve an evenly 
distribution through the field. Each sample consisted of three sub- 
samples taken with a gouge auger within an area of a 3 m radius and 
collected from 0 to 20 cm depth. Soil samples were air dried and passed 
through a 2 mm sieve in the laboratory, and SOC was determined 
following the Walkley-Black oxidation method. The particle size distri-
bution analysis was done using the hydrometer method (Bouyoucos, 
1951). Soil conditions at the sampling time were bare with some plant 
residue leftover from previous year. The Turkish samples are charac-
terized by low SOC content of 1.08 and 0.8 % in average for TUR-KOC 
and TUR_DAL, respectively, and dominant clayey texture but consider-
able within-field variations, particularly for TUR-KOC (clay content 
ranging from 15 to 67%) (Table 2). Clay and sand are highly correlated 
in both sites, while the correlation between SOC and clay, and SOC and 
sand is significant only in TUR_DAL (Table 3). 

2.1.2. USA test sites 
Five fields in croplands were selected in the USA: three fields located 

in Brookings County, South Dakota (USA_SDA), and two fields located in 
Lac qui Parle County, Minnesota (USA_MIN). The climate in South 
Dakota is classified as Monsoon Influenced hot summer humid conti-
nental climate, with an average annual precipitation of 686 mm, hot 
summer and dry winter (Dwa). For Minnesota it is a warm summer 
humid continental climate (Dfb) with an average annual precipitation of 
660 mm and no dry season. Mean annual air temperature is 6,4 and 
6.9 ◦C for USA_SDA and USA_MIN, respectively. USA_SDA fields are 
located on the loamy till and loamy eolian deposits, while USA_MIN 
fields are on lacustrine and loamy glaciofluvial deposits. For both sites, 
the dominant soils are Haplic Chernozem (Pantoarenic, Aric), Calcic 
Chernozem (Pantoloamic, Aric, Cambic), and Chernic Gleysol 

Fig. 1. Map of Köppen-Geiger climate types (adapted from Peel et al., 2007) and location of the test sites where the soil datasets were collected.  
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(Pantoloamic, Aric, Colluvic, Drainic, Pachic). The main crops in both 
states are corn, soybean (Glycine max L.), sunflower, wheat and barley 
(Hordeum vulgare L.). At the study sites, a corn-soybean rotation has been 
followed for years. These fields cover the most common soil classes for 
both states. A 156 × 156 m soil sampling grid was used for each field 
with each collected soil sample representing 2.43 ha. Around five soil 
sub-samples were collected within a 3 m’ radius of each grid-cell center 
and mixed for a composite sample at 15 cm depth, using a push probe in 
May 2018 (Fig. 2). 

The SOC was determined using the loss on ignition method following 
the South Dakota State University (SDSU) Soil Testing and Plant Anal-
ysis Laboratory protocol (SDSU, 2006). This protocol estimates SOC 
based on gravimetric weight change associated with high-temperature 
oxidation of OC (Pribyl, 2010). The sampled soil was analyzed for 
particle-size distribution by hydrometer method according to SDSU Soil 
Testing and Plant Analysis Laboratory protocol (SDSU, 2006). 

The two USA soil datasets are characterized by very similar and high 
SOC content (mean SOC: 2.54 %) and loam and clay loam soil texture 
(Table 2). The correlations between SOC, clay and sand contents are all 
significant for both USA datasets (Table 3). 

Table 1 
Site location, climate region according Köppen climate classification and main soil types for each test site.  

Country Site Longitude 
(decimal degrees) 

Latitude 
(decimal degrees) 

Koppen climate classification Main soil types 

Türkiye TUR_KOC 33.87138 E 38.41498 N Bsk Calcaric Fluvisols; Eutric Vertisols  
TUR_DAL 28.78039 E 36.71582 N Csa Calcaric Fluvisols 

USA USA_SDA − 96.8709 E 44.3864 N Dwa Haplic Chernozem; Calcic Chernozem; Chernic Gleysol  
USA_MIN − 96.44499 E 45.07500 N Dfb Haplic Chernozem; Calcic Chernozem; Chernic Gleysol 

Italy ITA_SAL 11.074774 E 45.244738 N Cfa Haplic Luvisols; Hypereutric Cambisol  
ITA_VAL 11.495782 E 45.161852 N Cfa Calcaric Gleysols; Haplic Calcisols  
ITA_DOG 12.163741 E 45.400746 N Cfa Cambic Calcisols; Calcaric Calcic Gleysols 

Lithuania LIT_VEZ 21.460352 E 55.726941 N Dfb Glossic Albic Eutric Retisol; Epigleyic Albic Haplic Luvisol  
LIT_VAL 23.861952 E 55.380085 N Dfb Endogleyic Endostagnic Endocalcaric Luvisol  
LIT_RUM 22.997302 E 54.696184 N Dfb Endocalcaric Gleysol; Epigleyic Endocalcaric Cambisol  

Fig. 2. Location of the soil samples collected within each test site for the 
determination of soil organic carbon and clay content. 

Table 2 
Basic statistics for SOC, clay and sand contents. Nb, number of soil samples.     

SOC (%) Clay (%) Sand (%)  

N◦ samples Area (ha) Min Max Mean Std Min Max Mean Std Min Max Mean Std 

TUR_KOC 131 425 0.65  1.97  1.08  0.22  14.7 66.8  40.68  11.49 15.1 69.6  39.04  10.38 
TUR_DAL 82 102 0.52  1.25  0.80  0.18  19.67 55.98  32.23  8.23 16.45 51.31  33.58  7.71 
USA_SDA 74 177 1.05  3.63  2.54  0.69  8.1 41.85  25.24  9.89 9.97 75.59  44.44  20.31 
USA_MIN 76 184 1.39  4.38  2.54  0.51  19.15 48.61  30.79  5.9 24.37 68.04  45.2  9.24 
ITA_SAL 54 26 0.51  0.81  0.66  0.07  9.9 17  13.38  1.75 48.3 67  57.74  5.48 
ITA_DOG 54 27.5 0.99  2.1  1.51  0.24  17.2 48.8  37.76  7.07 7 35.8  15.07  6.21 
ITA_VAL 53 30.3 1  1.99  1.46  0.2  24.8 51.3  40.48  6.21 6 31.1  15.15  5.91 
LIT_RUM 70 2.8 1  2.78  1.77  0.43  16.6 39.9  29.38  5.55 26.8 62.4  43.8  8.03 
LIT_VAL 53 2.2 1.23  2.53  1.58  0.28  7.8 19.4  13.49  2.18 46.1 57.7  51.03  2.82 
LIT_VEZ 57 2.3 1.3  2.22  1.78  0.23  6.01 16.2  10.64  2.17 41.4 66.7  48.24  4.55  

Table 3 
Pearson’s correlation coefficient between soil properties. *Significant correla-
tion (P < 0.05).  

Site SOC vs Clay SOC vs Sand Clay vs Sand 

TUR_KOC  − 0.06  0.13  ¡0.92* 
TUR_DAL  0.82*  ¡0.65*  ¡0.83* 
USA_SDA  0.92*  ¡0.94*  ¡0.95* 
USA_MIN  0.67*  ¡0.76*  ¡0.85* 
ITA_SAL  0.08  − 0.13  ¡0.86* 
ITA_DOG  0.66*  ¡0.50*  ¡0.83* 
ITA_VAL  0.52*  ¡0.40*  ¡0.91* 
LIT_RUM  0.65*  ¡0.64*  ¡0.31* 
LIT_VAL  − 0.16  ¡0.39*  0.08 
LIT_VEZ  ¡0.32*  ¡0.43*  ¡0.41*  
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2.1.3. Italian test sites 
Three experimental fields in croplands were selected in the alluvial 

plain of the Veneto Region (Italy). All the three sites are in the Po Plain 
that has a Humid subtropical climate (Cfa): ITA_SAL, ITA_VAL, ITA_-
DOG. The average annual precipitations for the three sites range be-
tween 734 and 887 mm and mean temperature between 13.4 and 14 ◦C 
(mean values over the period 1994–2021). All soils derive from alluvial 
deposits. The main crops are corn, soybean, wheat and barley. For all the 
plots a 1:50.000 scale soil map was available (https://gaia.arpa.veneto. 
it/maps/778/view). Furthermore, a detailed soil survey in the plots was 
carried out at 1:10.000 scale. 

The ITA_SAL plot is located in the middle reach of the Adige megafan 
formed during the Last Glacial Maximum (Fontana et al., 2014; Garlato 
et al., 2005), characterized by prevalent sandy deposits. Even though the 
parental materials were calcareous, soils are completely decarbonated; 
within the ITA_SAL plot, Haplic Luvisols (Aric, Cutanic, Differentic, 
Hypereutric, Loamic) have developed on well-drained surfaces, while on 
surfaces where the shallower aquifer has partially hindered pedogenesis 
Hypereutric Cambisols (Aric, Loamic, Oxyaquic) are to be found, with 
somewhat slower drainage. 

The ITA_VAL plot is located in a more recent part of the alluvial plain 
of the Adige river (Early-Mid Holocene), in a depression between two 
river levees; within ITA_VAL plot, the soils developed in the finer ma-
terial are Calcaric Gleysols (Aric, Pantoloamic, Humic) and those on 
fine-silty materials are Haplic Calcisols (Aric, Gleyic, Hypocalcic, Pan-
tosiltic), both partially decarbonated and somewhat poorly drained. 

Soils in the ITA_DOG plot are in the lower reaches of the Brenta 
megafan formed during the Last Glacial Maximum (Fontana et al., 
2014), near Venice, where soils formed in the past in well-drained 
conditions, developing a calcic horizon; the area was subsequently 
submerged, due to rising sea level. In the recent past, the land was 
reclaimed for agricultural use and the area is currently artificially 
drained. Soils are decarbonated in the surface horizons and have very 
developed calcic horizons at 70–100 cm depth; within ITA_DOG, the 
more clayey soils have vertic properties and they are Cambic Calcisols 
(Aric, Pantoclayic, Gleyic, Vertic), whereas those having less clay but 
equally somewhat poorly drained, are Calcaric Calcic Gleysols (Aric, 
Drainic, Humic, Siltic). 

Within these three plots, 162 soil samples (0–30 cm) were collected 
in Spring 2018 using a random stratified sampling according to soil 
types detected within each of the three plots. Each sample is a composite 
one, based on 5 sub-samples taken by means of an auger, one in the 
middle and the other 4 subsamples collected at a distance of 5 m from 
the center (Fig. 2). 

Samples were analyzed in the accredited ARPAV laboratory in Tre-
viso. Particle size distribution was determined by the sieving and sedi-
mentation method (ISO 11277:2020). Organic and inorganic carbon 
were determined by means of the dry combustion method in a current of 
oxygen using a temperature ramping program, following the draft 
standard CEN (prEN 17505:2020). Total SOC results from fractions 
released up to 600 ◦C, whereas inorganic carbon is the fraction released 
at temperatures between 600 and 900 ◦C. 

The SOC content is quite low for the ITA_SAL dataset (from 0.51 to 
0.81 %) where the soil is mainly sandy loam, while the other two sites 
are both characterized by an average SOC content close to 1.5 % and the 
soil textures are mostly silty clay (Table 3). The correlations between 
SOC, clay and sand content are all significant for ITA_DOG and ITA_VAL 
datasets, while for ITA_SAL, a significant correlation was observed only 
between sand and clay content (Table 3). 

2.1.4. Lithuanian test sites 
Three different agricultural areas were selected that fall into 

different agro-climatic zones (Bukantis, 2009) under humid continental 
climate (Dfb). 

LIT_VEZ site is located in the western part of Lithuania in the 
Southwestern Samogitian undulating moraine plain. This location falls 

within the I agroclimatic zone (Bukantis, 2009), which is moderately 
cool and wet. The mean annual temperature of the agro-climatic zone I is 
7.7 ◦C and annual precipitation is 910 mm (mean values over the 30 
years period 1991–2020). Common soil types in the study area are 
Glossic Albic Eutric Retisol (Loamic, Aric, Drainic) and Epigleyic Albic 
Haplic Luvisol (Loamic, Aric). These soils were formed in the territorial 
complex of the dominant ground and supplementing marginal morainic 
deposits. In the sampling area, crops are grown in 3-course rotation and 
under conventional management intensity. 

LIT_VAL site is located in the central part of Lithuania in the Nevėžis 
moraine plain. The selected field falls into the agro-climatic zone IID, 
which is moderately cool and relatively dry. The mean annual temper-
ature of the agro-climatic zone IID is 7.5 ◦C and the annual precipitation 
is 569 mm. The soil is Endogleyic Endostagnic Endocalcaric Luvisol 
(Loamic). These soils were formed in the ground moraine loam deposits. 
In the sampling area crops are grown in 4-course crop rotation: spring 
barley, red clover (Trifolium pratense L.), winter wheat, spring wheat. 
Crops are grown under three levels of management intensity: conven-
tional, integrated, and low-organic. 

LIT_RUM site is located in the southwestern part of Lithuania in the 
Lower Nemunas limnoglacial plain. The selected field falls into the agro- 
climatic zone IIB, which is warm and moderately wet (Bukantis, 2009. 
The mean annual temperature of the agro-climatic zone IIB is 8.0 ◦C and 
the annual precipitation is 650 mm. Soil types in the study area are 
Endocalcaric Gleysol (Siltic, Aric, Drainic, Humic) and Epigleyic Endo-
calcaric Cambisol (Siltic, Aric, Drainic, Humic). These soils were formed 
in the limnoglacial loam deposits. In the sampling area crops are grown 
in 3-course rotation and under conventional management intensity. 

The same sampling strategy was used in all the selected fields, i.e. we 
a used grid of 20 m × 20 m. Samples were taken from the depth of 0–20 
cm and each sample consisted of three-four sub-samples taken within an 
area of 1 m radius (Fig. 2). At the sampling date (May 2021 for LIT_RUM 
and LIT_VEZ and September 2021 for LIT_VAL), the soil was always 
bare. Soil samples were air-dried and passed through different size 
sieves in the laboratory (2 mm size sieves for texture analyses and 0.25 
mm size sieves for SOC analyses). SOC content was determined by 
photometric procedure at the wavelength of 590 nm using UV–VIS 
spectrophotometer Cary (Varian) and using glucose as a standard. Soil 
texture fraction was determined using the pipette method. 

The three Lithuanian soil datasets have similar mean SOC content 
but it varies from 1 to 2.78%. The soil texture is mainly loam for LIT_VAL 
and LIT_VEZ and clay loam for LIT_RUM (Table 2). The correlations 
between SOC, clay and sand content are all significant for LIT_RUM, and 
LIT_VEZ datasets, while for LIT_VAL, a significant correlation, although 
rather low, can be observed only between SOC and sand (Table 3). 

2.2. Sentinel-2 data collection 

A two-years satellite data collection was selected in the Google Earth 
Engine (GEE) environment using the Copernicus Sentinel-2 Multi- 
Spectral Instrument (MSI) level 2A (from September 2019 to September 
2021) within each study site. Level 2A is an operational product deliv-
ered by European Space Agency (ESA) that provides Bottom of Atmo-
sphere (BOA) reflectance images derived from Level 1C images 
generated using the atmospheric correction Sen2cor processor (Main- 
Knorn et al., 2017). Level 2A images also provide a scene classification 
including cloud/snow detection, and their probability, using bands ra-
tios and brightness thresholds. For each pixel and each acquisition date, 
three spectral indices were computed according to the MSI’s bands 
(Table 4): Normalized Difference Vegetation Index (NDVI) (Eq. (1)), 
Normalized Burn Ratio 2 (NBR2) (Castaldi et al., 2019a) (Eq. (2)) and 
Bare Soil Index (BSI) (Rikimaru et al., 2002; Eq. (3)). 

NDVI =
B8 − B4
B8 + B4

(1)  
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NBR2 =
B11 − B12
B11 + B12

(2)  

BSI =
(B12 + B4) − (B8 + B2)
(B12 + B4) + (B8 + B2)

(3) 

Since BSI was originally conceived to discriminate between bare soil 
and other land cover according a threshold value of 0.021 (Diek et al., 
2017), a preliminary investigation was carried oud using the two 
Turkish sites in order to test if BSI can be used alone for bare soil se-
lection over a Sentinel-2 time series. However, the results of the pre-
liminary investigation highlighted failure to exclude very high NBR2 
values from the time series when using only the BSI threshold, thus 
including areas with a high probability of the presence of non- 
photosynthetic vegetation according to findings by Demattê et al. 
(2018). Although BSI is highly negatively correlated to both NDVI and 
NBR2 (Fig. 3a and 3b) because its formula includes NIR, red and SWIR 
bands, many pixels were classified as bare soil from BSI had NBR2 values 
between 0.125 and 0.28 (Fig. 3b). These results suggested that the 
combined use of at least one of either BSI or NDVI plus NBR2 was 
preferable compared to the use of BSI alone. In this work, in order to 
carry out a stricter bare soil selection over the time series, it was decided 
to use all three indices as follows: excluding pixels having NDVI values 
higher than 0.35, NBR2 values higher than 0.125 (Castaldi et al., 2019a) 
and BSI < 0.021 (Diek et al., 2017). Moreover, a cloud mask was applied 

to remove regions affected by clouds using the QA60 Sentinel-2 bitmask 
band to mask cirrus and dense clouds obtained from Sentinel-2 Level 1C 
products at 60 m resolution, and mainly based on B2 reflectance 
threshold for dense clouds and on B10 for cirrus. While ‘MSK_CLDPRB’ 
band was used to remove clouds and clouds’ shadows and 
‘MSK_SNWPRB’ to remove snowy areas. Clouds and snow probability 
masks are generated by the scene classification algorithm by Sen2Cor 
processor. 

The masking process enabled bare soil Sentinel-2 image collection 
for each study site (Fig. 4). 

2.3. Spectral data selection 

A pixel-based approach was applied to select the best bare soil con-
ditions from the bare soil Sentinel-2 collection for each pixel falling 
within the study sites. Four different approaches were followed (Fig. 4): 
the first relies on the selection of the date showing the maximum BSI 
throughout the time series (hereafter referred as maxBSI) to increase the 
possibility of selecting pure bare soil conditions; the second approach 
aims to detect the driest soil conditions throughout the time series 
selecting the date showing the minimum soil moisture index S2WI 
(hereafter referred as minS2WI; Vaudour et al., 2019; Eq. (4)); the third 
approach entails the computation of the median reflectance value for 
each band (hereafter referred as Median), with the aim to obtain spectral 
data representative of the average bare soil conditions not affected by 
extreme reflectance values; 

Table 4 
Number of bare soil images per year (Nb/y) for the ten tests sites obtained from 
the two years’ Sentinel-2 time series and the most frequent months used to 
retrieve the synthetic bare soil images.  

Site Nb/y maxBSI minS2WI Median R90 

TUR_KOC  14.7 September September August October 
TUR_DAL  14.0 October October August October 
USA_SDA  7.9 May May May November 
USA_MIN  28.1 April April May November 
ITA_SAL  13.5 July June June October 
ITA_DOG  13.2 July October June November 
ITA_VAL  12.7 March June June November 
LIT_RUM  1.6 April April June June 
LIT_VAL  7.6 September September March September 
LIT_VEZ  3.2 April April April October  

Fig. 3. scatterplots of Bare soil index (BSI) vs Normalized Vegetation Index 
(NDVI) (a) and BSI vs Normalized Burned Ratio 2 index (NBR2) (b) computed 
within the two Turkish test sites for two years’ time series. 

Fig. 4. Workflow showing processing scheme to obtain the bare soil composite 
images over the satellite time series and the calibration of prediction models for 
soil organic carbon and clay and their validation. 
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S2WI =
B8A − B11 − B12
B8A + B11 + B12

(4) 

the fourth approach, called R90, aims to select dry conditions 
selecting the 90th percentile reflectance values throughout the time 
series for each band, assuming that higher reflectance correspond to 
lower soil moisture content. Using the 90th instead of the highest 
reflectance, allows to exclude anomalous data that could be detected in 
the final decile of the distribution mainly due to a cloud mask error. As 
observed in Fig. 5, the selection of the maximum reflectance values 
would have resulted in the selection of a cloud spectrum (blue line) due 
to a non-perfect functioning of the mask that, even though it could 
remove most cloudy pixels within the field, was not able to mask some 
clouds at the very sampling point highlighted in red. Whereas using the 
R90 spectrum results in a cloudless image acquired in June 2021, in a 
very droughty period in Veneto region according to the rainfall data 
recorded by the Environmental Protection Agency of the Veneto Region 
(ARPAV). 

2.4. Soil properties estimation models 

Each soil dataset was split into two subsets containing 80% (training 
dataset) and 20% (validation dataset) of the whole dataset, so they have 
a very similar target variable (Y) range. Each dataset was ordered ac-
cording to the Y values (decreasing order) and one sample out of every 
five was selected for the validation dataset, and the remaining samples 
were used for the training dataset. 

Each individual test site was modeled separately. The models cali-
brated on the training datasets were tested on the validation datasets for 
each test site. The clay and SOC contents (the target variable) of each 
dataset and the spectra extracted from each of the four SBSIs (covariates 
X) were combined to build prediction models using the Quantile 
Regression Forest (QRF) algorithm (Meinshausen, 2006). QRF is very 

similar to the Random Forest approach, the main difference between the 
two is that, for QRF, all the observations are kept for each node in each 
tree of the forest, and not only the mean value like for random forest. 
Therefore, it is possible to retrieve the conditional distribution of the 
dependent variable, and consequently, the standard deviation and the 
mean value for each estimated value. Nine conditional quantiles were 
computed (from 0.1 to 0.9) and extracted from the estimated conditional 
distribution. Two kinds of QRF models were calibrated: first (QRF) using 
only 11 Sentinel-2 bands as covariates, the second using 11 Sentinel-2 
bands plus the longitude and latitude coordinates as twelfth and thir-
teenth covariates (QRFxy). 

For the QRF and QRFxy prediction modelling, the packages quan-
tregForest (Meinshausen and Maintainer, 2015), randomForest (Liaw 
and Wiener, 2002) and caret (Kuhn, 2008) of the R software (R Core 
Team, 2022), were employed. The caret package allowed tuning the 
random forest parameters according to out-of-bag (OOB) error compu-
tation at the addition of each new tree during training process, therefore 
the model is fitted and tested during the training avoiding overfitting 
issues related to other approaches such as cross-validation. The OOB 
error is the average error obtained using predictions from trees not 
including an out-of-bag observation in their corresponding bootstrap 
sample. 

Moreover, in order to include the spatial autocorrelation of the soil 
properties, whenever it is exhibited, a so-called “hybrid model” was also 
tested. The Linear Mixed Effect Model (LMEM) is a hybrid model that 
combines deterministic and stochastic approaches, i.e. regression and 
the spatial structure of the residuals (Odeh et al., 1995). This model 
allows to estimate at the same time the fixed effect coefficients β and the 
error covariance function parameters, the first by least squares method, 
and the latter by a restricted maximum likelihood (REML) method. The 
stochastic part of the LMEM provides information about the variance of 
each estimated value. The formula of the LMEM is. 

Fig. 5. Exemplification of the R90 approach for a single pixel (red point): all bare soil spectra extracted at this red point from the 2-years Sentinel-2 time-series (left); 
the Sentinel 2 images corresponding to the spectrum having the maximum (4 March 2020) and R90 (17 June 2021) reflectance values (right). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Yi = Xiβ+Zi + εi (5) 

Where Yi is the target variable at location i, Xi is the vector containing 
non-random covariates, β is a vector of the fixed effects coefficients, Zi 

represents the spatially correlated random effects expressed by the 
covariance functions of the distance and described by the sill, range, and 
nugget effect, and εi is the nugget variance, thus the random error non 
spatially correlated. 

Both prediction algorithms (QRF and LMEM) allow measuring the 
range of the response variable from which prediction intervals are 
constructed, i.e. the uncertainty of the model for each i predicted value 
within the test sites, which is here represented as the pixelwise ratio 
between standard deviation σi and the average estimated value Yi of the 
distribution (Eq.6). 

Uncertainty =
σi

Yi
(6) 

The model accuracy was assessed by computing the coefficient of 
determination (R2; Eq. (7)), Root Mean Square Error (RMSE; Eq. (8)), the 
Ratio of Performance to InterQuantile distance (RPIQ; Eq.9) and the 
Accuracy (Eq. (10)), 

R2 = 1 −
∑n

i (Yo − Yp)
2

∑n
i (Y − Yp)

2 (7)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i (Yo − Yp)
2

n

√

(8)  

RPIQ =
IQ

RMSE
(9)  

Accuracy =

∑n
i 100 −

(
|Yo − Yp |

Yo
*100

)

n
(10) 

with Yo as the observed values in the validation datasets, Yp the 
predicted values, Y the average observed value, n the number of ob-
servations in each validation dataset and IQ the interquartile range. 

Andries et al. (2021) indicated a required level of accuracy for 
monitoring organic carbon stocks in the soils by EO-based techniques 
using a semi-quantitative metric based on interviews, i.e. how much EO- 
based estimated values should match those retrieved by “traditional” 
approaches (soil sampling plus laboratory analysis) to be considered 
efficient. Therefore, Equation (10) was conceived to make mathemati-
cally explicit the accuracy levels showed in Andries et al. (2021). 

For the QRF and QRFxy models, the increase in mean square error 
(Inc_MSE) of prediction, estimated with out-of-bag cross-validation, was 
computed for each covariate. The Inc_MSE values were obtained as the 
average difference between MSE of prediction before and after 
permuting each covariate and normalized by standard deviation. The 
Variable Importance (VI) are shown as Inc_MSE standardized by mini-
mum and maximum values of all covariates to have scores between 
0 and 1. For LMEM, the mean fixed effect coefficient β of each covariate 
X was normalized by its standard deviation and standardized by mini-
mum and maximum values in order to obtain VI values between 0 and 1. 
For both QRF and LMEM, the higher the VI value, the more important 
the covariate. 

3. Results 

3.1. Synthetic bare soil images – SBSI 

The average number of bare soil conditions for each pixel per year 
(Table 4) was the highest for USA_MIN (28.1), while the lowest fre-
quencies were observed for the Lithuanian sites, and in particular for the 
LIT_RUM and LIT_VEZ fields for which the frequency was close to 2 and 
3 respectively. The frequency was high and ranged between 12.7 and 

14.7 for all Mediterranean sites (Türkiye and Italy). 
The four different spectral data selection approaches allowed to 

obtain the SBSIs shown in Fig. 6. Spectral data were extracted at the soil 
sampling locations from all four SBSIs. Since the SBSIs were mosaicked 
using images acquired at different dates, the most frequent month per 
spectral data selection approach at each site was reported in Table 4. 
Similar results can be observed comparing maxBSI and minS2WI, with 
autumnal images in Türkiye, spring in USA, and summer in Italy. For the 
Lithuanian test sites, April was the most common month for LIT_VEZ and 
LIT_RUM, while for LIT_VAL this was September. The Median approach 
provided different results as compared to the first two approaches, 
especially for Turkish sites where August data were more frequent and 
for LIT_VAL where the spectral data were mainly retrieved from March 
images. The R90 approach mostly used data acquired in autumn what-
ever site except for LIT_RUM. 

Observing the SBSIs images, the maxBSI and minS2WI selection 
produced a spotty composite in some sites: this effect was particularly 
noticeable for USA_SDA and USA_MIN (Fig. 6b) and for all the Lithua-
nian (Fig. 6c) and Italian sites (Fig. 6d). 

3.2. SOC and clay prediction accuracy 

3.2.1. Validation results for sites 
Prediction performances varied according to sites, SBSIs and models. 

The best predicted sites for SOC were those showing the highest SOC 
range, higher than 1.8% (USA_MIN, USA_SDA, LIT_RUM). The best 
predicted sites for clay are among those having a substantial range 
higher than 26%, relying on within field contrasting soil types from 
Fluvisols to Vertisols (51%, TUR_KOC), Chernozem to Gleysols 
(USA_SDA), Gleysols to Calcisols (ITA_VAL). 

For half of the sites, the best SBSI for SOC was the Median SBSI: for 
TUR_DAL and LIT_VEZ, minS2WI yielded the highest accuracy, while for 
LIT_VAL R90 allowed to obtain the best performances (Table 5). The 
highest RPIQ values for each site ranged between 1.45 (LIT_VEZ) and 
6.14 (USA_SDA) and higher accuracies were generally obtained taking 
the spatial autocorrelation into account, i.e. using QRFxy or LMEM. 

The R90 yielded the best validation accuracy for 4 out of 10 sites for 
clay: namely for both Turkish sites, for USA_MIN and ITA_DOG. Models 
using Median data showed best performances for ITA_VAL and LIT_VEZ, 
maxBSI for ITA_SAL and LIT_RUM and minS2WI for USA_SDA. The best 
statistics for each site, in terms of RPIQ value, were slightly lower as 
compared to those observed for SOC and ranged between 1 (LIT_VAL) 
and 6.99 (USA_SDA). 

As some best predicted sites had a sampling density as low as 0.3 or 
0.4 samples per hectare, the sampling density does not seem to influence 
the prediction performance. 

The Accuracy values higher than 90% were highlighted in bold in 
Table 5: this threshold corresponds to the required accuracy from EO- 
based techniques to monitor and reporting organic carbon stocks in 
the soils (Andries et al., 2021). The same accuracy threshold was here 
adopted for clay estimation. Table 6 and 7 shows the frequency of Ac-
curacy values higher than 90% in Table 5, respectively for SOC and clay 
estimation. For SOC estimation the most performing SBSI is R90 (53%), 
and more than half of the QRFxy models provided an Accuracy higher 
than 90% (Table 6). Consequently, the best combination of SBSI and 
model are Median_QRFxy and R90_QRFxy. The frequency of Accuracy 
>90% is generally low for clay as compared to SOC (Table 7); Median 
and R90 provided the highest frequency, and QRFxy and LMM models 
are generally more accurate than QRF, especially in combination with 
R90. 

3.3. VI analysis 

The average VI score among the ten sites for each band and its 
standard error are shown in Figs. 7 and 8. The VI analysis highlights the 
importance of longitude (X) and latitude (Y) as covariates in the QRFxy 
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models for SOC prediction using all the four composite images (SBSI) 
(Fig. 7). For SOC estimation, the most important band was B12, espe-
cially for the models calibrated using Median and R90 data. Concerning 
QRF models, apart from B11 and B12, no substantial differences could 
be detected among the other bands for minS2WI, maxBSI and R90 data, 
while for the Median SBSI, the bands B2 and B4 showed high VI values 
and B8 the lowest importance. For the calibration of LMEMs, the NIR 
bands, B2, and B11 had the highest VI values. 

For clay estimation, by QRFxy models the most important covariates 
were X, Y and B12 (Fig. 8). B12 is still very important for QRF, for which 
high VI scores were also detected for B2, B8 and B11 using Median data. 
The VI values retrieved from LMEMs showed low values for B3, B6 and 
B12 for most of the SBSIs, while the other bands showed small differ-
ences among them in terms of VI values. 

In general, all the VI values exhibited high variability among the ten 
sites. 

3.4. Uncertainty of predicted values 

QRF models and maxBSI data were excluded from the uncertainty 
analysis due to the low prediction accuracy highlighted in Table 5. The 
uncertainty was computed both for the validation dataset and for the soil 
property maps, therefore for all the other pixels within the selected 
fields. 

Although the uncertainty of the predicted values of the validation 
datasets is similar between QRFxy and LMEM (data not shown), relevant 
differences exist between these two models in terms of the uncertainty of 
the soil property maps, especially for clay (Table 8). In general, LMEMs 
lead to higher uncertainty, also where they provided the best validation 
performances. For example. for TUR_KOC, even though Median +
LMEM had the highest RPIQ (Table 5), the average uncertainty was 
really high (0.46). The QRFxy models provided a very similar average 
uncertainty between SBSIs, both for SOC and clay, ranging from 0.12 

and 0.145, while the average uncertainty values for LMEMs ranged from 
0.13, for SOC model using R90, to 0.82 for clay estimation using 
minS2WI. 

3.5. SOC and clay mapping 

The QRFxy and LMEMs were applied to minS2WI, Median and R90 
SBSIs to obtain SOC and clay maps at six of the test sites deemed 
representative of the climate and soil types investigated in the present 
work (TUR_KOC, TUR_DAL, USA_SDA, USA_MIN, ITA_VAL and 
LIT_RUM) and the associated uncertainty maps. 

The differences in terms of estimation and uncertainty between 
QRFxy and LMEM for TUR_KOC site are reflected in the SOC (Fig. 9a and 
9b) and clay (Fig. 9c and 9d) maps. The patterns of the SOC maps ob-
tained by QRFxy are consistent with those observed in Median and R90 
SBSIs (Fig. 5a), while LMEM provided less clear SOC patterns across the 
TUR_KOC fields and very large uncertainty all over the site (Fig. 9b). 
Both clay maps, the one obtained from QRFxy (Fig. 9c) and the one 
gained from LMEM (Fig. 9d), showed a large uncertainty, however, 
combining R90 and LMEM, it was possible to get the best validation 
accuracy and clay patterns that reflect those detectable within the 
temporal mosaics. 

The SBSIs made for the USA_SDA site using minS2WI approach look 
spotted, and this characteristic affected the reliability of the soil prop-
erties maps as shown in Fig. 10 where minS2WI + QRFxy and Median +
QRFxy models are compared. The Median SBSI allowed to make SOC 
and clay with clear patterns within the field, highlighting the spatial 
variability of both soil properties, and significantly reducing the un-
certainty (Fig. 10b and 10d) as compared to the results obtained by 
minS2WI data (Fig. 10a and 10c). 

The best models according to Table 5 statistics were used to make the 
SOC and clay maps depicted respectively in Figs. 11 and 12. 

Fig. 6. Synthetic bare soil images obtained in the Turkish (a), USA (b), Lithuanian (c) and Italian (d) sites using the two years’ Sentinel-2 time series.  
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Table 5 
Validation results of the soil organic carbon (SOC) and clay prediction models for each test site. The statistics used area: R2 = coefficient of determination; RMSE = root 
mean square error; RPIQ: ratio of performance to interquartile range. SBSI = synthetic bare soil image; Acc. = accuracy.       

SOC   Clay   

Site SBSI Model R2 RMSE 
% 

RPIQ Acc. 
% 

R2 RMSE 
% 

RPIQ Acc. 
% 

TUR_KOC maxBSI QRF 0.05 0.23 1.22 83.1 0.33 9.61 1.78 80.4   
QRF_XY 0.43 0.18 1.60 86.1 0.30 9.88 1.73 80.3   
LMM 0.43 0.18 1.54 85.4 0.54 8.04 2.13 84.4  

minS2WI QRF 0.00 0.24 1.18 81.8 0.50 8.01 2.13 83.9   
QRF_XY 0.42 0.18 1.59 85.6 0.50 8.07 2.12 84.6   
LMM 0.53 0.16 1.72 86.3 0.50 9.06 1.89 81.5  

Median QRF 0.16 0.22 1.31 84.1 0.61 7.24 2.36 85.8   
QRF_XY 0.57 0.15 1.84 88.1 0.64 6.99 2.45 86.7   
LMM 0.61 0.15 1.94 88.2 0.59 7.70 2.22 86.5  

R90 QRF 0.26 0.20 1.40 83.9 0.64 7.32 2.34 86.1   
QRF_XY 0.59 0.15 1.85 88.2 0.60 7.60 2.25 85.7   
LMM 0.47 0.18 1.57 85.8 0.78 6.14 2.79 87 

TUR_DAL maxBSI QRF 0.45 0.14 1.78 85.1 0.30 7.11 1.18 85.3   
QRF_XY 0.59 0.12 2.06 87.4 0.65 5.35 1.58 80.8   
LMM 0.75 0.09 2.59 91.0 0.47 6.43 1.31 86.0  

minS2WI QRF 0.21 0.16 1.51 86.0 0.22 7.25 1.16 82.6   
QRF_XY 0.62 0.11 2.14 87.2 0.75 5.05 1.67 82.1   
LMM 0.75 0.09 2.72 91.8 0.56 5.85 1.44 84.1  

Median QRF 0.37 0.15 1.68 85.0 0.32 6.71 1.26 83.8   
QRF_XY 0.53 0.12 1.97 87.0 0.63 5.12 1.65 84.7   
LMM 0.79 0.09 2.61 89.8 0.55 5.69 1.48 87.2  

R90 QRF 0.65 0.11 2.27 90.3 0.32 6.80 1.24 85.0   
QRF_XY 0.69 0.10 2.39 90.4 0.54 5.51 1.53 79.4   
LMM 0.56 0.13 1.96 88.0 0.70 4.57 1.84 88.0 

USA_SDA maxBSI QRF 0.7 0.38 2.57 89.2 0.92 2.78 6.31 89.7   
QRF_XY 0.9 0.22 4.53 92.4 0.9 3.03 5.78 89.2   
LMM 0.79 0.31 3.16 87.4 0.9 3.26 5.38 90.2  

minS2WI QRF 0.88 0.23 4.27 91.9 0.93 2.63 6.68 90.3   
QRF_XY 0.94 0.16 6.07 93.9 0.94 2.51 6.99 91.1   
LMM 0.88 0.24 4.14 90.7 0.9 3.47 5.06 87.1  

Median QRF 0.8 0.35 2.77 86.5 0.93 2.71 6.49 88.7   
QRF_XY 0.96 0.16 6.14 93.9 0.91 3 5.85 89.3   
LMM 0.76 0.34 2.85 88.1 0.88 3.49 5.03 85.3  

R90 QRF 0.94 0.18 5.47 94.4 0.83 4.44 3.95 86.2   
QRF_XY 0.96 0.17 5.82 94.4 0.9 3.2 5.48 88.5   
LMM 0.89 0.24 4.03 92.2 0.83 4.28 4.11 84.8 

USA_MIN maxBSI QRF 0.57 0.34 1.77 89.9 0.33 4.58 1.55 89.2   
QRF_XY 0.56 0.34 1.77 90.2 0.33 4.64 1.53 87.7   
LMM 0.19 0.45 1.32 84.8 0.36 5.51 1.29 85.1  

minS2WI QRF 0.75 0.26 2.29 90.8 0.22 4.97 1.43 88.3   
QRF_XY 0.71 0.28 2.16 90.6 0.33 4.59 1.55 87.9   
LMM 0.62 0.3 1.98 89.8 0.55 4.89 1.45 87.5  

Median QRF 0.69 0.32 1.9 90.1 0.16 5.13 1.38 87.1   
QRF_XY 0.8 0.26 2.31 91.9 0.38 4.45 1.59 88.0   
LMM 0.75 0.24 2.47 92.4 0.69 4.18 1.7 89.2  

R90 QRF 0.6 0.34 1.78 88.9 0.38 4.46 1.59 89.1   
QRF_XY 0.6 0.33 1.79 89.5 0.38 4.42 1.6 89.1   
LMM 0.54 0.34 1.77 89.6 0,,65 3.61 1.96 90.7 

ITA_SAL maxBSI QRF 0.16 0.06 1.46 91.8 0.20 1.63 1.34 90.1   
QRF_XY 0.05 0.06 1.36 91.3 0.49 1.36 1.61 91.3   
LMM 0.02 0.1 0.87 91.6 0.48 1.27 1.74 92.2  

minS2WI QRF 0 0.06 1.33 91.1 0.04 1.77 1.24 89.1   
QRF_XY 0.16 0.06 1.48 92.1 0.27 1.54 1.43 90.9   
LMM 0.19 0.07 1.37 91.2 0.13 1.96 1.12 88.8  

Median QRF 0.17 0.06 1.45 92.0 0.00 1.79 1.23 88.7   
QRF_XY 0.22 0.06 1.52 92.2 0.34 1.45 1.51 91.5   
LMM 0.52 0.05 1.87 93.2 0.37 1.67 1.31 89.7  

R90 QRF 0.31 0.06 1.58 93.2 0.13 1.67 1.32 89.2   
QRF_XY 0.32 0.05 1.6 93.2 0.43 1.34 1.64 90.9   
LMM 0.36 0.05 1.64 92.3 0.30 1.55 1.42 91.2 

ITA_DOG maxBSI QRF 0.08 0.25 1.23 85.9 0.20 6.26 1.40 85.9   
QRF_XY 0.11 0.26 1.17 85.4 0.31 5.85 1.50 87.2   
LMM 0.02 0.28 1.1 84.0 0.47 5.59 1.57 86.1  

minS2WI QRF 0.07 0.231 1.32 87.0 0.45 5.05 1.74 88.3   
QRF_XY 0.08 0.24 1.28 86.4 0.34 5.60 1.57 87.6   
LMM 0.15 0.22 1.41 87.6 0.63 8.71 1.01 79.5  

Median QRF 0.21 0.21 1.48 87.6 0.44 5.30 1.66 87.6   
QRF_XY 0.21 0.21 1.46 88.8 0.44 5.21 1.69 88.4   
LMM 0.57 0.16 1.88 90.5 0.70 4.91 1.79 88.5  

R90 QRF 0.42 0.18 1.71 90.2 0.52 4.67 1.88 89.8   
QRF_XY 0.46 0.17 1.77 91.1 0.54 4.66 1.89 90.1 

(continued on next page) 
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4. Discussion 

We collected a dataset of very detailed spatial information at field or 
farm scales, for cropland sites of contrasted climates and soil types 
across the Northern hemisphere. Through several two-years-Sentinel-2 
temporal mosaics or SBSIs, Sentinel-2 based approaches appear effec-
tive for the detailed mapping of topsoil clay and SOC contents at the 
local scale, yet with differences in both accuracy and uncertainties 
which are not all compatible with carbon monitoring. Even though 
prediction performance was reasonably accurate (RPIQ ≥ 1.8) for most 
sites, the results shown here highlighted how the model and SBSI se-
lection can affect the accuracy and the uncertainty of the SOC and clay 
estimates. The output maps were not of comparable quality and uncer-
tainty depending on the considered site, the SBSI, and the prediction 
model carried out. As this approach relies on spectral characteristics of 
bare soil condition, it is dependent on the availability of clear sky images 
as well as the occurrence of favorable soil surface conditions. The 
multitemporal approaches proposed and tested in this work were meant 
to optimize the bare soil selection, by selecting not only bare soils, but 
also the driest and/or the least covered by dry residues. 

Table 5 (continued )      

SOC   Clay     

LMM 0.47 0.17 1.8 91.5 0.35 5.80 1.52 85.5 
ITA_VAL maxBSI QRF 0.019 0.24 1 86.7 0.03 7.32 0.90 85.7   

QRF_XY 0.22 0.18 1.31 90.7 0.13 7.24 0.91 87.7   
LMM 0.18 0.21 1.11 86.9 0.27 6.01 1.10 87.3  

minS2WI QRF 0.14 0.19 1.23 86.4 0.75 4.29 1.54 90.6   
QRF_XY 0.32 0.17 1.39 91.7 0.14 8.77 0.75 87.4   
LMM 0 0.36 0.65 79.3 0.45 6.37 1.04 88.0  

Median QRF 0.41 0.16 1.45 90.3 0.73 3.32 2.02 93.0   
QRF_XY 0.53 0.13 1.69 91.9 0.80 2.86 2.35 93.8   
LMM 0.47 0.16 1.41 89.6 0.73 3.44 1.95 92.6  

R90 QRF 0.03 0.23 1.02 85.2 0.78 3.62 1.82 92.2   
QRF_XY 0.21 0.18 1.29 90.3 0.28 6.75 0.98 89.8   
LMM 0.41 0.17 1.37 91.3 0.74 3.72 1.77 92.5 

LIT_RUM maxBSI QRF 0.62 0.26 2.34 87.6 0.51 3.91 1.77 88.8   
QRF_XY 0.64 0.26 2.41 87.6 0.62 3.60 1.92 89.7   
LMM 0.84 0.18 3.39 90.1 0.18 5.63 1.22 85.4  

minS2WI QRF 0.66 0.26 2.39 87.5 0.23 4.82 1.43 86.2   
QRF_XY 0.68 0.25 2.46 87.7 0.28 4.62 1.49 87.0   
LMM 0.71 0.24 2.61 88.3 0.25 5.15 1.34 86.4  

Median QRF 0.92 0.16 3.30 93.6 0.34 3.99 1.33 91.1   
QRF_XY 0.94 0.17 3.24 92.9 0.39 3.84 1.38 91.3   
LMM 0.42 0.39 1.40 77.3 0.43 4.35 1.22 90.1  

R90 QRF 0.77 0.21 2.95 89.6 0.59 4.06 1.70 89.5   
QRF_XY 0.76 0.21 2.93 89.4 0.69 3.68 1.87 90.9   
LMM 0.61 0.28 2.19 86.5 0.54 3.79 1.82 90.4 

LIT_VAL maxBSI QRF 0.01 0.23 1.03 89.3 0.18 2.17 1.07 88.2   
QRF_XY 0.50 0.21 1.33 89.9 0.17 2.24 1.00 87.2   
LMM 0.66 0.19 1.45 88.4 0.04 2.83 0.79 81.7  

minS2WI QRF 0.09 0.20 1.17 91.2 0.02 2.36 0.99 82.5   
QRF_XY 0.87 0.15 1.90 92.3 0.12 2.29 0.98 85.9   
LMM 0.73 0.15 1.88 91.5 0.17 2.81 0.80 83.4  

Median QRF 0.26 0.19 1.32 89.7 0.03 3.32 0.78 77.1   
QRF_XY 0.36 0.18 1.38 90.3 0.05 3.33 0.77 76.9   
LMM 0.05 0.26 0.95 86.3 0.26 4.18 0.62 73.8  

R90 QRF 0.04 0.21 1.13 90.1 0.02 2.36 0.98 87.6   
QRF_XY 0.78 0.17 1.65 90.1 0.16 2.48 0.91 86.4   
LMM 0.76 0.15 1.91 92.1 0.00 2.67 0.84 84.8 

LIT_VEZ maxBSI QRF 0.02 0.25 1.23 87.2 0.41 1.79 1.70 86.6   
QRF_XY 0.03 0.28 1.09 87.4 0.52 1.75 1.75 86.4   
LMM 0.01 0.27 1.14 86.4 0.47 1.84 1.66 87.7  

minS2WI QRF 0.19 0.21 1.45 90.2 0.63 1.60 1.91 89.3   
QRF_XY 0.03 0.28 1.09 87.4 0.52 1.75 1.75 86.4   
LMM 0.09 0.32 0.95 85.3 0.64 1.50 2.04 89.8  

Median QRF 0.02 0.27 1.10 87.6 0.64 1.64 1.87 86.6   
QRF_XY 0.03 0.28 1.09 87.4 0.52 1.75 1.75 86.4   
LMM 0.01 0.41 0.73 82.4 0.71 1.40 2.19 89.8  

R90 QRF 0.08 0.23 1.33 88.2 0.47 1.82 1.67 86.0   
QRF_XY 0.03 0.28 1.09 87.4 0.48 1.77 1.73 85.8   
LMM 0.26 0.22 1.42 89.1 0.16 2.31 1.32 85.5  

Table 6 
Frequency of Accuracy values higher than 90% for SOC estimation among the 
ten test sites according to synthetic bare soil images method (SBSI) and pre-
diction models.   

maxBSI minS2WI Median R90 Mean frequency 

QRF 10% 50% 40% 50%  37.5% 
QRFxy 40% 50% 60% 60%  52.5% 
LMM 30% 40% 30% 50%  37.5% 
Mean frequency 26.7% 46.7% 43.3% 53.3%   

Table 7 
Frequency of Accuracy values higher than 90% for clay estimation among the 
ten test sites according to synthetic bare soil images method (SBSI) and pre-
diction models.   

maxBSI minS2WI Median R90 Mean frequency 

QRF 10% 20% 20% 10% 15% 
QRFxy 10% 20% 30% 30% 22.5% 
LMM 20% 0% 20% 40% 20.0% 
Mean frequency 13.3% 13.3% 23.3% 26.7%   
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Fig. 7. Barplots showing the average variable of importance in projection (VI) values for soil organic carbon prediction models and their standard error (in green) 
among the ten sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 8. Barplots showing the average variable of importance in projection (VI) values for clay prediction models and their standard error (in green) among the ten 
sites. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.1. Differences in cloudless available frequency 

The temporal mosaicking approaches tested in this work allowed as a 
first result to select Sentinel-2 acquisition days affected by bare soil 
condition, thus excluding images acquired during the vegetation 
growing season and those acquired when non-photosynthetic vegetation 
was on the field. Although the availability of bare soil conditions can 
vary according to farm management, the frequency of cloudy days is a 
really impacting factor (Li et al., 2022). As already highlighted by Cas-
taldi (2021), the availability of bare soil images in Northern Europe is 
lower than in the Mediterranean region, both using Landsat 8 and 
Sentinel-2 collections, particularly in Ireland and the Baltic States. The 
cloud-free - bare soil frequency observed in the present work for the 
Lithuanian sites is very low and it ranges between 1.6 and 7.6 available 

images per year, while an average of 13 useful images per year were 
detected for the Italian and Turkish sites (Table 4). This difference be-
tween the Baltic and Mediterranean areas is mainly due to the higher 
cloudiness in the Baltic region, the study by Paszkuta et al. (2019) 
estimated average annual cloudiness of around 58.5% for the Baltic sea, 
which can be a good indicator of inland cloudiness of the Baltic states. 

4.2. Accounting for the bare soil availability periods 

Farm management plays a key role, not only in the availability of 
bare soil images, but also in both the dynamics of SOC and the spectral 
properties of soil surface, the latter being influenced by fertilization and 
amendment practices, tillage depth and frequency, crop rotation, in-
termediate crops and residue management (Vaudour et al., 2022). 
Practices such as reduced or no tillage and legume cover crops can lead 
to an increase in SOC sequestration rates (Chen et al., 2015; Minasny 
et al., 2017) and avoiding soil erosion, especially in vulnerable areas, 
but they involve almost continuous ground cover. According to the 
Evaluation support study on the impact of the CAP on sustainable manage-
ment of the soil: final report (European Commission, 2021), Agri- 
Environment and Climate Measures (AECM) were programmed in all 
the Member States to implement land use and management practices 
relevant to contribute to soil quality. Among the indicated practices in 
the AECM are soil cover, and reduced or no tillage. 

The percentage of arable lands under AECM supporting soil cover 
and low tillage and conservation agriculture is still low in most Euro-
pean states, or even not already programmed. Conventional tillage 
which is practiced in 74.4% of the arable lands in the European Union 
group of 28 member states (EU-28) is still the most widespread tillage 
practice in Europe (Panagos et al., 2015), while reduced and conserva-
tion tillage covers 21.6% of the arable areas and no-tillage is applied 
over 4% only. Although the availability of bare soil data acquired by 
satellites is expected to decrease in the future, the multitemporal ap-
proaches proposed and tested in this work optimized the bare soil 

Table 8 
Average uncertainty of the soil organic carbon (SOC) and clay predicted values 
within the test sites.    

minS2WI Median R90   

QRFxy LMEM QRFxy LMEM QRFxy LMEM 

SOC TUR_KOC  0.11  0.23  0.11  0.46  0.11  0.22  
TUR_DAL  0.20  0.16  0.22  0.15  0.14  0.15  
USA_SDA  0.13  0.09  0.07  0.14  0.10  0.08  
USA_MIN  0.12  0.19  0.17  0.17  0.12  0.08  
ITA_VAL  0.13  0.11  0.09  0.80  0.09  0.12  
LIT_RUM  0.13  0.77  0.14  0.11  0.13  0.12  
Mean  0.14  0.26  0.13  0.31  0.12  0.13         

Clay TUR_KOC  0.11  0.40  0.18  0.80  0.11  0.75  
TUR_DAL  0.20  1.55  0.22  0.35  0.14  0.002  
USA_SDA  0.23  0.22  0.07  1.15  0.21  0.23  
USA_MIN  0.11  1.60  0.13  1.55  0.13  1.45  
ITA_VAL  0.08  0.71  0.08  0.05  0.08  0.45  
LIT_RUM  0.14  0.45  0.18  0.11  0.13  0.15  
Mean  0.145  0.82  0.14  0.67  0.13  0.51  

Fig. 9. Top row shows SOC and uncertainty maps obtained combing QRFxy and R90 (a) and LMEM and Median (b) for the TUR_KOC site. The bottom row shows clay 
and uncertainty maps obtained combining QRFxy and Median (c) and LMEM and R90 (d) for the TUR_KOC site. 
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Fig. 10. Top row shows SOC and uncertainty maps obtained combining minS2WI and QRFxy (a) and Median and QRFxy (b). The bottom row shows clay and 
uncertainty maps obtained combining minS2WI and QRFxy (c) and Median and QRFxy (d) for one of the three fields on the USA_SDA site. 

Fig. 11. SOC and uncertainty maps obtained using minS2WI + LMEM for the TUR_DAL site (a), Median + QRFxy for ITA_VAL site (b), Median + LMEM for USA_MIN 
site (c), R90 + QRF for LIT_RUM site (d). 
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selection and can help to overcome the reduced availability of bare soil 
conditions. Our approaches to get SBSIs were adopted for a limited two- 
years satellite collection, nevertheless the temporal mosaicking in-
creases the chance to find bare soil, under the assumption of the stability 
or very slow changes in SOC content or other soil properties if no drastic 
changes occur in terms of land use or soil management or as a result of 
extreme erosion processes (Castaldi, 2021). In this regard, the test sites 
were not affected by drastic changes or extreme erosion processes during 
the satellite collection period. 

The four pixel-based temporal mosaicking approaches followed 
different strategies: increase the probability of detecting pure bare soil 
(maxBSI), selecting driest conditions (minS2WI and R90) and obtaining 
a median bare soil condition over the time series (Median). However, the 
algorithms search every acquisition date throughout the year, whereas 
the bare soil conditions are mainly concentrated in two periods: in 
Spring, after the seeding of summer crops, or at end of the Summer- 
beginning of the Autumn, after seeding winter crops, i.e. the periods 
between crop harvesting and the emergence of the following crop. The 
best period for the Italian sites and for most of the temporal mosaicking 
approaches is before the emergence of winter crop, thus in Summer, 
when the driest soil conditions usually occur in the Mediterranean re-
gion. However, the different strategies tested here involved the selection 
of different acquisition dates, although this variability also depends on 
the study sites. The R90 approach always involves the selection of im-
ages acquired in Autumn except for LIT_RUM field. Since this approach 
is based on the search for dry conditions, we can observe in Table 4 how 
the more frequent months fall in the middle of the Autumn for Medi-
terranean regions and for USA sites, while falling in June and September 
for two Lithuanian sites. This is due to higher amount of late summer – 
early autumn precipitation in Lithuania as compared to Italy and 
Türkiye. Most Median SBSI pixels were obtained from March to June 
except for the two Turkish sites where the driest condition delayed the 
selected dates to the end of the summer. For the Turkish sites, the period 
before winter crops is still the more frequent for maxBSI, minS2WI and 

Median, however here the best period (August – October) is postponed 
as compared to Italian sites. This is because for both Turkish sites, maize 
is generally sown in June and harvested by the end of August. 

For both USA sites, the best conditions can be found between April 
and May because from December to April, soil might be covered with 
snow. Therefore, in May there is a greater chance to find bare soil 
conditions just before maize germination. According to the results of the 
present study, only R90 seems quite stable across different climate 
conditions concerning the selection of the best satellite acquisition time. 
While the other composite approaches used more or less the same 
acquisition date for the same site, dates showed evident differences 
between test sites, mainly due to crop management and climate 
conditions. 

4.3. Accounting for the bare soil condition 

The dependence on site characteristics must first be emphasized, as 
through this various dataset, prediction performances vary according to 
agropedological characteristics as well as soil and crop management. As 
previously observed for satellite-based models at several scales (Vau-
dour et al., 2022), the sites displaying larger ranges of SOC contents, and 
in a lesser degree, clay contents, are prone to the highest performances 
regardless of SBSIs and models. Sampling density does not seem to be 
influent among the ten sites. 

Depending on the SBSI temporal mosaicking approach, not only the 
performance of the spectral model varies but also the quality of the 
mapped output. For the most frequent months used to retrieve the 
synthetic bare soil images, the maxBSI and minS2WI displayed a within- 
field heterogeneity, involving a spotted look for the bare soil mosaics 
(Fig. 6). The elaboration of the temporal mosaic relies on correct sky 
conditions from one side, and on soil surface conditions from the other 
side. The searching for the maximum BSI, the minimum S2WI values or 
the maximum reflectance values along the satellite time may lead to 
select some specific pixels affected by non-detected environmental 

Fig. 12. Clay and uncertainty maps obtained using R90 + LMEM for the TUR_DAL site (a), Median + QRFxy for ITA_VAL site (b), R90 + LMEM for USA_MIN site (c), 
R90 + QRFxy for LIT_RUM site (d). 
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disturbances (e.g. clouds or cloud shadows; Fig. 5), or possible instru-
mental issues or processing errors during the atmospheric correction 
applied to Top-Of-Atmosphere (TOA) (Zhou et al., 2022), hence spotted 
pattern. Regardless of the sky conditions, the temporal mosaicking, 
especially through the per-pixel approach, could put together pixels of 
several dates having different surface moisture conditions due to either 
rainfall events or ploughing or the presence of vegetation residues. 

The Median and R90 approaches were conceived to get rid of such 
extreme values and therefore mitigate such issues, either originating 
from the atmospheric correction model itself, or from the cloud mask 
that is applied. At regional scale, Gomez et al. (2022) compared three 
atmospheric correction (AC) methods on Sentinel-2 images (MAJA, 
Sen2Cor, and Landsat Surface Reflectance Code) for clay content pre-
diction, and pointed out that the acquisition date is more important than 
the AC method in terms of prediction accuracy for clay content. 
Nevertheless, they also observed that bare soil coverage selected using 
both NDVI and NBR2 thresholding varied depending on both acquisition 
dates and AC methods and that the Sen2Cor method, which is the one 
that we used here, provided the highest range of bare soil coverage along 
the acquisition dates. Further investigations deserve to be conducted to 
assess the effect of atmospheric correction on the estimation of SOC and 
other soil properties using time series. The spotted appearance obtained 
from maxBSI and minS2WI is not only an aesthetic issue, but it can lead 
to erroneous prediction models or misleading soil property maps, since 
the spots are pixels probably selected in different conditions as 
compared to the rest of the pixels within the fields. Moreover, the SOC 
and clay maps derived from spotted SBSIs have the highest uncertainty, 
while Median and R90 SBISs demonstrated to outperform maxBSI and 
minS2WI both in terms of estimation accuracy and uncertainty 
(Table 5). 

Vaudour et al. (2021) tested both per-pixel- and per-date-based 
mosaicking methods using Sentinel-2 collection at a regional scale in 
France. The best cross-validation results concerning SOC estimation by 
per-pixel-based approach were obtained using the combination of S2WI 
and NBR2 (RPIQ = 1.94), therefore confirming the capability of these 
two indices to provide useful bare soil mosaics not affected by extreme 
moisture contents and dry vegetation disturbance. However, the area 
covered by the mosaic was quite limited due to the strict thresholds of 
the two indices; therefore, the authors suggested the use of per-date 
approaches, which provided the same prediction accuracy while 
almost doubling the area covered by the bare soil mosaic. The poor 
prediction accuracy obtained in our work using maxBSI is in accordance 
with the results gained by Vaudour et al. (2021), which showed really 
low RPIQ cross-validation values using the BSI index (RPIQ = 1.60). 
However, although maxBSI often provided the lowest results among our 
test sites, and presumably owing to local scale and/or soil type, this 
approach generally showed better statistics, with RPIQ values ≥ 2.59 
and up to 4.5, than those showed in Vaudour et al. (2021). Similarly, 
presumably owing to local scale and/or soil type, in our study, the use of 
S2WI (minS2WI) provided very different validation results depending 
on test site, ranging from an RPIQ of 1.28 in the Italian sites to 6.07 for 
USA_SDA, with very good results also for TUR_DAL (RPIQ = 2.72) and 
LIT_VAL (RPIQ = 1.90). 

The Median SBSI has been successfully tested for SOC estimation 
over larger areas, by Luo et al. (2022) at regional scale using a six-years 
Landsat-8 time series and by Castaldi (2021) at continental scale using a 
three-years Sentinel-2 collection along with 144 LUCAS samples 
collected across Europe. Through the per-pixel approach, Castaldi 
(2021) obtained satisfactory results for SOC estimation. In the present 
work, the Median SBSI approach most of the times outperformed min-
S2WI and maxBSI approaches for SOC prediction. The better capability 
of the Median approach as compared to the others can be explained by 
the relative importance of visible bands for the estimation of the SOC 
content, as already shown by the VI analysis in Castaldi (2021), showing 
the high importance of the three Sentinel-2 visible bands (B2, B3 and 
B4). Organic matter has a relationship with electromagnetic radiation in 

the visible region around 450, 590, and 664 nm (Ben-Dor et al., 1997), 
which corresponds to the Sentinel-2 bands, moreover the average soil 
conditions obtained by the Median SBSI bare soils may be less dry than 
those obtained by R90, as moisture content can enhance the difference 
in terms of organic matter content in the visible range (Castaldi et al., 
2016). It should be noted that both BSI and S2WI do not, or only 
partially, use the visible bands, thus giving more relevance to the NIR 
and SWIR bands at the initial stage of bare pixel selection. Accuracy 
values related by R90 approach are higher than 90% in more than 50% 
of the cases for all the SOC estimation models, and for 60% of the cases 
only using QRFxy models (Table 6). Even though Median and minS2WI 
also provided some high Accuracy values, R90 outperformed the other 
SBSI approaches both for SOC and clay estimation. However the Accu-
racy for clay is higher than 90% only for 30% of the QRFxy models and 
for 40% of the LMM models using R90. According the Accuracy level 
required for EO-based applications reported by Andries et al. (2021) 
(>90%), R90 is the most promising SBSI for SOC monitoring, despite it 
mostly exploited satellite images acquired in late summer or autumn 
(Table 4) for the ten test sites; the solar altitude angles in this period are 
lower than in spring and early summer, thus making more difficult the 
atmospheric correction process (Vermote et al. 2016; Dvorakova et al., 
2023). Moreover not considering the bidirectional reflectance distribu-
tion function (BRDF) effects could negatively affect Sentinel-2 applica-
tions, especially for images acquired far from spring time, thus for data 
not close to the orthogonal plane. This BRDF effects could be really 
significant in winter and showing increasing magnitude with wave-
length, therefore with high negatively effects on SWIR (Roy et al., 2016). 
However, observing the VI bar plots for clay estimation using R90 
(Fig. 8), it is obvious how B12 is really important and the difference 
between its VI value and the VI of the visible bands is quite clear, while 
such difference looks less noticeable for SOC prediction models by the 
Median SBSI approach. Although B12 is a quite broad band, it contains 
the spectral region affected by clay minerals and it is sensitive to water 
content, this can explain how the R90 approach is more efficient for 
estimating clay. Also, Gomez et al. (2022) observed how by selecting 
acquisition dates shortly after a rainfall event, the clay estimation ac-
curacy drastically decreases, confirming the importance of selecting as 
dry soil conditions as possible to better highlight the contrast between 
different soil textures within the field; this because the differences in soil 
moisture due to soil texture are generally less detectable in very wet soil 
conditions, while the capacity for clay soils to hold water is more visible 
under dryer conditions. Moreover, R90 mostly selected images acquired 
after the winter crops seedings (late Summer – early Autumn), thus 
when the surface was smoothed, reducing the roughness and conse-
quently reducing the anisotropic behavior of the soil and the BRDF ef-
fects. It should be notated that all the ten sites in this study are situated 
in very flat areas, reducing the anisotropy of the spectral response. 
However, considering the importance of the two SWIR bands both for 
SOC and clay estimation, the implementation of an approach to adjust 
Sentinel-2 reflectance data taking into account the BRDF effects, could 
lead to a not negligible improvement of the prediction accuracy (Roy 
et al., 2016), especially for rugged terrain and hilly regions where the 
anisotropic effect could be very consistent (Wen et al., 2018). 

Gasmi et al. (2021) obtained satisfactory results for clay prediction 
using SBSI created computing the mean spectral reflectance from bare 
soil pixels along a Landsat-8 time series (RPIQ = 3.21). The highest 
spatial resolution of the Sentinel-2 data (10–20 m) as compared to 
Landsat-8 (30 m) can improve the estimation accuracy both for SOC and 
clay, as clearly shown in Castaldi, 2021 and Mzid et al., 2022. The high 
spectral resolution (more than 200 bands and narrow bandwidths) of the 
new generation of hyperspectral satellite imagers such as PRISMA 
(PRecursore IperSpettrale della Missione Applicativa) (Cogliati et al., 
2021; Pignatti et al., 2012) and the Environmental Mapping and Anal-
ysis Program EnMAP (Guanter et al., 2015) can be successfully exploited 
for the estimation of soil properties, improving the accuracy as 
compared to multispectral sensors such as those on board of Sentinel-2 
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and Landsat-8 satellites (Castaldi et al., 2016; Mzid et al., 2022; Žížala 
et al., 2019; Wocher et al., 2022). The narrow bands, especially in the 
SWIR region, allow to properly exploit the spectral features related to 
organic matter and clay minerals. Nevertheless, the revisit time of 
EnMAP and PRISMA (27 – 29 days at nadir) is higher than those of the 
Sentinel-2 (5 days) and Landsat-8 (16 days), this can reduce the prob-
ability of finding cloud free images with soil in bare condition. 
Furthermore, the hyperspectral data assume a higher level of complexity 
for the processing chain as compared to multispectral data: this factor 
can be an issue for the implementation of automated mosaicking ap-
proaches such as those tested in this work. Mzid et al. (2021) estimated 
the frequency of bare soil – cloud-free images available over four 
cropland areas in Italy according to different revisit times, and they 
observed how the possibility of finding useful images becomes close to 
zero for a revisit time exceeding 15 days, especially in Northern Italy test 
area where a higher cloud frequency occurs. The planned Sentinel-10/ 
CHIME (Copernicus Hyperspectral Imaging Mission for the Environ-
ment) (Nieke and Rast, 2019), will deliver a large amount of hyper-
spectral data every 10 – 12.5 days, thus facilitating the implementation 
of multi-temporal analysis for soil properties mapping. Moreover, the 
Sentinel-2 data can be exploited to figure out the best period for 
detecting bare soil conditions within a time series thanks to their high 
frequency of acquisition over the same area, and consequently opti-
mizing the pre-processing and modelling efforts focusing on the best 
hyperspectral acquisition date and developing a multi-sensor and multi- 
temporal Earth Observation system. 

4.4. Accounting for spatial structure and uncertainty analysis 

All the work cited in the previous section did not use the 
geographical information related to soil samples to build hybrid pre-
diction models. Nevertheless, Sentinel-2 spectral data retrieved from 
each pixel can be productively used as auxiliary variables in geo-
statistical or hybrid models because the relatively high spatial resolution 
is generally higher than the average distance between soil samples in the 
field (Vaudour et al., 2022). The hybrid methods, such as Regression 
Kriging, kriging with external drift, or LMEM combine regression models 
for the estimation of the coefficients of the covariates (deterministic 
part) and the spatial structure of the residual (stochastic part). The 
implementation of this kind of models using satellite data produced 
reliable soil properties prediction models (Mirzaee et al., 2016; Simba-
han et al., 2006). The comparison between QRF and the other models 
(QRFxy and LMEM) highlighted the advantage of including the spatial 
autocorrelation both for clay and SOC estimation. In particular QRFxy 
models provided Accuracy values higher than 90% in 52.5% of the cases 
for SOC and 22.5% for clay, while the frequencies for QRF are 37.5% for 
SOC and 15% for clay (Table). 

If the soil dataset was collected in the same field, there is a strong 
possibility that most measured soil properties would exhibit a spatial 
autocorrelation, therefore using a multivariate regression model 
without accounting for the spatial structure violates the sample inde-
pendence assumption of the regression. Obviously, if a spatial structure 
exists, the implementation of spatial or hybrid models can lead to an 
improvement of the estimation accuracy. The results of the VI analysis 
shown in Figs. 8 and 9 clearly indicates the importance of the X and Y for 
the QRFxy models, and often their VI values are higher than those 
observed for the Sentinel-2 bands. The LMEMs showed the best perfor-
mances in some test sites both for clay and SOC estimation, however, the 
differences in terms of RPIQ are not so evident as compared to QRFxy 
and moreover, LMEM often showed really high uncertainty of the esti-
mated values (Table 6; Fig. 9b). A spatial structure of the QRF residual 
was detected both for SOC and clay in the TUR_KOC dataset according to 
the Moran’s I test and, actually, the LMEM models improved the esti-
mation accuracy as compared to QRF and QRFxy. Yet, the standard 
deviation of the estimates is really high in this site. TUR_KOC site is not a 
single field, but it is a set of adjacent fields, some of which in the 

northern side, irrigated by a center-pivot system, and this can explain 
such high uncertainty. Consequently, the tested spatial approaches 
(QRFxy and LMEM) seem to be most effective to determine the SOC and 
clay variation in singular field, while over larger regions the differences 
in agronomic and soil management might hide or change natural spatial 
variability of soil properties, making more difficult the implementation 
of spatial models (Castaldi et al., 2019c). 

Also, ITA_VAL site is composed of three fields and in this case, due to 
a management difference between the fields, there is not a spatial 
structure in the soil data and the uncertainty of the models is very high. 
On the contrary, other single-field test sites, such as TUR_DAL or 
LIT_RUM for Median and R90 models, showed uncertainty levels similar 
to the QRFxy models. LMEM is a hybrid method that includes geo-
statistics and therefore the estimates provided by kriging interpolation 
are smooth and the kriging variance, from which we retrieved the 
“pointwise uncertainty”, as defined here, provides quantitative infor-
mation about the smoothness (Deutsch, 2003). Therefore, even though 
the prediction error is low, the higher the variance, the higher the 
smoothness and the uncertainty of the SOC and clay estimates. It should 
be specified that the uncertainty that is computed here, is not exactly the 
one defined from confidence intervals. A further development of our 
study would consist of comparing approaches of uncertainty assessment, 
for instance the pointwise uncertainty previously defined by Zaouche 
et al. (2017) and that retrieved by Vaysse and Lagacherie (2017). In 
general, the combination of R90 or Median SBSI and spatial models 
(QRFxy or LMEM) outperformed the other tested approaches. The SOC 
predicted values obtained by the R90_QRFxy models showed in Fig. 13a 
are very close to the 1:1 line for all the ten test sites, thus for the whole 
SOC range, while in Fig. 13b, the predicted values obtained by maxB-
SI_QRF are scattered and mostly grouped around the average SOC value 
for each national group. For clay estimation also, the predicted values 
gained by the R90_LMEM models showed in Fig. 13c are less dispersed 
compared to those obtained using maxBSI_QRF models (Fig. 13d), 
especially for the Turkish and Italian samples that have the highest clay 
content. 

The high sampling density in most of the ten sites raises the question 
of whether the use of satellites bands as covariates provides an advan-
tage over geostatistical approaches for the estimation of soil properties. 
It should be noted that the minimum number of sampling units to esti-
mate an accurate variogram function for geostatistical prediction is 100 
(Kerry and Oliver, 2007), while the use of the REML, the same approach 
used here for LMEMs, allows the estimation of the variogram with fewer 
sampling units (Kerry and Oliver, 2007). Except for TUR_KOC, less than 
100 were collected within the test sites, therefore the use of satellite- 
retrieved information allowed mapping SOC and clay content using 
fewer samples than necessary for the implementation of geostatistical 
approaches. However, if on one hand the sampling density for most of 
the ten sites is still considerably high, on the other hand, observing the 
prediction accuracies of the test sites, the density does not seem to in-
fluence the performances. Therefore, a compromise needs to be found 
between estimation accuracy and sampling density and consequently 
the sampling cost. According to Castaldi et al. (2019b), the ratio be-
tween accuracy and sampling density can be optimized by chosing al-
gorithms based on the feature space, instead of the geographical space, 
where the covariate data are the Sentinel-2 bands. Future investigations 
should focus on strategies and algorithms for the reduction and the 
optimization of the sampling density for the calibration of SOC and clay 
prediction models at local scale. 

5. Conclusions 

Focused on the feasibility of Sentinel-2 based approaches for the 
detailed mapping of topsoil clay and SOC contents at the local scale, this 
study built several two-years-Sentinel-2 temporal mosaics or SBSI, for 
cropland sites of contrasted climate and soil types across the Northern 
hemisphere. Relying on a number of spectral indices and a pixelwise 
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basis, it focused on i) pure bare soil condition, ii) driest soil condition, iii) 
average bare soil condition and iv) dry soil conditions excluding extreme 
reflectance values. Overall performances were reasonably accurate: the 
average RPIQ of the best performances among the test sites was 2.50 
both for SOC and clay. However, both accuracy level and uncertainties 
were mainly influenced by site characteristics of soil and soil manage-
ment, in combination with the SBSI approach and the model type. 

The models including a spatial component were the best performing, 
especially QRFxy models (average RPIQ = 2.13), as compared to models 
only using Sentinel-2 bands as independent variables (average RPIQ =
1.80), while the best spatial mosaicking approaches mostly were iii) or 
iv). The most frequent best combination of SBSI and model type was 
Median and QRFxy for SOC, while for clay estimation, it was less 
obvious and in favor of R90 and LMEM. According to the validation 
results showed in this work, R90 is the most promising SBSI approach for 
SOC and clay estimation and it could be successfully used for SOC 
monitoring: R90 approach outperformed the other SBSI approaches 
providing Accuracy values higher than 90% in 53.3% of validation tests 
for SOC and in 26.7% for clay. 

The assessment of pointwise uncertainty as we defined it appears to 
be key as some accurate estimations may actually be very uncertain. 
Future challenges will consist of looking further into the possible reasons 
why models vary according to site, as well as the possible reasons for 
such uncertainty, presumably linked to the assemblage of several pixels 
taken at several dates with heterogeneous soil surface preparation, soil 
surface moisture and roughness. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This work was supported by the European Union’s Horizon H2020 
research and innovation European Joint Programme Cofund on Agri-
cultural Soil Management (EJP-SOIL grant number 862695) and was 
carried out in the framework of the STEROPES of EJP-SOIL. Data used 
for Lithuanian experimental fields were partly collected within “Con-
nectFarms“ project and funded by the Joint Call of the Cofund ERA-Nets 
SusCrop (Grant No 771134), FACCE ERA-GAS (Grant No 696356), ICT- 
AGRI-FOOD (Grant No 862665) and SusAn (Grant No 696231). Data 
used for the Italian experimental fields were collected within the “Dig- 
control” project, funded by Rural development 2014–2020 forOpera-
tional Groups (Art 56 of Reg.1305/2013). Special thanks to the opera-
tional, sample taking and laboratory teams. 

References 

Andries, A., Morse, S., Murphy, R.J., Lynch, J., Mota, B., Woolliams, E.R., 2021. Can 
Current Earth Observation Technologies Provide Useful Information on Soil Organic 
Carbon Stocks for Environmental Land Management Policy? Sustainability 13, 
12074. https://doi.org/10.3390/SU132112074. 

Arrouays, D., Grundy, M.G., Hartemink, A.E., Hempel, J.W., Heuvelink, G.B.M., Hong, S. 
Y., Lagacherie, P., Lelyk, G., McBratney, A.B., McKenzie, N.J., Mendonca-Santos, M. 
D.L., Minasny, B., Montanarella, L., Odeh, I.O.A., Sanchez, P.A., Thompson, J.A., 
Zhang, G.L., 2014. GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil 
Properties. Advances in Agronomy 125, 93–134. https://doi.org/10.1016/B978-0- 
12-800137-0.00003-0. 

Ben-Dor, E., 2002. Quantitative remote sensing of soil properties. In: Advances in 
Agronomy. Academic Press, pp. 173–243. 

Fig. 13. scatterplots of the validation results using the combination of a) R90 + QRFxy models, b) maxBSI + QRF, c) R90 + LMEM, d) maxBSI + QRF.  

F. Castaldi et al.                                                                                                                                                                                                                                 

https://doi.org/10.3390/SU132112074
https://doi.org/10.1016/B978-0-12-800137-0.00003-0
https://doi.org/10.1016/B978-0-12-800137-0.00003-0
http://refhub.elsevier.com/S0924-2716(23)00077-1/h0015
http://refhub.elsevier.com/S0924-2716(23)00077-1/h0015


ISPRS Journal of Photogrammetry and Remote Sensing 199 (2023) 40–60

59

Ben-Dor, E., Inbar, Y., Chen, Y., 1997. The reflectance spectra of organic matter in the 
visible near-infrared and short wave infrared region (400–2500 nm) during a 
controlled decomposition process. Remote Sens. Environ. 61, 1–15. https://doi.org/ 
10.1016/S0034-4257(96)00120-4. 

Bouyoucos, G.J., 1951. A Recalibration of the Hydrometer Method for Making 
Mechanical Analysis of Soils1. Agron J. 43, 434–438. https://doi.org/10.2134/ 
AGRONJ1951.00021962004300090005X. 

Brockett, B.F.T., Browne, A.L., Beanland, A., Whitfield, M.G., Watson, N., Blackburn, G. 
A., Bardgett, R.D., 2019. Guiding carbon farming using interdisciplinary mixed 
methods mapping. People Nat. 1, 191–203. https://doi.org/10.1002/PAN3.24/ 
SUPPINFO. 

Bukantis, A., 2009. Agroclimatic zoning. Lithuanian National Atlas. National Land 
Service under the Ministry of Agriculture, Vilnius.  

Cao, Y., Bao, N., Liu, S., Zhao, W., Li, S., 2020. Reducing moisture effects on soil organic 
carbon content prediction in visible and near-infrared spectra with an external 
parameter othogonalization algorithm (MA Naeth, Ed.). Can. J. Soil Sci. 100, 
253–262. 

Castaldi, F., 2021. Sentinel-2 and landsat-8 multi-temporal series to estimate topsoil 
properties on croplands. Remote Sens. (Basel) 13. https://doi.org/10.3390/ 
rs13173345. 

Castaldi, F., Chabrillat, S., Don, A., van Wesemael, B., 2019a. Soil organic carbon 
mapping using LUCAS topsoil database and Sentinel-2 data: An approach to reduce 
soil moisture and crop residue effects. Remote Sens. (Basel) 11. https://doi.org/ 
10.3390/rs11182121. 

Castaldi, F., Chabrillat, S., van Wesemael, B., 2019b. Sampling strategies for soil property 
mapping using multispectral Sentinel-2 and hyperspectral EnMAP satellite data. 
Remote Sens. (Basel) 11. https://doi.org/10.3390/rs11030309. 

Castaldi, F., Hueni, A., Chabrillat, S., Ward, K., Buttafuoco, G., Bomans, B., Vreys, K., 
Brell, M., van Wesemael, B., 2019c. Evaluating the capability of the Sentinel 2 data 
for soil organic carbon prediction in croplands. ISPRS J. Photogramm. Remote Sens. 
147 https://doi.org/10.1016/j.isprsjprs.2018.11.026. 

Castaldi, F., Palombo, A., Santini, F., Pascucci, S., Pignatti, S., Casa, R., 2016. Evaluation 
of the potential of the current and forthcoming multispectral and hyperspectral 
imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 179 
https://doi.org/10.1016/j.rse.2016.03.025. 

Chabrillat, S., Ben-Dor, E., Cierniewski, J., Gomez, C., Schmid, T., van Wesemael, B., 
2019. Imaging Spectroscopy for Soil Mapping and Monitoring. Surv Geophys 40, 
361–399. https://doi.org/10.1007/S10712-019-09524-0/TABLES/2. 

Chen, L., Smith, P., Yang, Y., 2015. How has soil carbon stock changed over recent 
decades? Glob. Chang. Biol. 21, 3197–3199. https://doi.org/10.1111/GCB.12992. 

Cogliati, S., Sarti, F., Chiarantini, L., Cosi, M., Lorusso, R., Lopinto, E., Miglietta, F., 
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