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 41 

ABSTRACT 42 

Context. Crop rotations, within-field mixtures, and landscape mosaics including susceptible and resistant crops are 43 

three commonly adopted crop diversification strategies that can limit crop epidemics. Typically, the effects of crop 44 

diversification at these three scales have been studied separately, on single pathogen species, and with low 45 

environmental variability.  46 

Objectives. We aim to compare the disease-limitation effect of these three types of crop diversification on two 47 

highly damaging fungal pathogens of wheat Puccinia recondita (WLR) and Zymoseptoria tritici (STB) and under 48 

varying weather conditions (warmer or cooler climate for WLR, wetter or drier conditions for STB). 49 

Methods. We built a dynamic mathematical model of epidemics at the field scale (based on classical Susceptible-50 

Exposed-Infectious-Removed epidemiological models) embedded in a spatially explicit landscape grid 51 

framework. We use it to simulate an agricultural landscape in which diversification translates into different 52 

proportions of wheat and resistant crops in the landscape. 53 

Results. In our simulations, for both pathogens and in all weather conditions, within-field crop mixtures had the 54 

greatest impact in limiting epidemics, crop rotations were second-best, while landscape mosaics were the least 55 

effective. We also found that the threshold above which further addition of resistant plants to crop mixtures would 56 

not cause further disease limitation to be dependent on weather conditions. The more favorable the weather is for 57 

pathogens the more resistant plants are required. 58 

Conclusions. Our findings imply that interactions between spatial the scale of crop diversification, pathogen 59 

characteristics and weather conditions should be considered in order to maximize benefits from disease-regulation 60 

properties of diversified cropping systems under climate change. 61 

 62 
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INTRODUCTION 81 

Promoting crop diversity in agricultural systems is a promising strategy to sustainably regulate epidemics 82 

ecologically and limit harvest and economic losses (Barot et al. 2017). At the scale of a single field, sowing 83 

mixtures of susceptible and resistant crop varieties (Finckh et al. 2000; Mundt 2002; Newton 2009) or species 84 

(Mommer et al. 2018) can reduce fungal epidemics up to 70-80% (Kolster et al. 1989; Finckh et al. 1999). At the 85 

landscape scale, crops arranged in a mosaic of resistant and susceptible fields side by side also hamper pathogen 86 

development (Burdon et al. 2014; Papaïx et al. 2014a, b; Rimbaud et al. 2018b). Along with crop diversification 87 

across space, diversification can also be managed through time. In the same field, rotation of different crops in 88 

successive years has long been known for its role in preventing the build-up of pathogen (Hossard et al. 2018; 89 

Bargués-Ribera and Gokhale 2020). 90 

 91 

Several processes have been proposed to explain the impact of crop diversification on fungal epidemics. For crop 92 

rotations, the main mechanism involved is inoculum mortality in the absence of the host during one or several 93 

years (Hossard et al. 2018). For within-field crop diversification, the presence of resistant crops within a field 94 

reduces the density of susceptible crop and act as a barrier to pathogen dispersal by intercepting spores (processes 95 

reviewed by Mundt 2002). The resistant crop can be either a resistant variety of the same species or belong to 96 

another species. Resistant varieties can be totally resistant to a given disease (qualitative resistance based upon 97 

major resistance genes), but more often they are only partially resistant (quantitative resistance based on several 98 

genes), hampering the infectious cycle of the pathogen. Till now, most studies concerned with the impact of crop  99 

mixtures on diseases have focused on cultivar mixtures rather than species mixtures (Wolfe, 1985; Finckh et al., 100 

2000; Mundt, 2002, Hossard et al. 2018)) and we are not aware of any comparison between cultivar and species 101 

mixtures in terms of disease limitation potential. Although the processes on pathogens development are quite 102 

similar, two differences between cultivar and species mixtures can be highlighted. The first one is the level of 103 

pathogen resistance. Many fungal crop pathogens being specialists, the companion crop in species mixtures is 104 

usually completely resistant to the disease, while cultivar mixtures usually associate different levels of partial 105 

resistance. The second one corresponds to the structure of the crop canopy. Indeed, canopy growth and architecture 106 

differ usually more between species than between different cultivars of the same species (Evers et al. 2019; Gaudio 107 

et al. 2022), thus create more heterogeneous micro-environments for pathogens. Comparing the effects of cultivar 108 

and species mixtures could be useful to optimize disease regulation in the field. 109 

 110 

Until now, most studies evaluating the ecological benefits of crop diversification focused on one practice at a time 111 

(Beillouin et al. 2019), one pathogen at a time, and in one given environment. We found only two studies 112 

comparing the effects of within-field crop mixtures, landscape mosaics and rotations on the regulation of wheat 113 

rust (Papaïx et al. 2018; Rimbaud et al. 2018a). Yet, that study focused on the effect of diversification on the speed 114 

of pathogen breakdown of crop resistance and therefore put little emphasis on the ecological regulation conferred 115 

by crop diversification at the different scales. While multiple pathogen traits (including latent period, dispersal 116 

mode, interculture survival and overwintering) and environmental conditions (weather in particular) all modulate 117 

the pathogen’s response to crop diversification practices (McDonald and Linde 2002; Robert et al. 2008; Fabre et 118 

al. 2015), past research limitation to one practice or one pathogen at a time did not account for the complexity 119 
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arising from the interactions between functional traits of pathogens, weather conditions and diversification 120 

practices (Nicholls and Altieri 2004).  121 

 122 

In this study, we simulate the impact of three types of crop diversification deployed across different spatial and 123 

temporal scales (within-field mixtures, field mosaics and crop rotations), considering two types of resistant plants 124 

(fully resistant and partially resistant) on two pathogen species under various seasonal weather conditions. We 125 

focus on two pathogens with contrasted traits and contrasted responses to weather conditions (Robert et al. 2005; 126 

Garin et al. 2014) that are highly damaging pathogenic fungi of wheat: wheat leaf rust (hereafter WLR) and 127 

Septoria tritici blotch (hereafter STB). We developed a dynamic mathematical model of epidemics at the within-128 

field scale (based on Susceptible-Exposed-Infectious-Removed, SEIR model (Gilligan 2008), embedded in a 129 

spatially explicit landscape grid framework (Papaïx et al. 2014a; Rimbaud et al. 2018a; Le Gal et al. 2020) where 130 

crop fields in the landscape are linked through pathogen dispersal. The model is original in its ability to simulate 131 

spatial scales from the field to the landscape and temporal scales from a daily rainfall event, to a crop season and 132 

then to several years of cultivation and to simulate different foliar fungal pathogens with different infection cycle 133 

traits and responses to climate.  134 

 135 

 136 

METHODS 137 

In this section, we first present some biological features of the two pathogens that we deemed necessary to 138 

understand our modelling choices. We then describe the implementation of the model before finally presenting 139 

the simulation scenarios. 140 

 141 

Fungal pathogens 142 

Wheat leaf rust (Puccinia recondita f. sp. tritici, hereafter WLR) and Septoria tritici blotch (Zymoseptoria tritici, 143 

hereafter STB) share biological features common to many leaf pathogenic fungi (van Maanen and Xu 2003; Caubel 144 

et al. 2012; Garin et al. 2014). In particular, they cause polycyclic diseases: spores that fall on leaves of susceptible 145 

plants germinate and infect the leaf where they create new lesions. The time between infection and the onset of 146 

reproduction of lesions is called the latent period. At the end of this period, lesions become mature and start 147 

releasing spores. Spores disperse and can initiate new lesions on the same leaf, on other leaves of the same plant 148 

or on the leaves of new susceptible hosts nearby (in the field or further). The number of infection cycles determines 149 

the intensity of the annual epidemic. 150 

 151 

Based on previously published comparisons between WLR and STB (Robert et al. 2005; Garin et al. 2014), we 152 

considered four main differences between their life cycles that may lead to contrasted responses to crop 153 

diversification and weather variables: (i) duration of the latent period, (ii) dispersal ability (dispersal mode and 154 

range), (iii) start date of the epidemic depending on weather conditions, and (iv) trophic behaviour and 155 

associated capacity to survive the interculture. Trait differences are reflected by differences in parameter values 156 

in our model (Table 1). In this section we explain the four main differences considered and how we expressed 157 

these differences in our model. 158 

 159 
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First, STB has a longer latent period, and thus a longer infection cycle than WLR (Précigout et al. 2020a). The 160 

duration of an infection cycle, and the number of infection cycles during a cropping season, are key pathogen 161 

characteristics interacting with crop growth, determining the outcome of the crop-pathogen interaction and 162 

therefore the amount of damage caused by the pathogen (Robert et al. 2008, 2018; Précigout et al. 2017; Garin et 163 

al. 2018). This is why we aimed to incorporate this important aspect in our classical SEIR model by implementing 164 

an age structure of the lesions when they are latent (see Eqs. 21-23 below). In doing so, we ensure that any amount 165 

of leaf surface newly infected will remain asymptomatic during a full latent period (𝜆 parameter) before becoming 166 

infectious. To our knowledge, this is the first combination of a semi-continuous SEIR model and a discrete 167 

modelling of the latent period of the pathogen. The latent period of pathogenic fungi is particularly sensitive to 168 

temperature (Précigout et al. 2020a). This is why in our model, we chose to express both plant and pathogen 169 

development (and thus latent periods) in thermal time (degree-days, dd) (Robert et al. 2008, 2018; Garin et al. 170 

2014; Précigout et al. 2017). 171 

 172 

Second, STB asexual spores mainly disperse through raindrop splashes from infected leaves (Eyal 1987)  while 173 

WLR asexual spores are mainly dispersed by wind (Sache 2000b). Consequently, STB asexual spores disperse 174 

over shorter distances (up to one meter within a field (Saint-Jean et al. 2004)) while wind allows WLR asexual 175 

spores to disperse over short (within a field) and long (outside the field) distances (Sache 2000b; Mundt et al. 176 

2011). Furthermore, because the dispersal of STB asexual spores occurs only when rainfall is of sufficient intensity 177 

(Walklate 1989), dispersal events of STB are less frequent than those of WLR, for which dispersal takes place 178 

almost every day as long as air humidity is not too low (Duvivier et al. 2016). In a much lower proportion, STB 179 

also produces sexual spores dispersed by wind that can leave their native field. Their role in epidemic propagation 180 

was considered as low (Suffert and Sache 2011), but recent studies question their importance in particular for long 181 

distance dispersal, survival in dry weather and inoculum production. Suffert and Sache (2011) and Suffert et al. 182 

(2019) indeed showed that though usually rare, these long-distance dispersal events could be of significance since 183 

they can lead to the infection of neighboring fields. This is why in our model we consider both asexual and sexual 184 

spores for STB. This is an additional originality of our model. We modelled the specific spore dispersal 185 

characteristics via different dispersal types (d function, Eqq. 10 and 11), different maximum dispersal distances ( 186 

parameter, Eq. 12) and different behaviours concerning dispersal outside the native field ( parameter, Eq. 10). 187 

 188 

Third, in addition to the impact on dispersal, weather conditions also influence the onset of epidemics. In western 189 

Europe, winter wheat is sown in late October and STB epidemics start after seedling germination, when inoculum 190 

is splashed from the local crop residues (Suffert and Sache 2011; Morais et al. 2016). In our model, wheat seedlings 191 

can be infected from the first rainfall after plant germination if any inoculum is present in the field (as in Robert 192 

et al. (2008, 2018) and Baccar et al. (2011)). By contrast, WLR epidemics usually begin between late March (early 193 

epidemics, 800 dd after sowing) and May (late epidemics, 1300 dd after sowing (El Jarroudi et al. 2014; Duvivier 194 

et al. 2016)). The date of the onset of the epidemic depends on weather conditions (weather should be warm 195 

enough) and also it requires the presence of an inoculum, which can be external or internal to the field (Sache 196 

2000b). Moreover, the date of the onset of the epidemic is known to determine the intensity of epidemics: the 197 

earlier they start, the more intense they are (Garin et al. 2018). In our model, this difference is reflected in the onset 198 
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date (ks, Eq. 9) of the epidemic that depends on the first rain for STB and that is set between March and May for 199 

WLR, reflecting different climatic spring conditions. 200 

 201 

Fourth, STB is a hemibiotrophic pathogen that infects living tissue but kills the infected tissue to reproduce, 202 

while WLR is a biotrophic pathogen that needs living host tissue to live and reproduce (Perfect and Green 2001; 203 

Précigout et al. 2020a). This trophic characteristic has an impact on spore survival. STB can indeed survive the 204 

interculture and overwinter on dead crop residues (Suffert and Sache 2011), whereas WLR can only survive the 205 

interculture period in the presence of infected residual live plants or volunteer plants (Roelfs and Bushnell 1985; 206 

Eversmeyer and Kramer 1998). This difference is reflected in our model by a higher survival capacity during the 207 

interculture of STB (𝜃 parameter, Eq. 14). 208 

 209 

Model overview 210 

In our model, the landscape is a grid of 21 x 21 square fields. Fields are the elementary units of our model. Each 211 

field is planted with a resistant or susceptible crop, or a mixture of both. The resistant crop is either a partially 212 

resistant wheat cultivar or a different crop species (pea) totally resistant to the disease, depending on the 213 

simulations. Both susceptible and resistant crops follow the same annual growth pattern. A year in the model 214 

corresponds to a crop growing season. We express both plant and pathogen growth in thermal time (degree-days, 215 

dd), facilitating the description of epidemics, whose development follows plant growth and its response to 216 

temperature. The disease dynamics, modelled at the field scale, correspond to a classical SEIR epidemiological 217 

model with inclusion of an age structure for the latent (E) compartment in order to model the pathogen’s latent 218 

period as a discrete time period rather than a transmission rate between E and I. The model keeps track of the 219 

number of spores released during each dispersal event, both within the field and outside the field. We consider 220 

different routes of infection depending on the type of inoculum. At the landscape scale, infected fields are linked 221 

together through pathogen dispersal. Table 1 gives the list of the model parameters along with their values and 222 

biological interpretation. 223 

 224 

Crop growth and seasonality of susceptible crops 225 

The healthy canopy of the susceptible wheat cultivar is represented by its green leaf area index S ("susceptible" 226 

leaf area). Based on published empirical data (Hinzman et al. 1986; Benbi 1994; Forsman and Poutala 1997; Baccar 227 

et al. 2011; Huang et al. 2016), the wheat growth curve is simulated using a logistic model. S increases from sowing 228 

(kinit = 0 dd) to 𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑤 = 1400 dd, where k represents the discrete time index within a year. After 𝑘 = 𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑤, 229 

S becomes senescent at a rate 𝜇𝑤 and is transformed into R (“removed” leaf surface). Hence, in a healthy canopy, 230 

the total leaf area index at time k is 𝐿𝐴𝐼𝑘 = 𝑆𝑘 + 𝑅𝑘 . The dynamics of 𝑆𝑘  and 𝑅𝑘  are given by: 231 

 232 

𝑆𝑘+1 = 𝑆𝑘 + 𝑔(𝑘) − 𝜇𝑤𝑆𝑘1𝑘≥𝑘𝑔𝑟𝑜𝑤𝑡ℎ
(𝑘) 233 

(Eq. 1) 234 

 235 

with 𝑔(𝑘) being the growth rate of the crop corresponding to a logistic equation. 𝐾𝑤 represents the crop carrying 236 

capacity (corresponding to the maximum value of the leaf area index) and 𝛽𝑤  the crop growth parameter of the 237 

logistic function. 238 
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 239 

𝑔(𝑘) = 𝛽𝑤𝑆𝑘 (1 −
𝑆𝑘

𝐾𝑤
) 1𝑘<𝑘𝑔𝑟𝑜𝑤𝑡ℎ

(𝑘) 240 

(Eq. 2) 241 

and 242 

𝑅𝑘+1 = 𝑅𝑘 + 𝜇𝑤𝑆𝑘1𝑘≥𝑘𝑔𝑟𝑜𝑤𝑡ℎ
(𝑘) 243 

(Eq. 3) 244 

Note that in the following, 245 

 246 

1𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 (𝑘) = {
1  when the condition is fulfilled

 0       otherwise
  247 

 248 

Growth of the partially resistant wheat cultivar follows the exact same equations. According to other published 249 

empirical data (Béasse et al. 2000; O’Connell et al. 2004; Bedoussac and Justes 2010; Malagoli et al. 2020), 250 

growth of pea follows the same equations but with different growth parameters (𝛽𝑝, 𝐾𝑝, 𝜇𝑝, 𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑝 instead of 251 

𝛽𝑤 , 𝐾𝑤 , 𝜇𝑤 , 𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑤). 252 

 253 

 254 
Supplementary Figure 1: seasonal dynamics of the green Leaf Area Index (LAI) of wheat (solid black line, the 255 

susceptible and resistant cultivars share the same LAI) and pea (dotted green line). Time is expressed in degree-256 

days (dd). 257 

 258 

Disease dynamics 259 

SEIR dynamics. Fields planted with susceptible and partially resistant wheat display SEIR epidemiological 260 

dynamics. In the following, S, E, I and R denote the surface (in square meters per square meter of ground, LAI 261 

unit) of healthy, latent, sporulating and senescent (removed) plant tissue, respectively. Susceptible tissue becomes 262 

exposed at a rate 𝑐(𝑘). Exposed tissue becomes infectious at a rate ℎ(𝑘). As time goes on and spore dispersal 263 
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occurs, older sporulating structures get progressively empty at a rate 𝜓(𝑘). Natural senescence affects all parts of 264 

the canopy at the same rate 𝜇. The dynamics of the different leaf compartments can thus be given by: 265 

 266 

𝑆𝑘+1 = 𝑆𝑘 + 𝑔(𝑘) − 𝑐(𝑘)𝑆𝑘 − 𝜇𝑤𝑆𝑘1𝑘≥𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑤
(𝑘) 267 

(Eq. 4) 268 

 269 

𝐸𝑘+1 = 𝐸𝑘 + 𝑐(𝑘)𝑆𝑘 − ℎ(𝑘) − 𝜇𝑤𝐸𝑘1𝑘≥𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑤
(𝑘) 270 

(Eq. 5) 271 

 272 

𝐼𝑘+1 = 𝐼𝑘 + ℎ(𝑘) − 𝜓(𝑘)𝐼𝑘 − 𝜇𝑤𝐼𝑘1𝑘≥𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑤
(𝑘) 273 

(Eq. 6) 274 

 275 

𝑅𝑘+1 = 𝑅𝑘 + 𝜓(𝑘)𝐼𝑘 + 𝜇𝑤(𝑆𝑘 + 𝐸𝑘 + 𝐼𝑘)1𝑘≥𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑤
(𝑘) 276 

(Eq. 7) 277 

 278 

𝐿𝐴𝐼𝑘 = 𝑆𝑘+𝐸𝑘 + 𝐼𝑘 + 𝑅𝑘  279 

(Eq. 8) 280 

 281 

where 𝑔(𝑘) is the crop growth rate introduced in Eqs. 1 and 2 and 𝐿𝐴𝐼𝑘  corresponds to the total leaf area index of 282 

the field canopy. The functions 𝑐(𝑘), ℎ(𝑘) and 𝜓(𝑘) depend on the pathogen species, the degree of resistance of 283 

the wheat cultivar and the dynamics of the disease in the neighbouring fields, especially the production of inoculum 284 

(spores), and will be explained below (Eqs. 18, 23 and 24 respectively). 285 

 286 

Infection and spore dispersal. Our model keeps track of the number of spores released during each dispersal event, 287 

whether they stay in their native field or not. We thus compute the number of spores present in each field and 288 

potentially able to infect the crop at every time step. In our model, we distinguish between spores of four different 289 

origins: (i) the external primary inoculum, i.e. spores entering the landscape from the outside, corresponding to 290 

long-distance dispersal events 𝑃𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑘); (ii) spores produced within the field during the current year’s epidemic 291 

𝑃𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑘); (iii) incoming spores produced by infectious neighbours in the landscape 𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑘); and (iv) 292 

spores accumulated in the field’s spore pool over time that still participate in the current’s year epidemic 𝑃−𝑝𝑜𝑜𝑙(𝑘).  293 

 294 

(i) The arrival of external spores occurs every year in our simulations, but is limited in both space and time. Only 295 

a fraction p of the N fields gets infected by the external inoculum, and the arrival of that inoculum is limited to a 296 

temporal window of 𝑘𝑐𝑙 = 200 dd long, starting at k = kstart. The value of kstart depends on the nature of the disease 297 

(Table 1). Fields get inoculated at a constant rate Pext,0. This leads to the following number of spores in each of the 298 

Np inoculated fields:  299 

 300 

𝑃𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑘) = 𝑃𝑒𝑥𝑡,0. 1𝑘𝑠𝑡𝑎𝑟𝑡≤𝑘<𝑘𝑠𝑡𝑎𝑟𝑡+𝑘𝑐𝑙
(𝑘) 301 

(Eq. 9) 302 
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 303 

The Np fields receiving external inoculum are randomly chosen every year. The first season’s epidemic in each 304 

simulation is initiated by the arrival of the external inoculum. After that, during the following cropping seasons, 305 

infection starts at k = kstart mainly through infection by spores inherited from the previous year’s epidemic (see 306 

below), although arrival of external inoculum continues to occur at that date. 307 

 308 

(ii) Once an epidemic has started, the number of spores produced and dispersed within an infected field at every 309 

time step k is given by: 310 

 311 

𝑃𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑘) = (1 − 𝛼)𝜎𝐼𝑘 . 𝑑(𝑘) 312 

(Eq. 10) 313 

 314 

where 𝜎 is the pathogen spore production rate. The interpretation of the parameter 𝛼 depends on the pathogen 315 

species. In the case of WLR, 𝛼 corresponds to the fraction of spores (urediospores) leaving the field. Thus, (1 − 𝛼) 316 

corresponds to the fraction of spores remaining in their natal field. In the case of STB, 𝛼 corresponds to the fraction 317 

of spores dispersed by wind (ascospores), not rain (pycnidiospores). Consequently, the (1 − 𝛼) rain-splashed 318 

pycnidiospores are also unable to leave their native field. The dispersal function 𝑑(𝑘) thus differs between the two 319 

pathogens. Since WLR urediospores are airborne and are released daily, we implemented a regular dispersal every 320 

20 degree-days. Since STB pycnidiospores are rain-splashed, we used several weather time series recorded at 321 

Grignon experimental station between 1994 and 2006 to generate several annual rain patterns (the 𝑟𝑎𝑖𝑛 function 322 

in Eqs. 11 and 15) corresponding to more or less favourable weather conditions for pathogen development. An 323 

example of rain pattern is given in Supplementary Fig. 1 (lower panel). The dispersal function 𝑑(𝑘) is given by: 324 

 325 

𝑑(𝑘) = {
𝑤𝑖𝑛𝑑(𝑘) = {

1 if 𝑘 ≡ 0(20)
0      otherwise

           for WLR

𝑟𝑎𝑖𝑛(𝑘)                                                for STB

 326 

(Eq. 11) 327 

 328 

(iii) Infectious fields are a source of inoculum for their neighbours. The quantity of spores received by a given 329 

field depends on the number, distance, and spore production rate of its infectious neighbours. Let A be a receptor 330 

field and B one of its infectious neighbours. Let 𝛿𝐴𝐵 ≤ 𝛥 be the distance between A and B, where 𝛥 is the maximum 331 

dispersal distance of the pathogen. The number of spores transmitted from B to A decreases with increasing 𝛿𝐴𝐵. 332 

But here again, we must distinguish between STB and WLR. In the case of WLR, all (uredio)spores produced 333 

could theoretically be blown away by wind and leave their natal field. We denote by 𝛼 the fraction of spores 334 

produced in a given field that leaves it and contributes to the landscape-scale spread of the disease. To simulate 335 

that, we define 𝛤𝑊𝐿𝑅,𝐴 as the set of fields which centre is within the Euclidian distance 𝛥 of A, A not included. The 336 

number of spores received by A is the sum of the spores emitted by its neighbours towards it. In the case of STB, 337 

we distinguish between rain-splashed spores (a fraction (1 − 𝛼) of the spores produced) and wind-dispersed spores 338 

(the remaining 𝛼). Only the latter can potentially leave their natal field and contribute to landscape-scale disease 339 

spread. But many of them will undoubtedly land within their natal field before some of them are able to disperse 340 
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further (Frezal et al. 2009). To simulate that, we define 𝛤𝑆𝑇𝐵,𝐴 as the set of fields which centre is within the 341 

Euclidian distance 𝛥 of A, A included (in that case, 𝛿𝐴𝐴 = 0). It follows that: 342 

 343 

𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠
𝐴 (𝑘) = ( ∑

1

𝑊𝐴
.

1

𝛿𝐴𝐵 + 1
𝛼𝜎𝐼𝑘

𝐵

𝐵∈𝛤∗,𝐴

) . 𝑑(𝑘) 344 

(Eq. 12) 345 

 346 

with 347 

𝑊𝐴 = ∑
1

𝛿𝐴𝐵 + 1
𝐵∈𝛤∗,𝐴

 348 

(Eq. 13) 349 

 350 

where * denotes the type of pathogen (STB or WLR). 351 

 352 

(iv) Finally, all spores received from the outside of the field or released within the field join a general pool of 353 

spores P corresponding to the spores that did not succeed in infecting plants and have fallen to the ground or on 354 

non-susceptible plant surfaces. The pool of spores plays an important role at the beginning of epidemics, since a 355 

fraction 𝜃 of these spores survives the interculture period between two successive growing seasons and joins the 356 

external inoculum to create the first lesions at 𝑘𝑠𝑡𝑎𝑟𝑡. We model this survival of spores during the interculture as 357 

an instantaneous projection of the number of spores in the pool at harvest (𝑘 = 𝑘𝑒𝑛𝑑) to the start of the next 358 

growing season (𝑘 = 𝑘𝑖𝑛𝑖𝑡). With T and T+1 being two consecutive growing seasons, we get: 359 

 360 

𝑃𝑘𝑖𝑛𝑖𝑡

𝑇+1 = 𝜃𝑃𝑘𝑒𝑛𝑑

𝑇  361 

(Eq. 14) 362 

 363 

Depending again on the pathogen species, spores from that pool can also be remobilized and participate to the 364 

creation of new lesions. Spores from STB survive well on the ground and on crop residues and can be rain-splashed 365 

from the ground onto seedlings for 𝑘𝑠𝑡𝑎𝑟𝑡 ≤ 𝑘 < 𝑘𝑝𝑜𝑜𝑙 . Spores from WLR have a lower survival rate (because the 366 

biotrophic pathogen needs volunteer plants to survive the interculture) but can be remobilized throughout the 367 

course of the epidemic. 368 

 369 

𝑃−𝑝𝑜𝑜𝑙(𝑘) = {
𝑃𝑘 (1 −

𝑘 − 𝑘𝑠𝑡𝑎𝑟𝑡

𝑘𝑝𝑜𝑜𝑙 − 𝑘𝑠𝑡𝑎𝑟𝑡
) ∙ 𝑟𝑎𝑖𝑛(𝑘) ∙ 1𝑘𝑠𝑡𝑎𝑟𝑡≤𝑘≤𝑘𝑝𝑜𝑜𝑙

          for STB

 𝑃𝑘 ∙ 𝑤𝑖𝑛𝑑(𝑘) ∙ 1𝑘≥𝑘𝑠𝑡𝑎𝑟𝑡
                for WLR

   370 

(Eq. 15) 371 

 372 

Therefore, at any time k during the year, the number of spores present in a field can be calculated as: 373 

𝑁𝑠𝑝(𝑘) = 𝑃𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙(𝑘) + 𝑃−𝑝𝑜𝑜𝑙(𝑘) + 𝑃𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑(𝑘) + 𝑃𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝑘) 374 

(Eq. 16) 375 

 376 
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In a given field, the inoculum 𝑁𝑠𝑝(𝑘) spreads within the canopy where it is intercepted at a rate 휀(𝑘) by crop 377 

leaves. Spore interception by the crop canopy follows a Beer-Lambert equation:  378 

 379 

휀(𝑘) = 1 − 𝑒−𝑏𝐿𝐴𝐼˙(𝑘) 380 

(Eq. 17) 381 

 382 

where b is equivalent to the molar extinction coefficient of the Beer-Lambert law. Note that spores intercepted by 383 

the resistant plants, either in crop mixtures or in a resistant field in mosaics and rotations, do not contribute to the 384 

epidemics and are removed from the system. The spores that are not intercepted by any part of the canopy fall to 385 

the ground and build the pool of spores P. The number of spores intercepted by the canopy at time k is thus 386 

휀(𝑘)𝑁𝑠𝑝(𝑘). To simulate crop infection, we subdivided the susceptible part S of the canopy into elementary 387 

surfaces of size 𝑠0. Each elementary surface can be infected only once. Intercepted spores will create lesions in the 388 

susceptible canopy with a probability 𝜋𝑖𝑛𝑓. Hence, the number of lesions produced in the canopy at a given time 389 

follows a Poisson distribution. The proportion of the canopy that intercepts infecting spores and thus becomes 390 

infected is given by Eq. 18. 391 

 392 

𝑐(𝑘) = 1 − 𝑒𝑥𝑝 (
𝜋𝑖𝑛𝑓휀(𝑘)𝑁𝑠𝑝(𝑘)

𝑆𝑘
𝑠0

) 393 

(Eq. 18) 394 

 395 

Spores that were not intercepted by the canopy and spores that were intercepted by the canopy but did not cause 396 

lesions join the pool of spores P. Spores in P decay at a constant rate 𝜌 and contribute, at each time step, to the 397 

within-field infection of susceptible tissue via the function 𝑃−𝑝𝑜𝑜𝑙(𝑘) (Eq. 15). The dynamics of P are thus given 398 

by: 399 

 400 

𝑃𝑘+1 = 𝑃𝑘(1 − 𝜌) − 𝑃−𝑝𝑜𝑜𝑙(𝑘) + (1 − 휀(𝑘))𝑁𝑠𝑝(𝑘) + (1 − 𝜋𝑖𝑛𝑓)휀(𝑘)𝑁𝑠𝑝(𝑘) 401 

(Eq. 19) 402 

 403 

Age-structured latent period. Symptoms of the disease do not appear immediately after leaf infection. They appear 404 

after an incubation period. Spore production begins after an even longer period called the latent period (𝜆 in our 405 

model). To ensure that the elementary surfaces 𝑠0 remain exposed during the latent period, we must keep a record 406 

of the surface of the exposed tissue over time. In our model, we describe latent infected surfaces using an age-407 

structured vector 𝜂𝑘: 408 

𝜂(𝑘) = (𝜂𝑘,1 𝜂𝑘,2   ⋮  𝜂𝑘,𝜆 ) 409 

(Eq. 20) 410 

 411 

where 𝜂𝑘,𝑡 is the fraction of 𝐸𝑘 that got infected t time steps ago. Thus, 𝜂𝑘,1 corresponds to the fraction of 𝐸𝑘 that 412 

just got infected and 𝜂𝑘,𝜆 is the fraction of 𝐸𝑘 that will become infectious. Thus, at any time step k, the exposed 413 

surface can be calculated as: 414 
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 415 

𝐸𝑘 = ∑ 𝜂𝑘,𝑖

𝜆

𝑖=1

 416 

(Eq. 21) 417 

 418 

The vector 𝜂 thus corresponds to the age structure of the exposed crop surfaces. The components of the vector 𝜂 419 

change according to the following rules: 420 

 421 

{
𝜂𝑘+1,1 = 𝑐(𝑘)𝑆𝑘

𝜂𝑘+1,𝑖 = (1 − 𝜇)𝜂𝑘,𝑖−1     ∀𝑖 ∈ ⟦2, 𝜆⟧
 422 

(Eq. 22) 423 

where 𝑐(𝑘) is the infection rate from Eq. 18. 424 

Thus, the transition rate between infected tissue E and infectious tissue I is given by: 425 

 426 

ℎ(𝑘) = 𝜂𝑘,𝜆(1 − 𝜇) 427 

(Eq. 23) 428 

 429 

Emptying of reproductive structures. As time goes on and spore dispersal occurs, older sporulating structures get 430 

progressively empty at a rate 𝜓(𝑘). This rate depends on the frequency of dispersal events and on the average 431 

efficiency of individual dispersal events, which is, in turn, linked to the number of spores per reproductive 432 

structure. 433 

 434 

𝜓(𝑘) = 𝜓0. 𝑑(𝑘) 435 

(Eq. 24) 436 

 437 

with d(k) the dispersal function described by Eq. 11. But owing to the difference in the number of spores between 438 

pycnidia of STB and uredia of WLR, we decided that the number of spores per uredium was not likely to be 439 

limiting (𝜓0 = 0 for WLR). 440 

 441 

Simulating crop diversification 442 

We use the model to simulate crop diversification (i) at three different scales: within-field crop mixtures, crop 443 

rotations and landscape-scale crop mosaics (Fig. 1) and (ii) using two types of resistant crops: combination of a 444 

susceptible and a partially resistant wheat cultivars and combination of susceptible wheat and fully resistant pea. 445 

 446 

Crop mosaics. Crop mosaics correspond to landscape grids where fields planted only with the susceptible crop 447 

(hereafter called “susceptible fields”) and others planted only with the resistant crop (hereafter called “resistant 448 

fields”) coexist. Resistant fields display a S-R structure identical to that of a healthy canopy since we only consider 449 

complete (qualitative) resistance. The dynamics of resistant fields are thus given by Eq. 1-3. The dynamics of 450 

susceptible fields are given by Eq. 4-24. In a mosaic landscape, resistant and susceptible fields are randomly 451 
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distributed across the landscape (Fig. 1). The spatial structure of mosaics remains the same throughout the 10 years 452 

of the simulations. 453 

 454 

Crop rotations. We modelled crop rotations by implementing two types of rotations (Fig. 1). In synchronous 455 

rotations, all the fields in the landscape are either susceptible or resistant. In asynchronous rotations, susceptible 456 

and resistant fields coexist in the landscape in constant proportions every year. In asynchronous rotations, 457 

susceptible and resistant fields are randomly selected at the beginning of each simulation. Since a given field is 458 

alternatively planted with susceptible wheat and resistant crops during one simulation, crop rotations therefore 459 

correspond to crop mosaics changing through time. 460 

 461 

Crop mixtures. Crop mixtures correspond to landscapes where all fields are similar. Diversification takes place at 462 

the field scale. Within a field, the canopy of the crop is divided into two parts: qualitatively resistant and 463 

susceptible. We will denote by Sr and Rr the healthy and removed parts, respectively, of the canopy corresponding 464 

to resistant crops. The total leaf area index (LAI) of a field is then divided into six parts: S, E, I, R, Sr and Rr, so 465 

that:  466 

 467 

𝐿𝐴𝐼𝑘 = 𝑆𝑘+𝐸𝑘 + 𝐼𝑘 + 𝑅𝑘 + 𝑆𝑘
𝑟 + 𝑅𝑘

𝑟  468 

(Eq. 25) 469 

 470 

Mixtures have the same global carrying capacity K as susceptible and resistant fields but the carrying capacity is 471 

divided between the susceptible and the resistant parts of the canopy according to the percentage of susceptible 472 

and resistant hosts in the mixture 𝜔. Thus, for a fraction 𝜔 of susceptible crop in the mixture, one can derive the 473 

dynamics of the system by substituting K for 𝐾′ = 𝐾𝜔 in Eqs. 1, 2 and 4. Note however that there is no difference 474 

between 𝑆𝑘  and 𝑆𝑘
𝑟  in terms of spore interception: both parts of the canopy contribute to spore interception even 475 

though the pathogen can only infect and reproduce on susceptible plants. 476 

 477 

Effects of crop diversification on fungal diseases. Our model allows for the simulation of a dilution effect (Mundt 478 

2002) caused by the resistant crops. The spores intercepted by pea (the fully resistant crop) do not contribute to 479 

the epidemics and are removed from the system. The spores intercepted by partially resistant wheat can create 480 

lesions and participate to epidemic development, but pathogen development is reduced on the partially resistant 481 

cultivar. Here, we consider three major traits of partial resistance together, infection efficiency, latent period and 482 

spore production, which have been parameterised using studies measuring these traits simultaneously (Wang and 483 

Casulli 1995; Azzimonti et al. 2013 for WLR, Loughman et al. 1996; Suffert et al. 2013 for STB). The values of 484 

the parameters chosen correspond to very high levels of partial resistance (see Table 1) In our model, the dilution 485 

effect might be stronger in mixtures than in mosaics and rotations since a large fraction (1 − 𝛼) of the spores do 486 

not leave their native field. We modelled the inoculum-suppression effect of rotations (Hossard et al. 2018) by a 487 

constant decay rate of the spore pool in every field of the landscape ( parameter, Eq. 19). In wheat fields, new 488 

epidemics increase the pool of spores and compensate for the spore pool decay rate so that inoculum accumulates. 489 

In pea fields, no epidemic occurs and the spore pool only decays until the field becomes susceptible and infected 490 

again. Moreover, every year, only a fraction  of spore pool survives the interculture (Eq. 14).(Papaïx et al. 2018) 491 
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 492 

Percentage of susceptible and resistant crop in the landscape. For each of the three types of diversification 493 

(mixtures, rotations and mosaics) and for both pea and partially resistant wheat, we simulate landscapes with 494 

different proportions of susceptible wheat. For mixtures, we compare epidemics when decreasing the proportion 495 

of susceptible wheat in the field from 𝜔=100% (entirely susceptible) to 𝜔=0% (entirely resistant). Note that for 496 

mixtures, we assume that each field in the landscape has the same fraction of susceptible wheat (Fig. 1). 497 

Consequently, for mixtures, the proportion of susceptible wheat in each individual field in the landscape is the 498 

same as the proportion of susceptible wheat in the landscape. The percentage of susceptible wheat in mixtures thus 499 

also corresponds to the fraction of susceptible plants in the whole landscape. For crop mosaics, we compare 500 

epidemics when decreasing the proportion of susceptible wheat fields from 𝜔=100% (susceptible fields only) to 501 

𝜔=0% (resistant fields only) in the landscape. For both synchronous and asynchronous rotations, we vary the 502 

proportion of susceptible wheat in the landscape by simulating two-year cyclical models (resistant-susceptible, r-503 

s) and three-year cyclical models (s-s-r and s-r-r). This corresponds to average proportions of resistant crops in the 504 

landscape (over a full rotation cycle) of 𝜔=50%, 𝜔=33%, and 𝜔=67% respectively. 505 

 506 

 507 

 508 

 509 

 510 

Figure 1: Simulations comparing the effect of the three types of crop diversification (in rows: mixtures, mosaics, 511 
asynchronous and synchronous rotations) on WLR severity in landscapes comprising 33% (left panel) and 67% 512 
(right panel) of the susceptible wheat. Levels of red correspond to disease intensity values measured as the area 513 
under disease progress curve (AUDPC) averaged over periods of three years. These results were obtained with the 514 
set of reference parameters for WLR (Table 1). Epidemiological equilibrium is reached after 8 years in these 515 
simulations, explaining why years 10 to 12 are not presented. 516 
 517 

 518 
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 519 

Simulation equilibrium and output variable 520 

During each simulated cropping season, we follow the pathogen development in each field of the landscape. After 521 

10-12 seasons, the system reaches a one-season epidemiological equilibrium cycle in the case of crop mixtures 522 

and mosaics, and a two-season or three-season equilibrium cycle in the case of two-year and three-year crop 523 

rotations, respectively. To estimate the epidemic levels at equilibrium in landscapes with crop mixtures, mosaics 524 

and rotations, we compute the area under disease progress curve (AUDPC, Madden et al. 2007) over the duration 525 

of the equilibrium cycle. Commonly used in plant epidemiology, AUDPC corresponds to the total area of crop 526 

covered by the disease in a given field during one cropping season. It is a quantitative summary of disease intensity 527 

over time that allows between-year and between-field comparisons. In our simulated landscapes, it is calculated 528 

as the average value over the N wheat-containing fields of the landscape of the total diseased area I of each field: 529 

 530 

𝐴𝑈𝐷𝑃𝐶 =
1

𝑁
∑ ∑ 𝐼𝑖,𝑗

𝑘𝑒

𝑗=0

𝑁

𝑖=1

 531 

(Eq. 26) 532 

 533 

For crop mixtures, AUDPC values correspond to the landscape-scale average epidemic levels of the wheat plants 534 

in the mixtures at equilibrium. For crop mosaics, AUDPC values correspond to the landscape-scale average 535 

epidemic levels of the wheat fields at equilibrium. For crop rotations, AUDPC corresponds to the landscape-scale 536 

average epidemic levels in wheat fields averaged over the duration of the rotation cycle. 537 

 538 

Simulation schedule 539 

For the three types of diversification (mixtures, rotations and mosaics) and for both pea and partially resistant 540 

wheat, we simulate epidemics in the fields of the landscape under three sets of meteorological conditions that are 541 

more or less favourable to STB and WLR (Fig. 2 and 3). We used temporal patterns of rainfall recorded at the 542 

experimental site of Grignon (Fr-78850) between 1993 and 2006 to select favourable and unfavourable rain 543 

patterns for STB simulations. For this, following Robert et al. (2008) and Garin et al. (2014), we analysed rainfall 544 

patterns that take the form of "rain combs" in which each "tooth" represents a pathogen dispersal event 545 

(Supplementary Fig. 1). We chose three of these rain patterns to represent favourable, average and unfavourable 546 

annual weather for STB epidemics: 1994-95 was a favourable year for STB: very rainy winter and regular rain 547 

events during plant growth in spring. Conversely, 1996-97 was unfavourable: there was little rainfall throughout 548 

the year. We also use the more realistic sequence corresponding to the years 1994 to 2006, which includes both 549 

favourable, average and unfavourable years as an average condition (Supplementary Fig. 1). For WLR, following 550 

Duvivier et al. (2016) and Garin et al. (2018), we use the date of the onset of the epidemics to simulate favourable 551 

and unfavourable weather scenarios. Favourable weather leads to epidemics starting 800 dd after sowing while 552 

unfavourable weather leads to epidemics starting 1200 dd after sowing. Average weather conditions lead to 553 

epidemics starting 1 000 dd after sowing (Supplementary Fig. 2). 554 

 555 

To extend the robustness of our results, we explore the impact of crop diversification by varying different 556 

parameters of the infection cycles of the pathogens: inoculum survival (𝜃, Fig. 4) and the intra-season spore 557 
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mortality rate (𝜌, Supplementary Fig. 3). These pathogen traits are important for disease development. Moreover, 558 

these traits could respond to weather conditions. For instance, spore overwintering could become easier for 559 

pathogens as winters become milder. Summer droughts could make survival during the interculture more difficult 560 

if it reduced the availability of volunteer plants or increased spore decay caused by UV radiation and high 561 

temperatures. Favourable climatic conditions on a broader scale may lead to a global increase in pathogen 562 

populations, thereby increasing the inoculum pressure at a regional scale and the pressure of an external inoculum 563 

at the beginning of epidemics. These last simulations were performed for the partially resistant wheat cultivar only. 564 

 565 

Model parameters and implementation 566 

The model was parameterized according to our knowledge of the two pathosystems in order to allow for 567 

qualitatively consistent results with epidemiological data from the literature or data collected at the Grignon 568 

experimental site (Robert et al. 2004, 2005; Frezal et al. 2009; Pariaud et al. 2009; Baccar et al. 2011) and already 569 

used in previous modelling studies (Robert et al. 2008, 2018; Garin et al. 2014). Hence, parameters of the model 570 

were chosen so that maximum disease severity did not exceed two-thirds of the LAI for STB and one-half of the 571 

LAI for WLR (Bancal et al. 2007). This difference explains why maximum disease severity in our simulations is 572 

higher for STB than for WLR. Differences in parameter values are inspired by findings of Robert et al. (2008, 573 

2018), Garin et al. (2014, 2018), and Précigout et al. (2020b). Examples of disease dynamics and sensitivity to 574 

weather conditions can be found in Supplementary Figs. 1 and 2. The model was developed with MatLab (2020). 575 

 576 

 577 

 578 
 579 
Supplementary Figure 2: coherence tests of the effect of rainfall patterns on STB epidemics. A: seasonal dynamics 580 
of crop growth (gLAI: green Leaf Area Index when no epidemics occur; S: surface of susceptible crop remaining 581 
healthy) and epidemiological dynamics (E: latent crop leaf surface; I: infectious crop leaf surface) for six 582 
successive cropping seasons. B: Total of crop leaf surface infected by STB. Below the figure, we represented the 583 
rain comb patterns we used to simulate rainfall in the model, corresponding to transformed data from the Grignon 584 
research station recorded between (here) 1994 and 2000. Year 1994-95 was a favourable year for STB, while year 585 
1996-97 was unfavourable. This sequence os part of the 1993-2006 sequence used as average weather condition. 586 
 587 

 588 

 589 
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 590 

 591 
Supplementary Figure 3: coherence tests regarding the starting date of WLR epidemics. Seasonal dynamics of 592 
crop growth (gLAI: green Leaf Area Index when no epidemics occur; S: surface of susceptible crop remaining 593 
healthy) and epidemiological dynamics (E: latent crop leaf surface; I: infectious crop leaf surface) for A: epidemics 594 
starting early (favorable weather conditions for the pathogen); B: average starting date of epidemics (average 595 
weather conditions for the pathogen) and C: late starting date of epidemics (unfavorable weather conditions for 596 
the pathogen). 597 
 598 
 599 

 600 

 601 

 602 

 603 

 604 

 605 

 606 
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Table 1: model parameters, values and interpretation. dd: degree-days, [LAI]: leaf area index unit (m2 of leaf per 607 

m2 of ground). Subscripts “w” and “p” refer to parameters specific to wheat and pea respectively. Subscript “R” 608 

refers to partially resistant wheat. 609 

 610 

Symbol Value Unit Interpretation 

WLR STB 

Landscape parameters 

N 1089 fields Number of fields in the landscape 

p 0.01 - Fraction of fields infected at the beginning of each simulation 

𝛿𝐴𝐵  - fields Euclidian distance between two fields A and B  

Seasonal dynamics 

k 𝑘𝑖𝑛𝑖𝑡-𝑘𝑒𝑛𝑑 dd Time index within a year 

T 1-12 - Year (crop growing season) index 

𝑘𝑖𝑛𝑖𝑡 0 dd Start of season 

𝑘𝑠𝑡𝑎𝑟𝑡 800-1300 0 dd Arrival date of primary inoculum (annual start date of epidemic) 

𝑘𝑔𝑟𝑜𝑤𝑡ℎ  𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑤 = 1400 

𝑘𝑔𝑟𝑜𝑤𝑡ℎ,𝑝 = 1800 

dd End of period of canopy growth 

kcl 200 dd Time period during which the crop is exposed to external primary inoculum 

𝑘𝑝𝑜𝑜𝑙  ∅ 700 dd Time period during which the crop is exposed to primary inoculum by spores 

from the spore pool 

𝑘𝑒𝑛𝑑 2500 dd End of season 

Crop dynamics 

K 𝐾𝑤 = 𝐾𝑝 = 6 [LAI] Maximum value of Leaf Area Index (LAI) 

𝛽 𝛽𝑤 = 0.09, 𝛽𝑝 = 0.066 [LAI]/(10 dd) Growth rate of the green Leaf Area Index (gLAI) 

𝜇 𝜇𝑤 = 0.03, 𝜇𝑝 = 0.05 [LAI]/(10 dd) Mortality rate of plant tissue 

𝜔 0.1 - 1 - Fraction of susceptible crop in mixtures/landscapes 

Pathogen dynamics & dispersal 

𝑃𝑒𝑥𝑡,0 20 000  spores External primary inoculum 

𝜆𝑆 100 200 dd Latent period (on susceptible wheat) 

𝜆𝑅 130 400 dd Latent period (on partially resistant wheat) 

𝑏 1 [LAI]-1 Spore interception rate by the canopy 

𝑠0 1 cm2 Individual lesion size 

𝜋𝑖𝑛𝑓,𝑆 2x10-4 - Infection probability (on susceptible wheat) 

𝜋𝑖𝑛𝑓,𝑅 6.6x10-5 4x10-5 - Infection probability (on partially resistant wheat) 

𝜎𝑆 1.5x106 5.0x107 [LAI]-1 Spore production rate (on susceptible wheat) 

𝜎𝑅 4.95 x105 7.5 x106 [LAI]-1 Spore production rate (on partially resistant wheat) 

𝜃 0.01 0.15 - Spores survival rate during the intercropping 

𝜌 0.01 0.002 - Spore mortality rate 

𝛼 0.5 0.02 - Fraction of spores leaving their natal field (WLR); fraction of sexual airborne 

spores produced (STB) 

𝜓0 0.3 0 - Emptying rate of pathogen reproductive structures 

𝛥 5 2 fields Maximum dispersal distance of the pathogen 
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RESULTS 611 

 612 

For both pathogen species, for the three types of crop diversification and for the two types of resistant plants, 613 

epidemic intensity (AUDPC) decreased with the decreasing proportion of susceptible wheat within fields and in 614 

the landscape (Figs. 2 and 3). As expected, we found that for both pathogens, unfavourable weather conditions 615 

lead to low epidemic levels regardless of the scale of crop diversification and regardless of the proportion of wheat 616 

in mixtures, rotations and mosaics. Epidemic intensity for WLR peaked when the epidemics started early (800 617 

degree-days (dd), i.e. favourable weather conditions, Figs. 2A and 3A) and stayed very low when the epidemics 618 

started late (1200 dd, adverse weather conditions, Figs. 2C and 3C). The maximum AUDPC of STB was 15 times 619 

higher in very rainy years (favourable weather conditions, Figs. 2D and 3D) compared to AUPDC values in dry 620 

years (adverse weather conditions, Figs. 2F and 3F). 621 

 622 

 623 

 624 
Figure 2: Effects of three types of crop diversification (within-field mixtures, synchronous and asynchronous crop 625 
rotations, and landscape crop mosaics, and percentage of wheat in each of them) and weather conditions on the 626 
intensity of epidemics (AUDPC) of WLR (A-C) and STB (D-F). Here the resistant crop is a partially resistant 627 
wheat cultivar. For WLR, favourable (A) and unfavourable (C) weather conditions lead to an early (800 dd after 628 
sowing) and late (1200 dd after sowing) onset of the epidemic respectively. For STB, the frequency of dispersing 629 
rains is the determining factor. The year 1994-95 (D) and 1996-97 (F) are considered respectively favourable and 630 
unfavourable for the development of the disease. An epidemic beginning at 1000 dd post-sowing for WLR (B) and 631 
the time sequence 1994-2006 for STB (E) are considered as average weather conditions for both diseases 632 
(reference weather conditions in our simulations). 633 
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 634 
Figure 3: Effects of the scale of crop diversification (intra-field crop mixtures, synchronous and asynchronous 635 
crop rotations, and landscape crop mosaics, and percentage of wheat in each of them) and weather conditions on 636 
the intensity of epidemics (AUDPC) of WLR (A-C) and STB (D-F). Here the resistant crop is a different species, 637 
pea, which is fully resistant to both diseases. For WLR, favourable (A) and unfavourable (C) weather conditions 638 
lead to an early (800 dd after sowing) and late (1200 dd after sowing) onset of the epidemic respectively. For STB, 639 
the frequency of dispersing rains is the determining factor. The year 1994-95 (D) and 1996-97 (F) are considered 640 
respectively favourable and unfavourable for the development of the disease. An epidemic beginning at 1000 dd 641 
post-sowing for WLR (B) and the time sequence 1994-2006 for STB (E) are considered as average weather 642 
conditions for both diseases (reference weather conditions in our simulations). 643 
 644 
 645 
Joint effects of crop diversification strategies and weather conditions 646 

 647 

We present the results for the three types of diversification (crop rotations, within-field mixtures, and landscape 648 

mosaics) for two types of resistant crops: either a partially resistant wheat cultivar (Fig. 2) or a different species, 649 

pea, fully resistant to both diseases (Fig. 3). 650 

 651 

Diversification with susceptible and partially resistant wheat cultivars. Planting crop mixtures within fields was 652 

the diversification strategy that kept epidemic intensity at its lowest values compared to rotations and landscape 653 

mosaics. This result was consistent across all weather conditions and pathogens. We found a non-linear 654 

relationship between AUDPC in landscapes composed of crop mixtures and the proportion of wheat in the 655 

mixtures. Decreasing the within-field proportion of wheat from 100% (wheat monoculture) to 60% reduced 656 

AUDPC by 85% for WLR (Fig. 2B) and about 98% for STB (Fig. 2E) under average weather conditions. But for 657 
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both pathogens, reducing the proportion of wheat in fields below 50% did not decrease the level of disease 658 

regulation much further (AUDPC < 10). We can therefore identify a threshold in the proportion of wheat in 659 

mixtures below which increase in the proportion of resistant plants does not lead to further disease limitation. 660 

Remarkably, that threshold depended on weather conditions. While under favourable weather conditions for WLR, 661 

high disease limitation occurred when wheat did not exceed 40% of the mixture (Fig. 2A), wheat could represent 662 

up to 60-70% of the mixture under average weather conditions (Fig. 2B). Similarly, under favourable weather for 663 

STB, high disease limitation occurred when wheat did not exceed 60% of the mixture (Fig. 2D) but under average 664 

weather conditions, wheat could represent up to 70% of the mixture (Fig. 2E). 665 

 666 

Synchronous and asynchronous crop rotations were the second most efficient strategy to limit STB epidemics 667 

under all weather conditions. Rotations were nearly as efficient as mixtures when wheat did not exceed 50% at the 668 

landscape scale (Fig. 2D-F). In contrast, the efficacy of crop rotations to limit WLR changed with weather 669 

conditions. When weather conditions were favourable to WLR, synchronous rotations were almost as good as 670 

mixtures (Fig. 2A). Under average weather for WLR, rotations were a bit less efficient than mixtures.  671 

 672 

Landscape crop mosaic was the least effective diversification strategy to reduce disease intensity compared to 673 

within-field mixtures and crop rotations, under both favourable and average weather conditions for both pathogens. 674 

Although less effective, landscape mosaics still impacted WLR epidemics. For example, under favourable weather 675 

conditions, halving the fraction of wheat fields in the landscape led to a linear reduction of 50% in WLR disease 676 

intensity (Fig. 2A). This effect was even stronger under average weather conditions: landscapes with 50% of fields 677 

with wheat displayed a disease reduction of 75% compared to monoculture wheat landscapes (Fig. 2B). For STB, 678 

mosaics of wheat and resistant crop exerted limited biological control (Fig. 2D and E). Overall, in our simulations 679 

the regulating impact of landscape mosaics and field crop rotations depended more on both the identity of pathogen 680 

and the weather conditions compared to within-field crop mixtures. 681 

 682 

Diversification with susceptible wheat and fully resistant pea. Results obtained using pea as a resistant companion 683 

plant (Fig.3) were quite similar to those obtained with a (highly) partially resistant wheat cultivar (Fig. 2). In 684 

particular, crop rotations display similar disease levels in both cases. Nevertheless, for both pathogens, pea-wheat 685 

mixtures appear globally a bit more diseased than wheat cultivar mixtures, (Fig. 3A, B and D and E). In particular, 686 

for STB, higher proportion of pea in the mixture are needed to reach the threshold below which increase in the 687 

proportion of resistant plants does not lead to further disease: 60% of pea (Fig. 3D) against 40% of partially 688 

resistant wheat (Fig. 2D) when the weather is favourable to the disease, 50% of pea (Fig. 3E) against 30% of 689 

partially resistant wheat (Fig. 2E) in average weather conditions. On the other hand, landscape-scale species 690 

mosaics appear more effective than cultivar mosaics to regulate STB epidemics, when wheat fields represented 691 

less than 30% of the landscape (Fig. 3D and E). 692 

 693 
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 694 
 695 

Figure 4: combined effect of diversification strategies (intra-field crop mixtures, synchronous and asynchronous 696 
crop rotations, and landscape crop mosaics, and percentage of wheat in each of them) and inoculum survival on 697 
the intensity of epidemics (AUDPC) of WLR and STB. Here the resistant crop is a partially resistant wheat cultivar. 698 
Reference inoculum survival corresponds to 𝜃 = 0.01 for WLR and 𝜃 = 0.15 for STB. High inoculum survival 699 
corresponds to 𝜃 = 0.05 for WLR and 𝜃 = 0.5 for STB. Low inoculum survival corresponds to 𝜃 = 0.005 for WLR 700 
and 𝜃 = 0.015 for STB. Note the scale differences on the y-axis. 701 
 702 

 703 

Pathogen survival and inoculum pressure 704 

Higher inoculum survival during interculture (Fig. 4) and lower spore mortality during the cropping season 705 

(Supplementary Fig. 3) both increased the intensity of epidemics of both pathogens. For the three diversification 706 

strategies, the higher the inoculum survival, the higher the proportion of resistant crop required within or between 707 

fields to limit the diseases. For instance, 20%, 40% and 60% of resistant plants were needed to limit STB in within-708 

field mixtures under low, medium and high inoculum survival (Fig. 4D-F), respectively. We found comparable 709 

results for decreasing levels of intra-season spore mortality (Supplementary Fig. 3D-F).  710 

 711 

Although their effectiveness depended on inoculum survival and spore mortality, crop mixtures remained the most 712 

effective to limit epidemics in nearly all simulations. There was however one notable exception for WLR: 713 

synchronous rotations with an average of 67% wheat in the landscape (two years of wheat out of three successive 714 
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years) succeeded in keeping epidemic intensity low despite high inoculum survival rates (Fig. 4C). In this specific 715 

situation, synchronous rotations limited rust epidemics better than mixtures. 716 

 717 

 718 

 719 

 720 
 721 
Supplementary Figure 4: combined effect of diversification strategies and within-season spore mortality rate on 722 
the intensity of epidemics (AUDPC) of WLR and STB. Here the resistant crop is a partially resistant wheat cultivar. 723 
Reference overwintering corresponds to 𝜌 = 0.01 for WLR and 𝜌 = 0.002 for STB. High within-season spore 724 
mortality rate corresponds to 𝜌 = 0.05 for WLR and 𝜌 = 0.008 for STB. Low within-season spore mortality rate 725 
corresponds to 𝜌 = 0.005 for WLR and 𝜌 = 0.0005 for STB. 726 
 727 

 728 

DISCUSSION 729 

Using a mathematical model to simulate epidemics at multiple spatial and temporal scales, we found that within-730 

field crop mixtures, crop rotations and crop mosaics at the landscape scale, all associating either wheat cultivars 731 

of wheat and pea, succeed in limiting epidemics of STB and WLR. Our results are consistent with experimental 732 

and modelling studies that focused on each of these strategies individually (Mundt 2002; Papaïx et al. 2014b; 733 

Hossard et al. 2018). Importantly, we found that within-field crop mixtures almost consistently outperform 734 

rotations and landscape crop mosaics in limiting epidemics regardless of pathogen identity and weather conditions. 735 

Although previous modelling attempts to compare pairs of these strategies found a stronger impact of, respectively, 736 

crop mixtures (Skelsey et al. 2010) or crop rotations (Fabre et al. 2015) over landscape crop mosaics, to our 737 

knowledge this is the first study (in silico) that compares and ranks the potential of more than two diversification 738 

strategies to limit epidemics. Our study also brings new insights into the regulating service provided by crop 739 

rotations, a quantitative assessment mainly missing for pathogenic fungi. The joint theoretical study of these 740 
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pesticide-free diversification practices on different crop pathogen species and under different weather conditions 741 

opens avenues worth exploring to ensure sustainable disease control provided by crop diversity. 742 

 743 

Our simulations show that even a relatively small increase in crop diversity compared to wheat monocultures may 744 

lead to greatly decreased intensity of epidemics, especially in crop mixtures (Figs 2B, 2E, 3B, 3E, 4B, 4E). Indeed, 745 

in most simulations, we found that decreasing the proportion of wheat in mixtures from 100% (monoculture) to a 746 

certain threshold (between 60% and 40%) reduces disease intensity tenfold, with no additional significant benefits 747 

coming from further reduction of wheat. Other studies assessing the regulating effect of cultivar mixtures on STB 748 

(Ben M’Barek et al. 2020), or of natural and semi-natural habitats on fungal pathogens (Knops et al. 1999) and 749 

aphids (Le Gal et al. 2020), reached similar conclusions. Quantification of such threshold through experimental 750 

inoculation of fields including various levels of wheat could provide the practical information needed (Borg et al. 751 

2018) to design crop mixtures efficient under specific weather conditions. Interestingly, our results further show 752 

that the value of this threshold depends on weather conditions (Figs 2, 3 and 4). The more favourable the weather 753 

for the pathogen, the higher this threshold (i.e. less susceptible wheat and more resistant crops are needed). This 754 

suggests that diversification strategies will be more effective against epidemics of limited intensity and that higher 755 

levels of diversification may be needed to limit epidemics in areas where climatic conditions are more favourable 756 

for the pathogens or more variable. 757 

 758 

Our model allows us to simulate crop diversification using two species, pea and wheat, and using two wheat 759 

cultivars, one susceptible and one quantitatively resistant. There are two main differences between these 760 

simulations: (i) the level of resistance: complete resistance against both diseases for pea, very high but still partial 761 

resistance against both diseases for the resistant wheat cultivar and (ii) the LAI, which reaches its peak value later 762 

for pea than for wheat (Supplementary Figure 1). Interesting, we find that the results in terms of disease 763 

development are contrasted depending on the type of crop diversification simulated. Within-field cultivar mixtures 764 

regulate both disease a bit better than within-field pea-wheat mixtures. This difference comes from the timing of 765 

dilution effect. Although only partially resistant, the resistant wheat cultivar grows synchronically with the 766 

susceptible one, and therefore provides a dilution effect proportional to the size of both plants. In pea-wheat 767 

mixtures however, the leaf area index of wheat is higher than the leaf area index of pea early in the season, when 768 

epidemics start. At this stage, the susceptible wheat cultivar is therefore more exposed to spore interception in pea-769 

wheat mixtures than in wheat cultivar mixtures, leading to higher disease levels. When the leaf area index of pea 770 

finally exceeds the leaf area index of wheat in species mixtures, it is too late to have much of an effect given the 771 

exponential nature of epidemics development. We found little difference between pea-wheat assemblages and 772 

wheat cultivars assemblages for crop rotations and field mosaics (except for landscapes with very high levels of 773 

resistant plants in the latter case). Simulations of wheat cultivar assemblages with less contrasted levels of 774 

resistance provide less effective disease regulation for all the three forms of crop diversification (data not shown). 775 

Thus, both the level of crop resistance and the dynamic crop of growth appear determinant in the simulation of 776 

disease development.  It is consistent with previous studies that show the importance of the dynamical aspects of 777 

the plant-pathogen interaction during the course of an epidemic (Calonnec et al. 1996; Robert et al. 2008, 2018; 778 

Garin et al. 2014). Care should be taken to the ecological traits of the companion plants in order to maximize their 779 
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potential dilution effect properties. More studies, both in silico and in natura, are needed to better understand the 780 

disease-limitation properties of cultivar vs. species mixtures. 781 

 782 

Our model reveals, in line with previous studies (Burdon et al. 2014), strong interactions between pathogen traits, 783 

the scale of crop diversification and weather conditions on disease limitation. For example, in landscape mosaics 784 

under average weather conditions, low proportions of wheat fields in the landscape are enough to strongly reduce 785 

WLR epidemics (pathogen with high dispersal levels at the landscape scale, Fig. 2B, 3B, 4B), while high 786 

proportions of wheat are required to achieve STB limitation (pathogen with limited dispersal for which the 787 

intensity of the disease is mostly determined by within-field conditions Fig. 2D-E, 4E-F). We find no such 788 

difference for within-field mixtures, which exert comparable levels of regulation on both pathogens. Furthermore, 789 

we find that crop rotations (and in particular synchronous rotations) go from the least effective type of crop 790 

diversification to limit WLR in unfavourable weather conditions to very effective in favourable conditions 791 

(Compare Figs. 2A and 2C and Figs. 3A and 3C). This is not the case for STB epidemics, for which crop rotations 792 

have a consistently strong impact under all weather conditions (Figs. 2D, 2E, 3D and 3E). This difference between 793 

the two pathogens is consistent with previous experimental results (Bullock 1992), showing that crop rotations are 794 

generally more effective against soil-borne pathogens with a limited range of dispersal than against broadly 795 

dispersed airborne pathogens.  796 

 797 

Our results therefore confirm the importance of accounting for interactions between pathogen traits, weather 798 

conditions and the scale of crop diversification strategies to explain the disease-limitation properties of the latter. 799 

An interesting perspective to this work would be to test the combined effects of such strategies at the field and 800 

landscape scales. Benefits of increasing the proportion of mixtures in the landscape in addition to a diversified 801 

array of crops could increase the potential for higher levels of pathogen limitation, in a given climate or under 802 

different climatic conditions (Skelsey et al. 2010; Papaïx et al. 2014a, b). 803 

 804 

Climate is one of the most important factors in the development of epidemics and scientists agree that climate 805 

change will impact epidemics, either positively or negatively (Luck et al. 2011). In Europe, where wheat represents 806 

almost 50% of the production of cereals, climate projections predict a general increase in annual temperatures with 807 

increased winter precipitation and warmer and drier conditions in spring and summer (Kovats et al. 2015). Wheat 808 

production has already suffered from these changes (Lobell et al. 2011) and the impact of climate change on 809 

pathogens could make things worse. In our model and in former studies, dryer spring conditions are unfavourable 810 

to STB spore dispersal, which is dependent on rain splashes. Thus, although predictions vary, notably with location 811 

(West et al. 2012; Gouache et al. 2013), STB incidence could be reduced with climatic change, especially in 812 

southern Europe (Boland et al. 2004; Cotuna et al. 2018). Regarding WLR, warmer springs are likely to favour 813 

the early establishment of the pathogen (Boland et al. 2004; Grabow et al. 2016), which could lead to stronger 814 

epidemics (West et al. 2012; Junk et al. 2016). Our model consistently reproduces this mechanism with an early 815 

start of the epidemic leading to an increase in WLR epidemic intensity (Fig. 3A). These results are also consistent 816 

with recent observations of more damageable rust epidemics in recent years in Europe (Bhattacharya 2017; 817 

Saunders et al. 2019), with reported yield losses up to 30-40% (Saunders et al. 2019). Finally, increased winter 818 

temperatures could favour overwintering of both pathogens (Xu et al. 2019), leading to a decrease in disease 819 
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limitation efficacy of all crop diversification strategies (Fig. 3). Therefore, climatic conditions that favour inoculum 820 

survival, such as milder winters, will likely threaten the durability of disease regulation systems based on crop 821 

diversification alone (Brown and Hovmøller 2002). 822 

 823 

Choosing among biodiversity-based strategies that limit the development of diseases under increasingly erratic 824 

seasonal weather will be challenging. Instead of opting for strategies conferring a strong protection against diseases 825 

but in specific environments, one could opt for a more limited protection, but effective in a wider range of climatic 826 

contexts. In our model, synchronous rotations provide this kind of insurance against WLR, and so do mixtures 827 

containing 50% wheat or less against both diseases. Choice among these strategies will also be guided by practical 828 

and economic aspects. Crop diversification may pose numerous practical problems. For example, farm machinery 829 

and grain outlets have historically developed in the context of simplified intensive systems based on monocultures. 830 

Switching strategies to include crop mixtures and more diversified crop landscapes into agricultural systems thus 831 

faces multiple socio-economic and technical challenges (Newton 2009; Meynard et al. 2018). Despite these 832 

challenges, the use of crop mixtures and cultivars has increased in France in recent years and the disease reduction 833 

they provide could be a contributing factor in their success (Vidal et al. 2020). Beyond new ecological and 834 

agronomic knowledge, an optimal diversification of agricultural landscapes requires taking into account multiple 835 

dimensions of agricultural territories. This includes cooperation between farmers and stakeholders as well as a 836 

territorial organization undoubtedly beyond that of the farms and farmers alone. Combining epidemiological 837 

understanding and sociological and technical issues is necessary in the perspective of agricultural transition 838 

(Lescourret et al. 2015). Models such as the one we have developed here can prove interesting tools to exchange 839 

not only with researchers but also with farmers and agricultural stakeholders in order to simulate transition 840 

scenarios at different scales. The inclusion of more realistic, and innovative strategies from the agricultural world 841 

is an exciting prospect. 842 

 843 

Finally, beyond disease control, crop diversification is known to contribute to different functions such as 844 

maintaining production with less fertilizers (Borg et al. 2018), promoting soil fertility (Juskiw et al. 2000) and 845 

favouring associated and spontaneous biodiversity (Beillouin et al. 2019). However, the compositions of crop 846 

assemblages that would foster different ecosystem services may not be the same. It is therefore important to 847 

consider the possible synergies or antagonisms at work in combinations of diversification strategies (Beillouin et 848 

al. 2021). In this regard, including new ecological functions in our model is an interesting perspective. 849 

 850 

As with all modelling studies, ours is subject to some limitations. Here we address some important ones. The first 851 

concerns our crop growth model at the field scale. In our study, the resistant crop (either a partially resistant wheat 852 

cultivar or a different species, pea) does not interact the susceptible wheat cultivar. Indeed, both crops grow to 853 

reach their theoretical leaf area index. We did not take into account potential competition for light or soil nutrients, 854 

or in the case of pea-wheat mixtures, the fertilization effect of pea on wheat. We are aware that this is quite a big 855 

simplification. Indeed, Beillouin et al. (2021) show that cultivar mixtures, crop associations and agroforestry all 856 

have an impact on pests regulation but their impact is different due to different types of ecological interactions. 857 

Accounting for the type of diversification at the field scale would therefore be a great perspective in our model. 858 

Biotic interactions between wheat and the associated crop, such as competition for light (Barillot et al. 2012) or 859 
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soil nutrients (Juskiw et al. 2000), which could impact crop growth dynamics in many different depending on the 860 

respective proportions of the two crops, would thus be interesting to take into account. Between plant interaction 861 

processes and their consequences in terms of canopy growth and epidemic development within the canopy are well 862 

simulated by FSPM models, which seek to represent the spatiotemporal dynamics of plant development and plant-863 

pathogen interaction in three dimensions (Robert et al. 2008, 2018). But, due to their high level of refinement and 864 

subsequent complexity, these models may not be suitable for modelling a mixture at a larger scale than a few 865 

square meters of crop, and would therefore not be compatible with an ecological landscape modelling approach 866 

such as ours. 867 

 868 

Although or model is spatially explicit, it is difficult to give an exact scale for an individual field and thus for the 869 

landscape grid. Although this modelling framework could also be used to study the impact of crop diversification 870 

on epidemics at the field scale (Levionnois et al., in prep), our focus here is on the landscape scale, sensu Forman 871 

(1995). Our landscape grid, inspired by field trials (Mundt and Leonard 1986; Mundt and Brophy 1988) and 872 

modeling work (Le Gal et al. 2020) can therefore be considered to have consistent applicability at the regional 873 

scale. This is particularly important since dispersal of many pathogens is distance-dependent. This is particularly 874 

true for rain-borne pathogens and soil-borne pathogens, for which the scale of between-field distance matters a lot 875 

in terms of transmission (Skelsey et al. 2010; Hossard et al. 2018), even if some pathogens such as STB or STB 876 

can be dispersed by both wind and rain (Sache 2000a; Suffert and Sache 2011). An interesting perspective to make 877 

our model more biologically realistic with regard to spatial scales would be to use real landscape maps instead of 878 

a homogeneous grid of square fields. 879 

 880 

In addition, we have considered neither pathogen adaptation to the resistant crop through resistance breakdown, 881 

nor putative pathogen adaptation to ecological regulation due to the dilution effect. Resistance breakdown is rather 882 

commonplace (McDonald and Linde 2002; Burdon et al. 2014) and is likely to cancel the benefits conferred by 883 

crop diversification. For the moment, and with only a few exceptions (Fabre et al. 2015; Rimbaud et al. 2018a), 884 

the evolution of resistance breakdown and the effects of crop diversification on epidemics have been studied 885 

separately. However, Précigout et al. (2017, 2020b) have recently shown possible adaptation of the pathogen to 886 

“soft regulation practices” such as reduction of fertilization levels, i.e. agricultural strategies aiming at limiting 887 

pathogen populations to acceptable levels through indirect effects on the crops for instance. Studies on the 888 

adaptation of pathogens to agroecological practices are needed to assess their sustainability or to propose solutions 889 

to make them more resilient to pathogen adaptation.  890 

 891 

CONCLUSION 892 

Using a spatially explicit landscape grid model combined with an epidemiological SEIR model, we compared the 893 

disease-limitation effect of three forms of crop diversification, within-field mixtures, landscape mosaics and crop 894 

rotations, on two highly damaging fungal pathogens of wheat, leaf rust and Septoria tritici blotch, under varying 895 

weather conditions. For each form of crop diversification, the resistant crop used in our simulations was either a 896 

partially resistant wheat cultivar, or a fully resistant different species, pea. We found that for both types of resistant 897 

plants, both pathogen species and in all weather conditions, within-field crop mixtures had the greatest impact in 898 

limiting epidemics, while crop rotations were second-best and landscape mosaics were the least effective. We also 899 
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found interactions between the spatial the scale of crop diversification, the characteristics of the pathogens and the 900 

weather conditions. In particular, the more favorable the weather for pathogens, the more resistant plants are 901 

required to regulate epidemics at the landscape scale. More studies are needed, both in silico and in natura, to 902 

better understand the impact of the different forms of crop diversification on fungal pathogen epidemics. 903 
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