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Abstract: Despite the many advantages of pulses, they are characterised by off-flavours that limit
their consumption. Off-notes, bitterness and astringency contribute to negative perceptions of pulses.
Several hypotheses have assumed that non-volatile compounds, including saponins, phenolic com-
pounds, and alkaloids, are responsible for pulse bitterness and astringency. This review aims to
provide an overview highlighting the non-volatile compounds identified in pulses and their bit-
ter and/or astringent characteristics to suggest their potential involvement in pulse off-flavours.
Sensorial analyses are mainly used to describe the bitterness and astringency of molecules. How-
ever, in vitro cellular assays have shown the activation of bitter taste receptors by many phenolic
compounds, suggesting their potential involvement in pulse bitterness. A better knowledge of the
non-volatile compounds involved in the off-flavours should enable the creation of efficient strategies
to limit their impact on overall perception and increase consumer acceptability.

Keywords: pulses; off-flavours; bitterness; astringency; TAS2R; saponins; phenolic compounds;
alkaloids

1. Introduction

Pulses, also called dried legume seeds, present nutritional, environmental, and func-
tional interests compared to animal proteins [1–3]. However, the presence of off-flavours in
these legumes constitutes an important obstacle to their consumption, which limits their
use in food applications [4].

Negative organoleptic perceptions are named off-flavours or unpleasant flavours. They
are the combination of off-notes (unpleasant odours and aromas), off-tastes (unpleasant
tastes), and unpleasant trigeminal sensations. The off-notes in pulses are described as beany,
grassy, pea, rancid, metallic, etc. and are due to the presence of some volatile compounds
originating from seed metabolism during farming and process conditions and are now
well-identified in pulses [4,5]. In contrast, much less is known about the taste compounds
of pulses. Taste perceptions are caused by compounds that activate receptors on the tongue
and the oral cavity [6]. Among the five basic tastes, bitterness is the only one to have been
identified as an off-taste in pulses [4]. Another negative perception, astringency, which is a
native trigeminal sensation, has been inventoried in many legumes, such as beans, lentils,
and peas [7]. However, little is known about non-volatile compounds that are responsible
for these off-flavours in pulses. These compounds are the object of this review.

Some molecules, including saponins, phenolic compounds, alkaloids, peptides, and
free amino acids, are involved in the bitterness and/or astringency of pulses [4,8]. More-
over, new research suggests that 14 lipids and lipid oxidation products are involved in
the bitterness of pea protein isolates [9]. Despite their potential involvement in pulse
off-flavours, it is important to note that saponins, phenolic compounds, and alkaloids
(detected in lupins and faba beans) come from a secondary metabolism and contribute
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to plant defences in the case of biotic and abiotic stresses [10–14]. For example, the con-
tent of saponins was greater in pea samples exposed to very intense contamination with
pathogens [11]. Research has mainly focused on the overall bitterness and/or astringency
of pulse-based products and correlated these intensities with the compound content [15,16].
However, the number of potential non-volatile compounds is so important that it remains
complicated to demonstrate their direct involvement in these off-flavours. Some researchers
have extracted potential compounds from pulses of interest and have studied their bitter
and/or astringent characteristics using sensorial analyses. For example, the extract of
soyasaponins βb and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) in
peas was described as bitter and astringent by panellists, which suggested their role in pea
off-flavours [17]. Sensorial analyses are also completed via in vitro assays that highlight
the interaction between a molecule and human bitter taste receptors (TAS2R—human type
2 taste receptor). Genistein and daidzein, two isoflavones in soybeans, were identified as
bitter by panellists [18,19] and activated the TAS2R14 and TAS2R39 receptors [20,21]. These
molecules should have an important contribution to bitterness in soybeans. Although the
role of some compounds in the bitterness and astringency of pulses has been identified,
there are still many hypotheses to be confirmed.

This review is focused on pulses. It aims to propose a concise overview highlighting
the non-volatile compounds potentially responsible for their off-flavours. The first part de-
fines the unpleasant perceptions in pulses related to non-nasal detection, such as bitterness
and astringency, and compares in vitro and in vivo methods for the identification of bitter
and/or astringent compounds. The second part highlights the non-volatile compounds
(saponins, phenolic compounds and alkaloids) detected in pulses that have also been iden-
tified as bitter and/or astringent using sensorial analysis in legumes or other food products
and through cellular-based functional TAS2R receptor assay. This cross-referencing of
information would make it possible to identify new compounds responsible for off-flavours
in pulses. Although peptides and free amino acids may be involved in pulse off-flavours,
their sensorial aspect will not be discussed in this review because they are mainly formed
during protein hydrolysis (fermentation/enzymatic hydrolysis, heat treatment, and wet
protein extraction) [22,23]. Moreover, the tastes of free amino acids including their bitter
activity have already been reviewed [24].

2. Highlighting of Bitter Taste and Astringent Perception

This part aims to define the bitter taste and astringency, a trigeminal sensation, that
contribute to off-flavours in pulses. The bitter and astringent characteristics of molecules
are often determined through sensorial analysis (in vivo methods). In addition, in vitro
cellular assays have been used to measure receptor activation by sapid compounds and
thus determine their involvement in bitterness. These in vivo and in vitro approaches are
compared in this review.

2.1. Generalities on Bitterness and Astringency

• Bitterness

Bitterness is often unappreciated and an indicator of potential toxicity and/or bacterial
contamination of foods to limit their ingestion [25]. The detection of bitter molecules, with
a wide range of chemical structures, is achieved by a family of G protein-coupled receptors
(GPRC) called TAS2Rs [6,26]. GPCRs share a common architecture with seven transmembrane
domains and a signal transduction mechanism involving a heterotrimeric G protein [27]. The
transduction pathway is briefly presented in Figure 1 (see cellular mechanism).
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Figure 1. In vitro cellular test method used to study the activation of TAS2R by non-volatile com-
pounds (for example, (-)-epicatechin) (adapted from [28,29]). Cellular mechanism—The activation of
the receptor results in the dissociation of the chimeric Gα16Gust44 subunit (Gα-gustducin) from the
βγ-subunits (Step 1©). The βγ-subunits activate phospholipase C-β2 (PLC-β2) (Step 2©), resulting in
the formation of the second messenger inositol 1,4,5-triphosphate (IP3) (Step 3©) [30]. Then, IP3 binds
to its endoplasmic reticulum receptor, leading to the transient release of Ca2+ (from calcium stores)
that is detected using a calcium-sensitive dye (Step 4©) [31]. Most of the icons come from BioRender.
TAS2R: type 2 taste receptor; C: concentration; AT: activation threshold; EC50: half-maximum effective
concentration to achieve 50% of the maximum amplitude of receptor activation.

Humans have ~25 putative functional TAS2Rs [32]. The perception of bitter com-
pounds varies widely between individuals due to genetic variations linked to polymor-
phism [33–39]. For example, individuals with the TAS2R38-AVI (alanine–valine–isoleucine)
variant are not able to detect bitterness in a solution of phenylthiocarbamide, whereas
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individuals with the TAS2R38-PAV (proline–alanine–valine) polymorphism are able to
detect this compound [40,41]. Many factors such as age, pathology, medication, dietary
habits and salivary composition, have been shown to alter bitter perception [30,31,42].

• Astringency

Astringency is one of the trigeminal sensations. Astringent molecules interact with
the hydrophobic “pocket” of salivary proteins and lead to their precipitation. This causes
drying, roughening, and puckering of the mouth epithelia. Tannins and other phenolic
compounds are well-known to be astringent molecules. The polymer size, concentration,
and galloylation of tannins can modify the astringent intensity [6]. However, the mechanism
of astringency is still not as well-understood as that of bitterness. This perception may
be detected by mechanoreceptors in the oral mucosa after an increase in friction forces
at the surface of epithelial cells [43,44] or through the detection of the aggregation of
the mucosa pellicle by transmembrane mucin (MUC1) [45]. Tannins exhibit a higher
astringency threshold than flavonols. They are a source of harsh, drying and puckering
astringent mouthfeels whereas flavonols induce velvety and silky mouthfeels [46,47]. These
differences may be explained by two phenomena. The interactions between salivary and
proteins may be more related to harsh, dry and puckering sensations, while interactions
driven by the tongue or buccal mucosa cell lines may be more related to velvety and silky
sensations [48]. These hypotheses still need to be tested with sensory results.

2.2. Sensory Identification of Bitterness and Astringency (In Vivo Test)

Sensory analyses have been used to describe the taste of pure compounds, especially
bitterness and astringency. They reflect an overall sensation of bitterness/astringency
perceived by a panel of individuals and consider the integration of the signal at the cerebral
level [49]. First, panellists are trained to be familiar with the studied perceptions. In most
studies, panellists are required to wear a nose-clip to prevent olfactory perceptions from
impacting bitterness and astringency. Second, the human bitter or astringent detection
threshold (DT) is determined with the three-alternative forced choice test consisting of a
triangle test with two blank samples and ascending concentrations for each compound.
For each concentration, panellists must identify the solution that exhibits bitterness or
astringency among the three samples. The DT is obtained by calculating the geometric
mean of the last missed concentration and the next higher concentration detected [40,50–54].
Third, panellists must evaluate the bitter or astringent intensity of different concentrations
of the studied compound. Dose–response curves are constructed by plotting the bitter
or astringent intensity as a function of the molecule concentration. The human EC50
corresponds to the concentration of molecule required to achieve 50% bitter or astringent
intensity [40,52,53].

Many studies have focused on the overall bitterness and/or astringency of legumes
and legume-based products. Sometimes, the sensory properties are correlated to chemical
analysis to predict the molecules responsible for the perceptions of interest [15,55–57].
For example, the correlation of phytochemical compositions and sensory attributes of
pea protein fractions has predicted the bitterness and astringency of 29 compounds [15].
Then, these results can be validated using sensory and/or cellular approaches to pure
compounds; however, these are rarely carried out for economic reasons or are not permitted
for food applications.

2.3. Activation of the Human Bitter Taste Receptors TAS2Rs (In Vitro)

In vitro cell-based assays allow for the measuring of the activation of bitter taste
receptors under physiological conditions similar to their environment using sapid com-
pounds [28,58]. This approach has the advantage of studying synthetic or toxic molecules
that are not part of the human diet, unlike sensory analysis [52].

The in vitro assay is usually performed with HEK293 cells stably expressing a chimeric
Gα-protein (Gα16Gust44), as presented in Figure 1. The cells were seeded in a microplate
and transfected with a plasmid encoding for the studied TAS2R. The cells produce a func-
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tional TAS2R embedded in the plasma membrane. The studied molecule is injected into the
wells at different concentrations, and TAS2R activation causes a signalling cascade resulting
in the release of calcium from the endoplasmic reticulum into the intracellular medium.
Then, cytoplasmic calcium binds a fluorescent indicator (Fluo-4 or Fura-2) [51] or a geneti-
cally encoded calcium biosensor (GCaMP) [59,60]. More recently, a bioluminescence-based
assay was developed for TAS2R to measure calcium mobilization using mt-clytin II, a
calcium-sensitive photoprotein, and the luminophore coelenterazine [61]. The calcium
signal is measured through fluorescence or luminescence using a fluorometric imaging
microplate reader (FlexStation or FLIPR). The response of TAS2R depends on the concentra-
tion of bitter compounds and leads to different signal amplitudes [28,58,61]. Then, the AT
(activation threshold) is determined, corresponding to the lowest concentration for which
fluorescence is observed. Dose–response curves are constructed by plotting the signal
amplitude as a function of the molecule concentration. The EC50, which corresponds to the
concentration of agonist required to achieve 50% of the maximum amplitude of receptor
activation, is also determined and can be compared to relative bitterness in vivo [28]. The
use of cellular-based assays with functional expression of TAS2Rs in human HEK293 cells
showed that some bitter taste receptors have a large broad detection spectrum (TAS2R14),
while others were intermediate (TAS2R4, TAS2R7, TAS2R30, TAS2R39 and TAS2R43) or
were activated by a few molecules (TAS2R5). Some molecules activate several TAS2Rs,
such as (-)-epicatechin with TAS2R4, TAS2R5, TAS2R14 and TAS2R39 [20,62–64]. However,
no agonist has yet been identified for TAS2R19, TAS2R42, TAS2R45 and TAS2R60 [58,65].

2.4. Correlation between Sensorial and In Vitro Analyses of Bitterness

Some studies have correlated in vivo and in vitro results to bitterness (Table 1) [40,51–53].
However, the link between cellular data and human analyses is not always effective. Indeed,
the DT and human EC50 are often greater than the AT and the in vitro EC50, respectively. For
example, the ratio of DT/AT was 11 times greater for vitamin B1 [51] and 566.7 times greater
for cohumulone [52]. These observations can be explained as based on different phenomena.
In vitro cellular-based assays are performed in buffer media with a composition that differs
from that of human saliva. This can decrease the availability of compounds for the receptors due
to their complexation with hydrophobic proline-rich proteins in the saliva and/or be adsorbed
by the oral epithelium [52,66]. Hydrophobic bitter compounds are also more sequestered by
oral proteins and/or mucosa than polar compounds, which can increase the difference between
human and cellular results [52]. Delompré et al. (2022) [51] proposed that sample dilution
via saliva can also be responsible for an increase in the human bitter taste DT [51]. Moreover,
flavour perception is a cerebral construction resulting from the integration of chemosensory
signals in the brain arising from the ingestion of an ingredient. There are several steps in brain
information treatment provided by neural signals, including external signals that can interact
with taste perception [49,51]. Although the in vitro method enables the rapid identification of
bitter compounds and activated TAS2Rs, it is not suitable for all compounds. For example,
fluorescence related to calcium release was detected in non-transfected cells (absence of TAS2Rs)
upon the addition of high concentrations of vitamins B2 and B3, whereas sensory analyses
revealed the bitterness of these compounds [51]. The in vitro cellular results should thus always
be verified through sensory analyses on pure compounds when possible.

Table 1. Comparison between human (in vitro) and cellular (in vivo) bitter characteristics for differ-
ent compounds.

Bitter Compounds
Human Bitter
Characteristics Cellular Bitter Characteristics Ratio (Human/Cellular)

References

DT (µM) EC50 (µM) TAS2R AT (µM) EC50
(µM) Threshold EC50

phenyl-β-D-glucopyranose 100 700 TAS2R16 70 1100 1.4 0.6 [53]
salicilin 200 1100 TAS2R16 70 1400 2.9 0.8 [53]
helicin 400 2200 TAS2R16 300 2300 1.3 1.0 [53]
arbutin 900 5400 TAS2R16 500 5800 1.8 0.9 [53]
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Table 1. Cont.

Bitter Compounds
Human Bitter
Characteristics Cellular Bitter Characteristics Ratio (Human/Cellular)

References

DT (µM) EC50 (µM) TAS2R AT (µM) EC50
(µM) Threshold EC50

2-nitrophenyl-β-D-
glucopyranose ND - TAS2R16 1500 ND NC NC [53]

naphthyl-β-D-
glucopyranose 200 1400 TAS2R16 400 1000 0.5 1.4 [53]

methyl-β-D-glucopyranose 32,000 320,000 TAS2R16 15,000 ND 2.1 NC [53]
amygdalin ND - TAS2R16 2300 20,000 NC NC [53]

esculin 4000 ND TAS2R16 4000 ND 1 NC [53]
phenyl-β-D-

galactopyranose 40,000 ND TAS2R16 ND - NC NC [53]

phenyl-α-D-glucopyranose 9000 50,000 TAS2R16 ND - NC NC [53]

phenylthiocarbamide PAV: 3.28
AVI: 1360 - TAS2R38-PAV

TASR238-AVI
0.02
ND

1.1
- NC-164 NC [40]

propylthiouracil PAV: 10.7
AVI: 413 - TAS2R38-PAV

TASR238-AVI
0.06
ND

2.1
- NC-178.3 NC [40]

trans-isocohumulone 19 300 TAS2R1
TAS2R14

1
1

10.6
14.5 19 20.7–28.3 [25]

trans-isohumulone 20 200 TAS2R1 0.3
1

9.0
11.2 20–66.7 17.8–22.2 [25]

trans-isoadhumulone 13 130 TAS2R14 0.3
1

6.7
9.0 13–43.3 14.4–19.4 [25]

cis-isocohumulone 7 180 TAS2R1 1
1

7.4
9.4 7 19.1–24.3 [25]

cis-isohumulone 10 110 TAS2R14 0.3
0.3

3.3
2.6 33.3 33.3– 42.3 [25]

cis-isoadhumulone 8 100 TAS2R1 0.3
1

2.5
2.8 8–26.7 35.7–40 [25]

cohumulone 17 >500 TAS2R1
TAS2R40

0.03
0.003

0.2
0.04 566.7–5667.7 NC [25]

humulone 21 ND TAS2R1
TAS2R40

0.1
0.1

1.4
0.4 210 NC [25]

adhumulone 21 ND TAS2R1
TAS2R40

0.1
0.03

0.7
0.2 210–700 NC [25]

colupulone 39 >500 TAS2R1
TAS2R40

0.1
0.03

0.7
0.2 390–1300 NC [25]

lupulone 35 ND TAS2R1 0.1
3

3.0
1.3 11.7–350 NC [25]

adlupulone 37 ND TAS2R14 1
3

2.2
4.1 12.3–37 NC [25]

isoxanthohumol 16 >500
TAS2R1

TAS2R14
TAS2R40

3
3

10

ND
ND
ND

1.6–5.3 NC [25]

xanthohumol 10 140
TAS2R1

TAS2R14
TAS2R40

1
3
3

ND
ND
ND

3.3–10 NC [25]

8-prenylnaringenin 8 ND TAS2R14 0.3 1.5 26.7 NC [25]
vitamin B1 1100 - TAS2R1 100 - 11.0 - [51]
vitamin B2 650 - - - - - - [51]
vitamin B3 5500 - - - - - - [51]

vitamin B6 5200 - TAS2R7
TAS2R14

1000
1000

25,520
10,520 5.2 NC [51]

vitamin A ND - TAS2R38 50 290 NC NC [51]
vitamin D ND - TAS2R10 50 250 NC NC [51]

resveratrol 206 - TAS2R14
TAS2R39

16
63

30.3
109 3.3–12.9 NC [20,67]

(+)-catechin 1000 - TAS2R14
TAS2R39

500
250 ND 2–4 NC [20,50]

(-)-epicatechin 930 -

TAS2R4
TAS2R5

TAS2R14
TAS2R39

2000
1000
500

250–1000

>30,151
3210
500

418–3800

0.5–3.7 NC [20,50,62–64]

(-)-epigallocatechin gallate 380 - TAS2R14
TAS2R39

250
32–100 - 1.5–11.9 - [20,63,64,66]

The first part presents the in vivo and in vitro results from the same study, while the second part (separated by a
double line) is from several references. DT: detection threshold; AT: activation threshold; EC50: half-maximum
effective concentration corresponding to the concentration of compound required to achieve 50% of the bitter
intensity (in vivo)/to achieve 50% of the maximum amplitude of receptor activation (in vitro); PAV: proline-
alanine-valine; AVI: alanine–valine–isoleucine; ND: not determined; NC: not calculable.

3. Non-Volatile Compounds Involved in Bitterness and Astringency of Pulses

This section is devoted to non-volatile compounds (including saponins, phenolic
compounds and alkaloids), which have been both detected in pulses and identified as
bitter and/or astringent through sensorial and/or in vitro analysis. Sensory analyses are
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not limited to pulses but extend to all food products. This approach makes it possible to
summarise the compounds identified as bitter and/or astringent in legumes and to propose
non-volatile compounds that could be involved in these off-flavours.

Soybeans are less studied in this review due to their high oil concentration compared
to other pulses, including adzuki beans, beans, chickpeas, faba beans, lentils, peas and
lupins. However, some soybean examples have been addressed when the literature was
sparse concerning other pulses, especially for saponins and isoflavones.

3.1. Saponins

Saponins are amphiphile molecules. They consist of a steroidal or triterpene hy-
drophobic aglycone and one to three sugars (hydrophilic part) attached by ester or ether
linkage [68]. In legumes, triterpenoid saponins were the main saponins identified, although
some steroidal saponins were also detected [69–71]. In soybeans, saponins were found in
cotyledons and derived from soyasapogenols A, B, and E (Figure 2) [68]. The amount of
saponins in legume seeds was very different according to their type. Chickpeas contained
2.6 to 60 g/kg (dry matter) of saponins against 0.1 to 3.7 g/kg (dry matter) for broad beans
and 1.8 to 11 g/kg (dry matter) for green peas [72].
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Figure 2. Chemical structures of soyasapogenol A, B and E (adapted from [73]).

In peas, an extract of isolated soyasaponin βb (soyasaponin I) is described as bitter
and astringent. Moreover, the protein fraction obtained through air-classification should
contain sufficient saponins to detect these off-flavours [74]. Indeed, saponins interact
with proteins and are found more easily in the protein fraction than in the starch frac-
tion [75,76]. Concerning another pea study, soyasaponin βb and DDMP soyasaponin (also
called soyasaponin βg, soyasaponin VI or chromosaponin I) were extracted and sensorially
evaluated by thirteen trained panellists. The bitterness DT of soyasaponin βb is approx-
imately 8 mg/L in water, and a mixture of soyasaponin βb and DDMP soyasaponin in
a ratio of 1:4 is less than 2 mg/L in water [17]. Indeed, DDMP soyasaponin is degraded
into soyasaponin βb + maltol at temperatures greater than 30 ◦C, which makes it difficult
to extract and purify [17,77–79]. Maltol has a caramel-like odour and a sweet taste that
can modify the flavour. Moreover, DDMP soyasaponin is also degraded by lipoxygenase
during grinding due to an important amount of dioxygen. The peroxidation of DDMP soy-
asaponin leads to soyasaponin βb, whereas dehydrogenation leads to dehydrosoyasaponin
I [17,78]. The degradation process is presented in Figure 3. The effect of soyasaponin βb
on the bitterness and astringency of pea protein isolate has been reported by calculating
dose–over-threshold factors (the ratio of compound concentration over bitter/astringency
threshold for each compound). The factor for astringency is 1.8 and 0.7 for bitterness, sug-
gesting that soyasaponin I is more involved in astringency than in bitter taste [9]. However,
DDMP soyasaponin has not been detected and has probably been degraded due to high-
temperature extraction, which can reduce the bitter intensity. In another study, the areas
of the main phytochemical compounds identified through ultrahigh-performance liquid
chromatography–diode array detector–mass spectrometry (UHPLC-DAD-MS) of pea-based
samples were correlated with sensory attributes to model bitterness and astringency (pre-
diction). According to the modelling, saponin B, saponin derivates, and soyasapogenol
B are not involved in bitterness, whereas they contribute to astringency [15]. However,
the DDMP soyasaponin has a priori not been detected in these samples (absence of a peak
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with a mass of approximatively 1067 g/mol [70,71]), probably due to the high-temperature
extraction used (40 ◦C) that degrades it into soyasaponin βb and/or soyasaponin E [78].
In soybeans, different saponin fractions have been extracted and sensorially characterised.
Soyasaponins A, B, and E have bitter characteristics and exhibit 10−5, 5.10−4 and 10−3 mM
taste threshold values, respectively. Aglycones A and E are slightly bitter and present a
lower threshold value. An astringent perception has been identified in soyasaponin A
and soyasapogenol B [80]. Soybean extracts with different soyasaponin βb concentrations
exhibit the same off-flavour intensities. The DDMP saponin (and malonyl-β-glucoside
isoflavones) should contribute more to bitterness and astringency than the other saponins
and isoflavones identified in these extracts [81]. Although the sensory contribution of
saponins has only been studied in soybeans and peas, it is important to note that DDMP
soyasaponin and soyasaponin βb have been identified in other pulses including adzuki
beans, common beans, lentils, chickpeas, lupins and broad beans [70,71,82]. However,
the level of saponins in lupin seeds is very low, suggesting no significant contribution to
bitterness and astringency [16].
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Figure 3. Degradation of DDMP soyasaponin into soyasaponin βb and dehydrosoyasaponin I
through heat treatment and enzymatic reactions (adapted from [78]). LOX: lipoxygenase; R: glu-
curonic acid-galactose-rhamnose.

Researchers have produced saponin-free pea varieties (the study was focused on
DDMP and βb soyasaponins) [77]; however, it would have been interesting to compare the
bitter and astringent intensities between wild and mutant cultivars to verify the effect of
saponin content on sensory properties. A possible drawback of such an approach is that
both saponins and volatile compounds interact with proteins; consequently, the decrease
in saponin content may increase protein-volatile compound interactions and impact the
odour/aroma of pulses [83]. The 10-day germination of broad beans increases the saponin
content [71] and may intensify bitter and astringent perceptions. Finally, the heating of
pulses appears to be a simple and efficient strategy to reduce these off-flavours in pulses
due to the degradation of the DDMP soyasaponin [78,84,85].

3.2. Phenolic Compounds

Phenolic compounds are a large class of plant secondary metabolites exhibiting a
diversity of structures. They have one or more hydroxyl groups attached directly to the
aromatic ring and vary from simple molecules to highly complex polymers [86]. In pulses,
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many groups have been identified, including phenolic acids (and their derivates), stilbenes,
flavonoids, and condensed tannins [87]. Their content in legumes depends on the cultivar,
location (including abiotic and biotic stress conditions), and transformation [87–91]. They
protect plant tissues against UV (ultraviolet) irradiation and participate in plant defence
against herbivores, fungi, and viruses [87]. White-flowered faba beans are associated with
low tannin due to breeding. These low-tannin genotypes have been reported to be more
susceptible to soil-borne diseases [89]. Moreover, phenolic compounds are distributed
differently in the parts of the seed (Table 2). The hulls of chickpeas, faba beans, and
lentils contain higher amounts of tannins, whereas the cotyledons are richer in other
phenolic compounds, including flavonoids [90,91]. During food processing and storage,
plant phenolic compounds are converted to a variety of reaction products that modify the
product flavour [87].

Table 2. Concentration (mg/g DM) of phenolic compounds, flavonoids and tannins in different seed
parts of pulses (chickpeas, faba beans and lentils).

Pulses

Concentration (mg/g DM)

ReferenceWhole Seed Cotyledon Hull Embryonic Axe

PC F T PC F T PC F T PC F T

Chickpeas - - - 15.2 7.5 5.2 75.9 12.6 32.4 46.1 9.3 11.4 [90]
Faba beans 39.69 - 6.85 39.17 - 7.22 22.30 - 16.23 - - - [91]

Lentils 6.30 - 1.27 4.27 - 0.40 57.19 - 46.27 - - - [91]

DM: dry matter; PC: phenolic compounds; F: flavonoids; T: tannins.

Phenolic compounds are mostly studied for their beneficial effects on human health
rather than their sensorial characteristics. However, they are responsible for bitterness
and astringency in legumes [4]. The astringent intensity of phenolic compound extracts of
different pulses has been evaluated by a trained panel that classified them in the following
order: red beans > adzuki beans > lentils > peas > broad beans > faba beans [7]. Moreover,
studies on the activation of human bitter taste receptors by many phenolic compounds
suggest that they are involved in pulse off-flavours [20,21,62,66]. The concentration and
bitter/astringent characteristics of phenolic compounds identified in pulses are presented
in Table 3. It is important to note that extraction methods are different and comparisons
are complex.

3.2.1. Phenolic Acids and Derivates

Many phenolic acids and their derivates have been identified in pulses (Table 3).
Phenolic acids contribute to bitterness but more significantly to astringency in wine or
corn germ protein flour [50,92,93]. Beans, lentils, and peas exhibit a low concentration
of p-hydroxybenzoic acid (0.32–1.0 µg/g), whereas peas are richer in protocatechuic acid
(2.06–221 µg/g) and lentils in p-coumaric acid (3.22–3.42 µg/g) [94]. m-Coumaric acid has
been detected in faba beans and peas [71,95]. Chickpeas and lentils contain a high amount
of gallic acid, and chickpeas are richer in caffeic acid than other pulses [90,96,97]. These
six phenolic acids identified in pulses are well-known to be responsible for astringency in
wine. Protocatechuic, p-coumaric, m-coumaric, gallic, and caffeic acids exhibit moderate
bitterness at a concentration of 2 g/L in water, whereas p-hydroxybenzoic acid is described
as being slightly more bitter [92]. These phenolic acids could contribute to pulse bitterness.

According to the correlation model, caffeic acid contributes to both bitterness and
astringency in peas, with an estimated concentration of 90.7 ng/g [15].

3.2.2. Stilbenes

Two stilbenes have been identified in faba beans, resveratrol and polydatin [98].
Resveratrol is often produced by plants as a defence against microbial infections, upon
exposure to UV and other stresses [99,100]. Bitterness and astringency have only been
studied for resveratrol, which is known to contribute to the bitterness and astringency
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of wine [101]. This molecule is described as bitter at a concentration of 47 mg/L in
water [67]. Moreover, cellular tests have shown that resveratrol activates the bitter receptors
TAS2R14 and TAS2R39. TAS2R14 is more sensitive to this compound than TAS2R39 [20]. It
would have been interesting to quantify resveratrol in faba beans [98] and to compare this
concentration with the cellular test results [20] to determine its involvement in bitterness.

3.2.3. Flavonoids

Flavonoids are the largest group of phenolic compounds. Some flavonols, flavanols,
flavones, flavanones, and isoflavones are identified as astringent and/or bitter (sensory and
in vitro tests), which may imply their potential impact on pulse off-flavours. The structures
of these flavonoids are presented in Figure 4.
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• Flavonols

Flavonols have a 3-hydroxyflavone backbone according to the place and number of OH
groups. Kaempferol, quercetin and myricetin activate TAS2R14 and TAS2R39. Kaempferol
exhibits lower AT (8 µM for TAS2R14 and 0.5 µM for TAS2R39) than myricetin (250 µM
for TAS2R14 and 0.5 µM for TAS2R39), while quercetin leads to ambiguous activation
at 500 µM [20]. Chickpeas contain a high content of these three flavonols (5.5–97.5 µg
of kaempferol/g dry matter (DM)), but the variation in concentration depends on geno-
type, location, and seed sample (whole, dehulled, seed coat, and embryonic axe) [90,96].
Adzuki beans are also rich in quercetin (36.2 µg/g) [102]. In addition, many derivates from
these three flavonols have also been identified in legumes [15,86,103–105]. In particular,
quercetin-3-O-glucoside, quantified in pea flour at a concentration of 14.8 ng/g, was found
to contribute to pea flour astringency according to the correlation model [15].

• Flavanols

Flavanols are isomers of (+)-catechin and/or (+)-gallocatechin, and participate in the
formation of condensed tannins. Several flavanols have been detected in pulses, some of
which have been characterised as bitter and astringent, such as (+)-catechin, (-)-epicatechin, (-)-
epigallocatechin, (-)-epicatechin gallate, (-)-epigallocatechin gallate and theaflavin [66,92,106,107].
Beans and chickpeas exhibit higher concentrations of (+)-catechin, whereas faba beans have high
concentrations of (-)-epicatechin gallate and (-)-epigallocatechin gallate [96,97,108–110] (Table 3).

These six flavanols identified in pulses are described as astringent but exhibit different
DTs between 16 and 930 µmol/L. Theaflavin, only detected in faba beans, has a very low DT
(16 µmol/L) compared to (+)-catechin (410 µmol/L) and (-)-epicatechin (930 µmol/L) [107].
Their sensory description suggests their involvement in the astringent characteristics
of pulses.
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The activation of bitter receptors by these flavanols has been studied (Table 4). The receptor
TAS2R39 is activated by all the flavanols identified in pulses. According to different studies,
the AT and EC50 are different for (-)-epicatechin, (-)-epicatechin gallate, and (-)-epigallocatechin
gallate [20,62–64,66]. Theaflavin exhibits a very low EC50 (2.79 µM) compared to (-)-epicatechin
gallate (21.3 µM) and (-)-epigallocatechin gallate (112 µM) [64]. The same ranking was observed
in another study but with a higher EC50, 88.2 µM for (-)-epicatechin gallate and 181.6 µM
for (-)-epigallocatechin gallate [63]. Moreover, (-)-epigallocatechin and (-)-epicatechin exhibit
higher EC50 values for TAS2R39 [62,63]. Concerning TAS2R14, (-)-epicatechin and theaflavin
have not activated this receptor, in contrast to TAS2R39 [64]. Flavonoids are made of two to
three OH groups, which should be involved in hydrogen bonds with TAS2R39. Moreover, the
receptor binding pocket of TAS2R39 exhibits an additional acceptor site compared to TAS2R14,
which could explain its high affinity [20]. (-)-Epigallocatechin gallate exhibits a higher TAS2R4
and TAS2R5 AT than (-)-epicatechin [62,66]. Finally, (-)-epigallocatechin gallate activates both
TAS2R30 and TAS2R43 [66]. This flavanol should be more involved in pulse off-flavours due
to the activation of many receptors and low AT compared to the other compounds. Further
studies on a wider range of flavanols should allow a better overview of bitter taste receptor
activation by these compounds.
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Table 3. Phenolic compounds identified in pulses and their bitter and astringent characteristics.

Phenolic
Compounds CAS * M *

(g/mol)

Pulses Bitterness

Astringency
Adzuki Beans Beans ** Chickpeas Faba Beans Lentils Peas Sensory

Evaluation TAS2R Evaluation

PHENOLIC ACIDS

p-Hydroxybenzoic
acid 99-96-7 138.1

0.32–0.36 µg/g
[94]

5.05 µg/g DM
[103]

10.33 µg/g DM
[104]

4.03–12.20 µg/g
[108]

2.1–44.4 µg/g
DM [90]

1.6–56.6 µg/g
DM [96]

4.7 µg/g [111]
0.44–1.11 µg/g

[88]

0.94–1.00 µg/g
DM [94]

3.75 µg/g DM
[103]

73.46 µg/g [112]
3.25 µg/g DM

[113]

2.0 µg/g [15]
0.46–0.50 µg/g

[94]
4.69–16.62 µg/g

DM [114]

Slightly strong
(2 g/L—water)

[92]

DT: 665 µmol/L
(wine) [50]

Protocatechuic acid 99-50-3 154.1 67.6 µg/g [102]

0.33–0.41 µg/g
[94]

8.28 µg/g DM
[103]

0.00–2.40 µg/g
[108]

28.3–48.0 µg/g
DM [90]

D [71]
18.3 µg/g [111]
1.29–2.93 µg/g

[88]

0.49–0.52 µg/g
DM [94]

4.27 µg/g DM
[103]

1.45 µg/g DM
[113]

D [15]
2.06–2.21 µg/g

[94]
2.77–19.82 µg/g

DM [114]

Moderate
(2 g/L—water)

[92]

DT: 206 µmol/L
(wine) [50]

p-Coumaric acid 7400-08-0 164.2

D [95]
31.3 µg/g [102]
0–180 µg/g DM

[109]

D [95]
0.22 µg/g DM

[103]

17.6–99.4 µg/g
DM [90]

0–4.1 µg/g DM
[96]

D [95,115]
25.8 µg/g [111]
0.95–1.86 µg/g

[88]

D [95]
3.22–3.42 µg/g

DM [94]
38.84 µg/g [112]
6.47 µg/g DM

[113]
37.3 µg/g DM

[116]

D [15,95]
0.38–0.41 µg/g

[94]
0.54–1.10 µg/g

DM [114]

Moderate
(2 g/L—water)

[92]

Sensory
detection [92]

DT: 139 µmol/L
(wine) [50]

m-Coumaric acid 588-30-7 164.2 D [71] D [95]
Moderate (2
g/L—water)

[92]

DT: 292 µmol/L
(wine)

Gallic acid 149-91-7 170.1 0–520 µg/g DM
[109]

0.0–213.0 µg/g
DM [97]

5 µg/g DM [13]
4.1–22.0 µg/g

DM [90]
37.5–225.7 µg/g

DM [96]
0.0–106.0 µg/g

DM [97]

D [71]
26.9 µg/g [111]

2.54 µg/g DM
[103]

100.0 µg/g DM
[97]

0.016 µg/g [15]
Moderate

(2 g/L—water)
[92]

Sensory
detection [92]

Caffeic acid 331-39-5 180.2 10.0–22.0 µg/g
DM [13]

17.7–103.3 µg/g
DM [90]

D [95]
20 µg/g DM

[13]
0.091 µg/g [15]

Moderate (2
g/L—water)

[92]
DT: 0.11 mM

[117]
Based on a

model *** [15]

Sensory
detection [92]

Based on a
model *** [15]

STILBENES

Resveratrol 501-36-0 228.2 D [98]

Bitter (wine)
[101]

DT: 47 mg/L
(water) [67]

TAS2R14: AT = 16 µM;
EC50 = 30.3 µM [20]

TAS2R39: AT = 63 µM;
EC50 = 109 µM [20]

Astringent
(wine) [101]
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Table 3. Cont.

Phenolic
Compounds CAS * M *

(g/mol)

Pulses Bitterness

Astringency
Adzuki Beans Beans ** Chickpeas Faba Beans Lentils Peas Sensory

Evaluation TAS2R Evaluation

FLAVONOLS

Kaempferol 520-18-3 286.2
D [95]

0–90 µg/g DM
[109]

D [95]
5.5–97.9 µg/g

DM [90]
0–5.50 µg/g DM

[96]

D [95]
D [95]

1.64 µg/g DM
[103]

D [95]
TAS2R14: AT = 8 µM [20]

TAS2R39: AT = 0.5 µM
[20]

Quercetin 117-39-5 302.2 D [95]
36.2 µg/g [102]

D [95]
1.91 µg/g [108]

7.0–104.9 µg/g
DM [90]

0–14.5 µg/g DM
[96]

D [95,98] D [95]
D [95]

0–3 µg/g DM
[97]

TAS2R14 (500 µM) [20]
TAS2R39 (500 µM) [20]

Myricetin 529-44-2 318.2

4.4–28.3 µg/g
DM [90]

0–18.9 µg/g DM
[96]

TAS2R14: AT = 250 µM
[20]

TAS2R39: AT = 1 µM [20]

Quercetin-3-O-
glucoside 482-35-9 464.4 D [105] 0.79 µg/g DM

[104]
1.0 µg/g DM

[103] 0.015 µg/g [15] Based on a
model *** [15]

FLAVANOLS

(+)-Catechin 154-23-4 290.3
D [105]

0–160 µg/g DM
[109]

32.15 µg/g DM
[104]

142.58 µg/g
[108]

0.0–23.0 µg/g
DM [97]

132.38 µg/g
[110]

4.7–92.4 µg/g
DM [96]

0.0–26.0 µg/g
DM [97]

D [98]
9.4 µg/g [111]
191–297 µg/g

[88]
36.02 µg/g [112]

D [118]
0.1–0.3 µg/100 g

DM [94]
0.53 µg/g DM

[103]
0.77 µg/g DM

[113]

D [15]

DT: 1000
µmol/L (water)

[50]
Weak (2

g/L—water)
[92]

Bitter (0.9
g/L—aqueous

ethanol (1%
v/v)) [106]

TAS2R14: AT = 500 µM
[20]

TAS2R39: AT = 250 µM
[20]

DT: 410 µmol/L
(water) [50,107]

Astringent
(0.9 g/L—

aqueous ethanol
(1% v/v)) [106]

(-)-Epicatechin 490-46-0 290.3
25.7 µg/g [102]
0–90 µg/g DM

[109]

D [98]
98.25 µg/g [112]

70–97 µg/g DM
[13]

4.17 µg/g DM
[113]

DT: 930 µmol/L
(water) [50]
Moderate (2
g/L—water)

[92]
Bitter (0.9

g/L—aqueous
ethanol (1% v/v))

[106]

TAS2R4: AT = 2000 µM;
EC50 > 30151 µM [62]

TAS2R5: AT = 1000 µM;
EC50 = 3210 µM [62]

TAS2R14: AT = 500 µM
[20]

TAS2R39:
AT = 250–1000 µM;

EC50 = 417.7–3800 µM
[20,63,64]

DT: 930 µmol/L
(water) [50,107]

Astringent
(0.9 g/L—

aqueous ethanol
(1% v/v)) [106]

(-)-Epigallocatechin 970-74-1 306.3 D [98] 0.00–1.61 µg/g
DM [114]

TAS2R39: AT = 500 µM;
EC50 = 395.5 µM [20,63]

DT: 520 µmol/L
(water) [107]

(-)-Epicatechin
gallate 1257-08-5 442.4 363 µg/g [111]

TAS2R14: AT = 125 µM;
EC50 = 70 µM [20,64]

TAS2R39: AT = 32 µM;
EC50 = 21.3–151 µM

[20,63,64]

DT: 260 µmol/L
(water) [107]
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Table 3. Cont.

Phenolic
Compounds CAS * M *

(g/mol)

Pulses Bitterness

Astringency
Adzuki Beans Beans ** Chickpeas Faba Beans Lentils Peas Sensory

Evaluation TAS2R Evaluation

(-)-Epigallocatechin
gallate 989-51-5 458.4 0.1 µg/g [102] 18.3 µg/g [111] DT: 380 µM [66]

TAS2R4 [66]
TAS2R5: EC50 = 12.30 [66]
TAS2R14: AT = 250 µM;

EC50 = 34 µM [20,64]
TAS2R30 [66]

TAS2R39:
AT = 32–100 µM;

EC50 = 8.50–181.6 µM
[20,63,64,66,119]

TAS2R43: EC50 = 16.72
[66]

DT: 190 µmol/L
(water) [107]

Theaflavin 4670-05-7 564.5 D [98] TAS2R39: EC50 = 2.79 µM
[64]

DT: 16 µmol/L
(water) [107]

FLAVONES

Chrysin 480-40-0 254.2 0–90 µg/g DM
[109] D [98,115]

TAS2R14: AT = 63 µM
[20]

TAS2R39: AT = 16 µM
[20]

7,4′-
Dihydroxyflavone 2196-14-7 254.2 D [115]

TAS2R14: AT = 16 µM
[20]

TAS2R39: AT = 125 µM
[20]

Luteolin 491-70-3 286.2
D [118]

0.33 µg/g DM
[113]

TAS2R14: AT = 2 µM;
EC50 = 6.0 µM [20]

TAS2R39: AT = 0.5 µM;
EC50 = 7.3 µM [20]

FLAVANONES

Pinocembrin 480-39-7 256.2 1.26 µg/g [108] D [98]

TAS2R14: AT = 8 µM;
EC50 = 39.1 µM [20]

TAS2R39: AT = 4 µM;
EC50 = 48.9 µM [20]

Naringenin 480-41-1 272.2 D [118] 0.082 µg/g [15]

TAS2R14: AT = 16 µM;
EC50 = 36.2 µM [20]

TAS2R39: AT = 8 µM;
EC50 = 32.9 µM [20]

ISOFLAVONES

Daidzein 486-66-8 254.2 0.209 µg/g DM
[120]

0.0–40.3 µg/g
DM [90]

0.475 µg/g DM
[120]

0.59 µg/g DM
[120]

0.84 µg/g DM
[120]

0.41 µg/g DM
[120]

Slightly (1 µM)
[80]

TAS2R14: AT = 500 µM
[21]

TAS2R39: AT = 500 µM
[21]

Astringent
(0.1–1 µM) [80]

Formomonetin 485-72-3 268.3 D [98]

TAS2R14: AT = 500 µM
[21]

TAS2R39: AT = 500 µM
[21]
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Table 3. Cont.

Phenolic
Compounds CAS * M *

(g/mol)

Pulses Bitterness

Astringency
Adzuki Beans Beans ** Chickpeas Faba Beans Lentils Peas Sensory

Evaluation TAS2R Evaluation

Genistein 446-72-0 270.2 0.191 µg/g DM
[120]

0.7–33.8 µg/g
DM [90]

0.766 µg/g DM
[120]

D [98]
0.74 µg/g DM

[120]

0.139 µg/g DM
[120]

0.144 µg/g DM
[120]

Slightly (1.5 µM)
[80]

TAS2R14: AT = 4 µM;
EC50 = 28.9 µM [21]

TAS2R39: AT = 8 µM;
EC50 = 49.4 µM [21]

Weakly (10 µM)
[80]

Astringent
(1.5 µM) [80]

PROCYANIDINS

Procyanidin B1 20315-25-7 578.5 213.0 µg/g [108] D [98] D [118] DT: 400 µM [50]

TAS2R5:
EC50 = 119.34 µM [66]

TAS2R7:
EC50 = 123.95 µM [66]

DT: 240 µM [50]

Procyanidin B2g
(3-O-gallate) 29106-49-8 578.5 D [98,111] 0.49 µg/g DM

[103]

TAS2R5: EC50 = 6.29 µM
[66]

TAS2R39: EC50 = 9.11 µM
[66]

Procyanidin B4 29106-51-2 578.5 16.0 µg/g [108] D [98]

Bitter (0.9
g/L—aqueous

ethanol (1% v/v))
[106]

TAS2R5 [66]

Astringent (0.9
g/L—aqueous

ethanol
(1% v/v)) [106]

Procyanidin C2 - 866.8 42.4 µg/g [108] D [98]

Bitter (0.9
g/L—aqueous

ethanol (1% v/v))
[106]

TAS2R5: AT = 30.0 µM;
EC50 = 35.6 µM [62]

Astringent (0.9
g/L—aqueous

ethanol
(1% v/v)) [106]

D: detected; DM: dry matter; EC50: half-maximum effective concentration of agonist required to achieve 50% of the maximum amplitude of receptor activation; DT: detection threshold;
AT: activation threshold; TAS2R: human type 2 taste receptor. * CAS and molar mass (M) from the literature (NIST, 2022 and PubChem, 2022). ** Common beans include pulses from the
specie Phaseolus vulgaris. *** Model based on the correlations of phytochemical compounds area determined by UHPLC-DAD-MS (ultrahigh-performance liquid chromatography–diode
array detector–mass spectrometry) and sensory profiling [15].
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Table 4. TAS2Rs activated by some flavanols identified in pulses (adzuki beans, beans *, chickpeas,
faba beans, lentils and peas).

Flavanols TAS2R4 TAS2R5 TAS2R14 TAS2R30 TAS2R39 TAS2R43 Reference

(+)-catechin + (500; ND) + (250; ND) [20]

(-)-epicatechin + (2000;
≥30,151) + (1000; 3210) + (500; ND)

− (≤100) − (≤100)
+ (250; ND)

+ (1000; 3800)
+ (ND; 417.7)

− (≤100)
[20]
[62]
[63]

(-)-epigallocatechin − (≤500) + (500; ND)
+ (ND; 395.5)

[20]
[63]

(-)-epicatechin gallate + (125; ND)
+ (ND; 70)

+ (32; 151)
+ (ND; 21.3)
+ (ND; 88.2)

[20]
[64]
[63]

(-)-epigallocatechin
gallate + (≤100; ND) + (≤100; 12.30)

+ (250; ND)
− (≤100)

+ (ND; 34)
+ (≤100; ND)

+ (32; 161)
+ (≤100; 8.50)
+ (ND; 112)

+ (ND; 181.6)

+ (≤100;
16.72)

[20]
[66]
[64]
[63]

Theaflavin − (ND) + (ND; 2.79) [64]

ND: not determined. “+” indicated receptor activation followed by activation threshold (µM) and EC50 (half-
maximum Effective Concentration) (µM); “−“ indicated a lack of activation followed by the higher concentration
tested (µM). * Beans include pulses from the specie Phaseolus vulgaris.

• Flavones

Only three flavones have been detected in pulses, for which the activation of TAS2Rs
has been studied. Chrysin has been identified in adzuki beans (0.00–0.09 g/kg) and
faba beans [98,109,115], and activates TAS2R14 and TAS2R39 at concentrations of 63 µM
and 16 µM, respectively [20]. 7,4′-Dihydroxyflavone, detected in faba beans, activates
TAS2R14 at a lower threshold (16 µM) than chrysin, whereas it is higher for TAS2R39
(125 µM) [20,115]. Finally, luteolin exhibits very low AT for these two receptors in com-
parison with the previous flavones: 2 µM for TAS2R14 and 0.5 µM for TAS2R39 [20]. Pea
flour contains 81.7 ng/g luteolin, but this compound does not contribute to bitterness and
astringency according to the correlation model [15]. The concentrations of luteolin and
caffeic acid are similar in pea flour, although only caffeic acid contributes to its bitterness
and astringency [15]. One explanation is that the bitter receptor threshold activation of
caffeic acid was lower than that of luteolin. However, this remains to be demonstrated.

• Flavanones

Roland et al. (2013) [20] have shown the activation of TAS2R14 and TAS2R39 by
two flavanones, pinocembrin and naringenin. The TA and EC50 are similar for both
molecules and bitter receptors [20]. Pinocembrin has been identified in common beans and
faba beans, whereas lentils contain naringenin [98,108,118].

• Isoflavones

Three isoflavones, daidzein, formononetin, and genistein, have been identified in
beans, chickpeas, faba beans, lentils, and peas. The extracts of daidzein and genistein
from soybeans are described as slightly bitter and astringent by a trained panel [80]. These
isoflavones are involved in the bitter taste and astringency of soybeans due to their very
high content compared to other legumes (Table 5) [18,19]. Genistein (extracted from soy-
beans) has AT for TAS2R14 and TAS2R39 at concentrations of 4 and 8 µM, respectively [21],
and these ATs are similar to naringenin (flavanone) [20]. These low threshold values could
explain the important role of genistein in the perception of soybean bitterness. However,
the relationship between the AT (receptor level) and DT (sensory level) has never been
demonstrated for this compound. Moreover, daidzein and formononetin (also extracted
from soybeans) also activate these two receptors at a higher concentration (500 µM) [21].
The number and positions of hydroxyl groups should be an important parameter for TAS2R
activation [20,66]. Indeed, genistein exhibits three OH groups whereas formononetin and
daidzein have one and two hydroxyl groups. However, chickpeas, soybeans, and peas are
more concentrated in daidzein than in genistein. These two isoflavones could be equally
involved in the bitter sensation of these pulses (balance between concentration and AT). In
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addition, malonyl-β-glucosides such as malonyl daidzein, malonyl glycitin and malonyl
genistein have been identified in soybean flakes [81]. These are derived from the malony-
lation of β-glucosides [121]. These malonyl-β-glucosides should contribute as much to
soybean bitterness and astringency as DDMP saponin and more than the other saponins
and isoflavones [81]. Currently, none of these malonyl-β-glucosides have been identified in
beans, chickpeas, faba beans, lentils and peas. Finally, heat treatment reduces the isoflavone
content, whereas germination increases it [120,122].

Table 5. Concentration (µg/kg DM) of genistein and daidzein in different legumes [120].

Legumes Genistein (µg/kg DM) Daidzein (µg/kg DM)

broad beans (raw) 74 59
chickpeas (dried, raw) 475 766

lentils (dried, raw) 139 84
red kidney beans (raw) 191 209
soybeans (dried, raw) 583.103 838.103

peas (dried, raw) 41 144
DM: dry matter.

3.2.4. Condensed Tannins

Condensed tannins are oligomers or polymers composed of derivates from (+)-catechin
and its isomers. Unlike hydrolysable tannins, they are resistant to hydrolysis and are
degraded using chemical treatments [123]. Prodelphinidins and procyanidins have been
identified in pulses. Hulls contain higher concentrations of these condensed tannins than
cotyledons [90,91,124]. These compounds may be responsible for bitterness and astringency
in grapes and wines [125]. In lupin, condensed tannins may be more involved in bitterness
than flavanols and alkaloids [16]. Moreover, the evaluation of the bitter and astringent
intensities of low- and high-tannin faba beans would have made it possible to verify their
involvement [89].

Procyanidins B4 and C2 are described as astringent and bitter at a concentration of
0.9 g/L in aqueous ethanol [106]. Dimers and trimers of procyanidins are more astringent
than monomers ((+)-catechin and (-)-epicatechin) [106]. The astringent DT of (-)-epicatechin
is five times higher than that of procyanidin B2 [50]. Hufnagel and Hofmann (2008) sug-
gested that the more polymerised the molecules are, the more bitter they are, as shown
by the ranking obtained according to the intensity of bitterness perceived in wines: pro-
cyanidin B1 and C1 > procyanidin B2 > procyanidin B3 > (-)-epicatechin > (+)-catechin [50].
Indeed, a similar ranking of TAS2R5 receptor DTs has been established [62]. Conversely,
Peleg et al. (1999) demonstrated using sensory analysis that the more polymerised the
molecules are, the less bitter they are. In wine, (-)-epicatechin is more bitter than (+)-
catechin, which is more bitter than procyanidin trimers [106]. These contradictory results
can be explained by the presence of ethanol in the wines, which increases the intensity
of the bitter perception in the mouth. Indeed, Fischer and Noble (1994) have shown that
an increase of 3% (v/v) ethanol in wine is equivalent to an increase in bitterness (+50%)
caused by the addition of 1400 mg/L catechin [126]. However, it is not possible to ver-
ify these results with bitter receptors in vitro in the presence of ethanol, as this molecule
is 1% toxic to cells. Some sensorial results are therefore consistent with those obtained
via cell tests: the degree of polymerisation of these phenolic compounds should increase
the intensity of bitterness. (+)-Epicatechin activates TAS2R4, TAS2R5 and TAS2R39 from
a concentration above 1000 µM, while procyanidin C2 (trimer) activates TAS2R5 from
30 µM [62]. Roland et al. (2011) suggest that a molecule with many hydroxyl groups could
have a better affinity for TAS2R5 [21]. Indeed, dimers (procyanidins B) and trimers (pro-
cyanidins C) have more OH groups than monomers. The ability of seven procyanidins (five
dimers and two trimers also identified in pulses) to activate the 25 TAS2Rs has been tested
(Table 6) [62,66]. Only TAS2R5, TAS2R7 and TAS2R39 are activated by at least one procyani-
din. Procyanidins B2, B3, and C1 did not activate the 25 TAS2Rs at the tested concentrations.



Molecules 2023, 28, 3298 18 of 25

TAS2R7 is only activated by procyanidin B1, and TAS2R39 is activated by procyanidin B2g.
In addition, TAS2R5 is activated by procyanidins B1, B2g, B4 and C2. Procyanidin B2g
exhibits the lowest EC50 followed by procyanidins C2 and then B1. However, the EC50
of dimer B4 has not been determined due to the observation of unspecific responses in
the control condition (mock) [62,66]. These results suggest a role for condensed tannins,
especially procyanidins, in the bitterness and astringency of pulses. However, it would be
interesting to investigate the potential bitter taste and astringency of prodelphinidins.

Table 6. hTAS2Rs activated by dimer and trimer condensed tannins identified in pulses (beans *, faba
beans and lentils).

Procyanidins TAS2R5 TAS2R7 TAS2R39 Reference

dimers

B1 + (≤67; 119.34) + (≤67; 123.95) − (≤67) [66]
B2 − (≤67) − (≤67) − (≤67) [66]

B2g (3-O-gallate) + (≤100; 6.29) − (≤100) + (≤100; 9.11) [66]
B3 − (≤67) − (≤67) − (≤67) [66]
B4 + (≤133; ND) − (≤133) − (≤133) [66]

trimers
C1 − (≤150) − (≤150) − (≤150) [66]
C2 + (30.0; 35.6) − (≤300) − (≤300) [62]

ND: not determined. “+” indicated receptor activation followed by activation threshold (µM) and EC50 (half-
maximum effective concentration to achieve 50% of the maximum amplitude of receptor activation) (µM);
“−“ indicated a lack of activation followed by the higher concentration tested (µM). * Beans include pulses from
the specie Phaseolus vulgaris.

3.3. Alkaloids

Some alkaloids contribute to the bitterness of food products such as caffeine [6].
Approximatively sixteen alkaloids have been detected in different lupin varieties and could
be partially responsible for their bitterness. They are distributed in the quinolizidine,
indole, and piperidine classes [16,127,128]. For example, lupanine is the most abundant
alkaloid in white and narrow-leafed lupins and sparteine in yellow lupins [128]. However,
quinolizidine alkaloids are considered human antinutritional factors due to neurological,
cardiovascular, and gastrointestinal disturbances [128,129]. Lupins are classified into two
varieties: the “bitter” and the “sweet” which differ in their alkaloid content [16,130]. DuPont
et al. established the relationship between the bitter intensity of milled lupins and their
alkaloid content [16]. The bitter mean scores of the “bitter” varieties are higher than those
of the “sweet” ones (7.8 and 2.0 over 10, respectively). The “sweet” varieties exhibited
0.1 mg/g DM of mean alkaloids compared to 15.0 mg/g DM for the “bitter” varieties.
Concerning the “bitter” varieties, the lupin evaluated as the least bitter contains 4.8 mg/g
(dry matter) of alkaloids, including lupinine and gramine, whereas the one with the highest
bitter intensity contains 26.9 mg/g (dry matter) composed of sparteine, lupanine and
13-hydroxylupanine. This study has highlighted the role of alkaloids in lupin bitterness;
however, the authors suggest that intense bitterness in “bitter” varieties could also be
attributed to the presence of tannins [16]. Moreover, treatments to eliminate alkaloids in
lupin are called “debittering treatments” [127].

Faba bean is another pulse containing two alkaloids, vicine and convicine [131,132].
These molecules are pyrimidine glucosides and cause favism in people who express a
genetically inherited glucose-6-phosphate dehydrogenase (G6PD) deficiency; they are
considered antinutritional factors [89,133,134]. Such as lupins, there are new cultivars
of faba bean breeding lines with a significantly lower amount of alkaloids; the reduced
level of vicine and convicine can considerably vary among cultivars [89,133]. However,
the sensorial aspect of these molecules has never been studied. It would be interesting
to compare the bitter intensity of the high- and low-vicine/convicine cultivars. A study
correlated the flavour-related components and the sensorial attributes of faba bean flour,
concentrate and isolate using partial least squares (PLS) regression. Bitterness is related to
vicine and convicine, although other compounds, including free phenolic compounds and
amino acids (phenylalanine, tryptophan, and histidine), also contribute [57].
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Thus, the main disadvantages of alkaloids are their antinutritional effect and their
potential contribution to bitterness of lupins and faba beans. However, the main advantage
of these secondary metabolites is their involvement in the plant mechanism, which limits
herbivory attacks and ensures harvest yields [12,135]. For example, the low vicine and
convicine faba bean genotypes are more sensitive to bruchid attack [89]. These compounds
are beneficial for the plant in the field and can be eliminated after harvesting by many
strategies including cooking, soaking, germination, and fermentation [127,134,136,137]

4. Conclusions

Consumers and food industries generate constant demand for plant-based products,
but there remains a strong need to improve their flavour. The volatile compounds of many
pulses and their impact on off-notes have been relatively well-studied. However, this
review concludes that there is a gap in the knowledge regarding non-volatile compounds
causing bitterness and astringency in pulses. It is therefore important to identify the
molecules involved in plant-based off-flavours to increase consumer acceptability.

This review compiles the different non-volatile compounds that contribute to the
bitterness and astringency of pulses and potential compounds identified in pulses that
are described as bitter and astringent in other food products. All the molecules listed
in this review originate from a secondary metabolism and contribute to pulse defence.
They are more cultivar- and pulse-dependent, and their content varies owing to differ-
ences in environmental, storage and transformation conditions. Saponins may be the main
compounds responsible for bitterness and astringency in peas and soybeans. Due to the
high saponin content in chickpeas, this family of compounds could also be responsible
for off-flavours. However, lupins and faba beans have lower saponin contents and differ
from other legumes in the presence of alkaloids which may also contribute to bitterness.
According to phenolic compounds, isoflavones are responsible for bitterness and astrin-
gency in soybeans but are probably not involved in other pulse off-flavours due to their
very low content. Moreover, the number of phenolic compounds identified in pulses that
exhibit bitter and/or astringent characteristics is very large; however, their role in pulse
off-flavours needs to be highlighted, although some predictions suggest the possibility.
It would be interesting to continue the study of these compounds through both sensory
analysis and in vitro tests. Cellular in vitro tests provide information on activated TAS2R
and make it possible to target the most impactful compounds on off-flavours. Moreover,
the activation of the same TAS2R by different molecules and the activation of multiple
TAS2Rs by a single molecule may lead to an increase in perceived bitterness. It is also
interesting to compare the molecule content of pulses and their TAS2R AT to verify their
involvement in off-flavours.

This review is probably not exhaustive and might be completed in the coming
years. Other compounds, particularly many phenolic compounds, have been identified in
legumes; however, their sensory impact (bitterness and astringency) on food products has
never been studied, which could suggest new potential compounds. Indeed, studies often
focus on the identification of molecules alone or the overall bitterness and/or astringency
of plant-based products without linking to their content. Moreover, recent studies have
suggested the role of other compounds, including lipids, lipid oxidation products, peptides
and free amino acids, in the negative perception of pulses [9,22,138,139].

Finally, precise identification of bitter and astringent compounds in pulses could
allow the determination of their main origins and the proposal of strategies to reduce their
perception. Some approaches have been identified for improving the flavour of pulses,
such as limiting the production of these unwanted compounds, removing them or masking
their perception. One approach consists of selecting cultivars with low saponin content
(peas) or with low alkaloid and tannin content (faba beans and lupins). However, this
strategy decreases plant resistance and may raise other problems such as low production
yields. The content of these compounds may vary during seed transformation, showing
that a compromise must be considered. For example, germination reduces the alkaloid seed
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content while enriching it with isoflavones and saponins. The fermentation of plant-based
products decreases the content of these unwanted compounds but promotes the formation
of new bitter compounds such as peptides and free amino acids [140]. Another approach
consists of using perceptual interactions to limit intensity of bitterness and astringency, in
particular using odour-taste interactions [141,142].
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