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Simple Summary: The present work proposes an original approach for antimicrobial (AM) resistance
reduction based on marginal abatement cost. The optimal use of AMs for dairy cows is defined, and
the costs of decreasing antimicrobial use (AMU) below the optimal level and increasing AMU above
the optimal level are assessed.

Abstract: Maintaining udder health is the primary indication for antimicrobial use (AMU) in dairy
production, and modulating this application is a key factor in decreasing AMU. Defining the optimal
AMU and the associated practical rules is challenging since AMU interacts with many parameters.
To define the trade-offs between decreased AMU, labor and economic performance, the bioeconomic
stochastic simulation model DairyHealthSim (DHS)© was applied to dairy cow mastitis management
and coupled to a mean variance optimization model and marginal abatement cost curve (MACC)
analysis. The scenarios included three antimicrobial (AM) treatment strategies at dry-off, five types
of general barn hygiene practices, five milking practices focused on parlor hygiene levels and three
milk withdrawal strategies. The first part of economic results showed similar economic performances
for the blanked dry-off strategy and selective strategy but demonstrated the trade-off between AMU
reduction and farmers’ workload. The second part of the results demonstrated the optimal value of
the animal level of exposure to AM (ALEA). The MACC analysis showed that reducing ALEA below
1.5 was associated with a EUR 10,000 loss per unit of ALEA on average for the farmer. The results
call for more integrative farm decision processes and bioeconomic reasoning to prompt efficient
public interventions.

Keywords: dairy cow; economics; mastitis; antimicrobial use; farmer practices

1. Introduction

Bovine mastitis is an inflammation of the mammary gland characterized by varying
degrees of severity, most of which cause loss of milk quantity and quality. Mastitis in dairy
cows is a costly disease. A recent meta-analysis assessed the costs of gram-positive and
gram-negative clinical mastitis for the farmer to be, on average, EUR 101 and EUR 457 per
case, respectively [1]. In industry, mastitis also has a major economic impact by reducing
the quality and shelf life of pasteurized milk [2]. Although knowledge and practical rules
for managing mastitis in dairy farms have been extensively improved in recent decades,
mastitis remains a key issue in the dairy industry since it represents the main reason for
antimicrobial use (AMU), which is a hot topic for both industry and society. A recent
study showed that during the 2005–2012 period, approximately 60% of AMU in dairy
cattle was due to clinical mastitis treatment and preventive treatment at dry-off, with
dry-off treatments accounting for 2/3 rds of this 60%. As public health authorities are
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facing an increasing number of cases of antibiotic-resistant pathogens, many initiatives
aim to reduce AMU in animals. In France, the Ecoantibio program implemented since
2012 was associated with an overall 45.4% decrease in AMU through 2020, with AMU in
all species considered [3]. The program progress is assessed by using the animal level of
exposure to antimicrobials (ALEA) indicator [4]. Despite such efforts, the French dairy
sector faces difficulties in decreasing AMU. The specificities of dairy production partly
explain the differences in AMU changes observed between species, at least in the French
context. The multifactorial origin of mastitis, the long-term production cycle of dairy cows,
the economic difficulties faced by dairy farmers in recent decades, the high heterogeneity
in farm structures with the associated practices and, finally, the relatively low AMU in the
2010s in cattle compared to other species have all challenged further AMU decreases in the
French dairy industry [5,6].

Reduced AMU is made possible by advances in mastitis management strategies
through optimizing antimicrobial (AM) treatment and disease prevention during lactation
and dry-off since [7], but alternatives to AMU should be carefully evaluated to avoid
threatening the farm and value chain sustainability [8]. At the farm level, we can identify
three potential levers for mastitis-related AMU reduction: optimizing AM treatments in
lactation [9], applying selective dry cow therapy (SDCT) [10] and reducing the risk of
mammary infections, in particular, by controlling the level of hygiene of the environment
in which the animals evolve [11].

Mastitis prevention is based on the control of many risk factors, including drying-
off strategies, milking parlor and barn hygiene, feeding, biosecurity, data recording, etc.
Commitment to these preventive measures, therefore, requires investments of time and
money, which are sometimes difficult to initiate. The difficulty is further increased because
economic returns may come later, due to the long production cycle and high value of
the animals. Mastitis prevention management and decision-making is, therefore, compli-
cated, due to the multiple associated repercussions that impact the farm dynamics in the
long term.

This situation calls for integrative approaches to mastitis management, including the
consideration of mastitis economics that include farmer behaviors and daily constraints.
Unfortunately, the bioeconomic simulation models commonly reported in the literature
are often limited to monetary problem solving and do not consider resource allocation
decisions, especially multicriteria decisions, although these decisions are often made by
farmers [12].

To our knowledge, no economic analysis has been performed to assess the monetary
and non-monetary cost of reducing mastitis-related AMU. The present work aimed to
define the trade-offs between mastitis-related AMU decrease, farmer labor and farm eco-
nomic performance using the bioeconomic stochastic simulation and optimization model
DairyHealthSim© (DHS©). The trade-offs were assessed based on the marginal abatement
cost (cost in EUR or extra work hours required to decrease AMU by one unit), through the
consideration of 2 of the 3 potential levers of AMU reduction, 3 AM treatment strategies at
dry-off associated to 5 general barn hygiene practices and 5 milking practices accounting
for parlor hygiene levels.

2. Materials and Methods
2.1. Bioeconomic Modeling

The bioeconomic sequential optimization model DHS© was used. An extensive
application of DHS© has been reported previously [12] and a description is reported
in Supplemental Data. This model consists of a biological simulation model coupled
to an economic optimization model. The biological component aims at the dynamic
representation of a dairy herd (Figure S1). Treatment simulation per animal per week
allowed us to compute the yearly ALEA at dry-off (ALEA_DO) and for all cows at all
production stages as the ratio of treated bodyweight to treatable bodyweight (Equation (1)).
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ALEA_DO = Treated bodyweight with AM at dry-off)/(Treatable bodyweight at dry-off) (1)

The recursive mean–variance optimization framework economic model dynami-
cally represented farmers’ input allocation decisions while maximizing utility under con-
straints [12]. The two constraints used for optimization in the present trial were the
workload and AMU [12]. The output of the model is the farmer’s utility and expected
income under different combinations of daily activity constraints.

Model calibration details are available in supplemental data for production functions
(Tables S1 and S2), feed consumption (Table S3), SCC count simulation (Table S4), diseases
functions (Tables S1, S6 and S7), treatment functions (Tables S5 and S8), culling management
(Table S9), reproduction simulation (Figure S2 and Table S2) and economic parameters
(Table S10)

2.2. Strategies Tested and Calibration

A deteriorated housing barn and milking parlor hygiene and, therefore, the hygiene
of the udder represents a risk factor for intramammary environmental and contagious
pathogens [13], while improved cow cleanliness and high milking hygiene would reduce
mastitis incidence and improve farm efficiency [14]. SDCT in dairy farms may reduce AMU
more than blanket dry-cow therapy (BDCT) [15] and slightly improve farm profitability [16].
However, an improperly implemented SDCT (e.g., not using internal teat sealant) [17] may
increase mastitis occurrence and reduce farm profitability [18].

Four sets of strategies, including milk withdrawal from the bulk milk tank (W),
treatment at dry-off (T), housing barn hygiene (H) and milking parlor hygiene (M), were
combined to produce 225 scenarios (Figure 1).
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Figure 1. Flowchart describing the scenario combinations. Blue boxes represent milk withdrawal
scenarios (W0, WC and WT), red boxes represent treatment at dry-off scenarios (T1, T2 and T3),
orange boxes represent milking parlor hygiene practice scenarios (M0, M1, M2, M3 and M4) and
green boxes represent dairy housing hygiene practice scenarios (H0, H1, H2, H3 and H4).
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The set of strategies for treatment at dry-off include: BDCT (T1), improperly imple-
mented SDCT (T2) and a properly implemented SDCT (T3). Sets of strategies for hygiene
management represent five levels of farmer practices for both barn and milking parlor
hygiene. Three milk withdrawal strategies were implemented to mitigate effects of mastitis
incidence in receiving penalties for bulk milk SCC. The sets of strategies for treatment at
dry-off (T), housing barn hygiene (H) and milking parlor hygiene (M) influenced mastitis
occurrence and, therefore, the AMU and farmer’s workload (Table 1). All sets of strategies
influenced economic outcomes. The epidemiologic and economic outcomes of the models
were the yearly mean results of 10 years with 50 iterations. The specific parameter values
used for scenarios calibration are reported in Table 1 and the base parameters of DHS© are
reported in Gables S1.0 to S1.9 in the Part 1 of the Supplemental Data.

Table 1. Descriptions and simulation model impact of milk withdrawal (W), treatment at dry-off (T),
housing hygiene (H) and milking parlor hygiene (M) scenarios.

Description Declination as Impact

W (milk withdrawal)

W0: no milk withdrawal
A cow’s milk is removed from the milk tank

when it contains more than 10,000,000 SCC/mL
of milk.

WC: strict cow threshold
(SCC) milk

withdrawal strategy

A cow’s milk is removed from the milk tank
when it contains more than 800,000 SCC/mL

of milk.

WT: mixed cow and tank
threshold (SCC) milk
withdrawal strategy

A cow’s milk is removed from the milk tank
when it contains more than 800,000 SCC/mL of
milk only if the milk tank is at more than 300,000

SCC/mL of milk.

T (treatment at dry-off)

T1: common practice Systematic antibiotic treatment at dry-off for
all cows. [19]

T2: simple selective
antibiotic treatment

Selective antibiotic treatment at dry-off for cows
that produced > 250,000 SCC/mL of milk in the

previous month.

Relative risk = 2 for clinical mastitis up to 14
WIM in untreated cows (<250,000 SCC/mL of
milk) compared to conventional treatment [20].

T3: combined selective
antibiotic treatment

Selective antibiotic treatment at dry-off of cows
that produced > 250,000 SCC/mL of milk in the
previous month and teat sealant for other cows.

Relative risk = 1 for cows treated with antibiotics
at dry-off and for cows that received a teat

sealant [21].

H (housing hygiene)

H0
Very good dairy housing hygiene (more straw

for cows lactating and undergoing dry-off) and
higher farmer time investment 2.

For lactating cows: 4–6 kg straw/cow/d +
12 s/cow; for cows undergoing dry-off: 5 kg

straw/cow/d; relative risk 1 of clinical
mastitis = 0.7.

H1

Good hygienic measures (relatively more straw
for lactating cows and more straw for cows

undergoing dry-off) and lower farmer
time investment 2.

For lactating cows: 3–5 kg straw/cow/d +
6 s/cow; for cows undergoing dry-off: 5 kg

straw/cow/d; relative risk 1 of clinical
mastitis = 0.8.

H2
Average hygienic measures (lesser amount of

straw) and the recommended farmer
time investment.

For lactating cows: 2–3 kg straw/cow/d +
recommended time; for dry-off cows: 3 kg

straw/cow/d; relative risk 1 of clinical
mastitis = 1.

H3 Deteriorated hygienic measures (small amount
of straw) and some farmer time savings 2.

Lactating: 1.5–3 kg straw/cow/d − 6 s/cow;
dry-off: 1.5 kg straw/cow/d; relative risk 1 of

clinical mastitis = 1.25.
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Table 1. Cont.

Description Declination as Impact

H4
Very deteriorated hygienic measures (small

amount of straw) and increased farmer
time savings 2.

Lactating: 1.5–3 kg straw/cow/d − 12 s/cow;
1.5 kg straw/cow/d; relative risk 1 of clinical

mastitis = 1.5.

M (Milking parlor hygiene)

M0 Very good hygienic measures, extra farmer time
investment and increased consumable use 3.

1 min/cow/d + EUR 0.0452; relative risk 1 of
clinical mastitis = 0.7.

M1 Good hygienic measures, extra farmer time
investment and increased consumable use 3.

30 s/cow/d + EUR 0.0226; relative risk 1 of
clinical mastitis = 0.8.

M2
Average hygienic measures, only the

recommended farmer time investment and no
increased consumable use 3.

Time and cost according to recommendations;
relative risk 1 of clinical mastitis = 1.

M3 Deteriorated hygienic measures, farmer time
savings 2 and no increased consumable use 3.

−7 s/cow/d + EUR 0; relative risk 1 of clinical
mastitis = 1.25.

M4
Very deteriorated hygienic measures, increased

farmer time savings 2 and no increased
consumable use 3.

−15 s/cow/d + EUR 0; relative risk 1 of clinical
mastitis = 1.5.

Notes: 1 Relative risk assumptions were based on the authors’ expertise. 2 The additional time corresponds to
additional time required relative to average practices, and time savings are the time saved relative to average
practices. 3 Consumables included udder sanitizers, disinfectants, towels (drying towels and paper towels)
and gloves.

2.3. Farmer’s ALEA Marginal Abatement Cost

At the farm level, the marginal abatement cost (MAC) of an animal’s AM exposure
represents the farmer’s cost of reducing ALEA. The MAC was represented as the income
variation due to a change in production strategy for a one-unit reduction in ALEA. The
logic of the MAC followed the basic economic theory applied in environmental pollution
control, wherein a change in AMU by farmers is efficient when the cost of achieving a
specific goal is minimized [22]. The farmer’s ALEA MAC was evaluated by first placing
the simulated production inputs (i.e., ALEA or time) and associated incomes in ascending
order and then obtaining the dependent variable (Equation (2)) for each milk withdrawal
scenario (W):

Incomei = f(ALEAi, Timei, Xi) (2)

The MAC of ALEA (MACALEA) was finally defined as the ratio of the difference in
income to the difference in ALEA for each scenario (Equation (3)):

MACALEAi = (∆Incomei/∆ALEAi) = (Incomei − Incomei−1)/(ALEAi − ALEAi−1) (3)

Similarly, the marginal income per additional unit time (was represented as MITimei)
follows with Equation (4):

MITimei = (∆Incomei/∆Timei) = (Incomei+1 − Incomei)/(Timei+1 − Timei) (4)

The graphical representation of MACALEAi represents the ALEA marginal abatement
cost curve (MACC). The marginal curve facilitated identifying the optimal ALEA situation,
which was defined by a marginal cost equal to zero.

3. Results
3.1. Biological Impacts of Farmers’ Strategies

As expected, the milk withdrawal strategy highly influences the quantity of milk sold
(Figure S2.1–S2.3; Supplemental Data). Strategies WT and W0 presented quite similar
production levels and income levels, while WC showed deteriorations in the quantity of
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milk sold and income, particularly in deteriorated hygiene situations. For a given milk
withdrawal strategy, the more deteriorated the hygiene (at housing or milking) was, the
greater were the reductions in milk production (left to right within strategy T). This trend
was the highest for T2. For T2, under deteriorated hygiene conditions, the number of
lactating clinical and subclinical mastitis cases increased dramatically as a consequence
of a higher risk of contamination during dry-off. Because the milk withdrawal strat-
egy does not impact the milk produced (only the milk sold), the other epidemiologic
outcomes were similar regardless of the milk withdrawal strategy (W). ALEA results
show that the highest AMU at dry-off was observed under T1, as expected. The high-
est AMU in all production stages was observed under T2. Moreover, as expected, the
lower the housing (H) or milking (M) hygiene was, the higher the AMU in all production
stages (left to right in Figure S2.4–S2.6; Supplemental Data). Although both selective
treatments at dry-off (T2 and T3) reduced AMU for dried cows, selective treatment with
antimicrobials and a teat sealant (T3) provided better mastitis control efficiency per unit
of AMU at dry-off. As shown in Supplemental Data Figure S2.7–S2.9, clinical masti-
tis prevalence followed the same trend as the animals’ level of exposure to antimicro-
bials. Culling due to low production, subclinical mastitis or recurrent clinical mastitis (the
main reasons for culling) was highest under T2 and lowest under T3 (Figure S2.10–S2.12;
Supplemental Data).

3.2. Bioeconomic Optimization to Define the Best Farmer Strategies

The results highlight that WT_T3 was almost always the optimal strategy (Table 2).
When W0 and T3 were not optimal, the difference in risk-adjusted income under the optimal
strategy was very limited. The trade-off between the workload and AMU reduction was
also demonstrated (Table 2). If the farmer’s objective is to decrease AMU while limiting the
workload, housing hygiene must be prioritized over that of the milking parlor (scenarios
M2_H1 and M2_H0 produced 10% and 20% AMU decreases, respectively, with limited
extra labor). If the workload constraint is not limited, then decreasing AMU is preferentially
performed by improving milking hygiene (scenarios M0_H3 and M0_H2 produced 10%
and 20% AMU decreases, respectively, with high extra labor). For a strong decrease in
AMU, a dramatic increase in workload was required, with more time spent on both barn
and milking parlor hygiene. No solution allowed a substantial reduction in AM (more than
a 10% reduction) while limiting extra labor within 35 h (grey cells in Table 2).

Table 2. Scenarios of optimal utility according to time and animals’ level of exposure to antimicrobials
(ALEA) reduction constraints.

ALEA Reduction Constraints
0% 10% 20% 30% 40%

5 h/month
10 h/month W0_T1_M2_H2

15 h/month WT_T3_M2_H0

20 h/month
WT_T3_M1_H125 h/month

WT_T3_M2_H1

30 h/month
35 h/month

WT_T3_M0_H2 WT_T3_M1_H140 h/monthM
ax

im
um

ex
tr

a
ti

m
e

co
ns

tr
ai

nt
.

Unlimited

WT_T3_M1_H3

W0_T3_M0_H3
WT_T3_M0_H0

The changes in revenue between scenarios appeared very significant (Figure S2.1–S2.3;
Supplemental Data). Although considering revenues without including workload is re-
strictive, the results highlight that the highest income was obtained with moderate to good
hygiene practices and that the very best hygiene practices were linked to slightly higher
revenues compared to those obtained with moderate hygiene practices.
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3.3. Marginal Abatement Curve Analysis

Considering all the scenarios together facilitated determining the farmer’s average
income at each level of ALEA (Figure 2, top) and its marginal evolution (Figure 2, bottom).
The average income per unit of ALEA followed an inverted U-shaped curve, with limited
income for very high ALEA (left) and a trend of decreasing income for very low ALEA.
For W0 and WT (the 2 scenarios of high interest), the income depending on ALEA was
very similar, and a peak was observed at ALEA values of 1.75 to 2. The top 10% of incomes
were observed for ALEA values of 1–2. The MAC was zero for an ALEA value of two,
meaning that the optimal situation is around this value. However, high income variability
was observed within this ALEA range. The decreasing relationship between ALEA and
MAC (Figure 2, down) was in line with the above figure, which showed an increase in the
level of AM exposure associated with a decrease in farmer income. In addition, the farmer
MAC curve based on ALEA was almost linear for W0 and WT, and the slope of the line
indicated an average of EUR 10,000 in MAC per unit of ALEA reduction. In situations
in which the ALEA was less than 2, the ALEA reduction MAC for the farmer was EUR
10,000 per unit, while in situations wherein the ALEA was greater than 2, ALEA reduction
generated a gain for the farmer.

Similarly, the average income per unit of labor time (Figure 3, top) followed an inverted
U-shaped curve with a large plateau. The time variable represented the additional farmer
workload for milking parlor and barn hygiene maintenance, and a “zero time” situation
represented the scenario of average hygiene with no additional risk factors for udder infec-
tion. Compared to this average situation, decreasing the average labor time dramatically
reduced income, although an increase in labor time only slightly increased income and
even reduced income with very high additional labor requirements (>450 extra h of labor
per year). This average hygiene situation corresponded to 98% of the maximum income
observed in the present simulations. In addition, the marginal income under additional
labor time highlights the optimal situation of management strategies close to the average
hygiene situation and the associated very low economic motivation to improve hygiene on
farms (Figure 3, bottom). For W0 and WT, 1 extra hour of work permitted an extra income
of EUR 75/h for farmers with the lowest working time (Figure 3, bottom left). The marginal
income per extra hour then decreased quickly to values just above zero (each extra unit
time of work was associated with few extra EUR/h income) and, finally, decreased below
zero with very high extra working times (each extra hour of work was associated with
income loss, as shown in the right side of the figure).

As the optimization results showed that no solution made it possible to substantially
reduce the ALEA without an additional workload for hygiene tasks, we evaluated the
interaction between the additional working time and ALEA (Figure 4, top). A decreasing
exponential trend between ALEA and yearly extra work time was observed, demonstrating
lesser increases in time required to decrease ALEA for very high to moderate AM users and
greater labor increases required for ALEA reductions in other AMU categories, especially
for ALEA values below 1.75–2. The substitution relationships between ALEA and time
required for hygiene were 343, 210 and 344 h per year for T1, T2 and T3, respectively
(T2 < T1, T3; p < 0.001). The marginal curve of time required for ALEA variations (Figure 4,
bottom) showed no monotonic trend, demonstrating a substitution relationship between
time required for barn and milk parlor hygiene. For the WT and W0 strategies, the optimal
situations appeared to be ALEA values between 2 and 1.4. Beyond this optimum area, the
marginal abatement time greatly increased, demonstrating a high efficiency loss due to
time dedicated to farm hygiene.
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4. Discussion

This study investigates the MAC of AMU by analyzing the trade-offs between mastitis-
related AMU reduction, farmer labor and farm economic performance. Many studies
identified the effect of management practices for controlling intramammary infections and,
therefore, mastitis-related AMU in dairy farms [23,24]. The simulated farm management
strategies considered in this work represent different situations of mastitis-related AMU.
They concern the implementation of an SDCT in a more or less appropriate way in as-
sociation with a context of implementation of hygiene measures. The simulation results
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are consistent with our initial hypotheses which stipulate that the implementation of an
SDCT makes it possible to reduce the exposure of animals to antimicrobials. A properly
implemented SDCT strategy (T3) demonstrates low epidemiological and economic interest
compared to BDCT (T1) [10,16], while an improperly implemented SDCT without teat
sealant (T2) is associated with reduced farm economic performance [17]. Regarding hygiene
measures, although presenting a challenge to the farmer, particularly in terms of workload,
the implementation of cleanliness measures for udder health management can significantly
reduce intramammary infections, AMU and the farm’s economic performance [25,26]. Re-
sults showed a wide and realistic range of consequences according to hygiene management
strategies, including a higher incidence of clinical mastitis infections [11] and a significant
preventive cost for the farmer [27], which we assess in monetary and non-monetary terms.

4.1. Farmer Decision and MAC

The issue of AMU reduction addresses the multidimensional criteria considered in
dairy farmers’ decisions. The animal health perspective has made the leading contribution
to economic principles in livestock economics [28]. For a dairy farmer, the main drivers for
farm AMU are disease occurrence and the economic and epidemiological benefits of antimi-
crobial treatments, which are directly related to the farmer’s decision-making regarding the
farm’s technical and sanitary management [29,30]. The bioeconomic modeling approach
presented in this study evaluated a broad range of farmer management strategies for udder
health and treatments at dry-off [12], and a marginal abatement evaluation of AMU was
used to evaluate the impacts of AM use reduction on farmer income and resource allocation.
The combination of different mastitis management strategies is associated with a wide
range of relative risks of mastitis occurrence and, therefore, different levels of AMU. The
raw simulation results act as a sensitivity analysis of the risk factor and make it possible to
validate the results of the model as to the effect of the management levers for the control of
mastitis and AM.

The marginal abatement logic is derived from the basic economic theory of pollu-
tion control, suggesting that an allocation of emissions among polluters is efficient if it
minimizes the costs of achieving an ambient environmental target. Conceptualized as
diffuse pollutants, AMR and GHGs share similar properties that can be explored using the
MAC theory of optimal pollution abatement. Although negative externalities of AMU are
expected [31], adopting a reduction policy is usually dependent on technical and economic
viability if not enforced by legislation. The abatement cost concept explains the costs
incurred by firms due to following a new strategy to reduce a problem [32], and some
studies, such that of Moran et al. [33], have addressed the farmer’s motivation to adopt
new mitigation measures by focusing on profit-maximization behavior. In our research, the
abatement cost was conceptualized within the dairy farm context and, more specifically,
related to the prevention cost subcategory of the abatement cost. The rationale for using
the MAC principle is multifaceted. First, the method facilitated evaluating the impacts of
disease control on output loss [34]. Second, this method concept enabled the characteriza-
tion of the benefits of current AMU by farmers. Third, the MAC principle indicated how
reductions can be achieved by demonstrating the cost effectiveness of mitigation measures.
Fourth, the abatement cost curve framework offered perspective for setting rational AMU
targets. Finally, the MAC theory has considerable explanatory power and has been used
in a number of countries (such as the UK, the United States, New Zealand, Ireland and
France) to compare a range of agricultural mitigation measures [35].

4.2. Empirical Results and Public Policy Perspectives

In the present study, we followed marginal abatement evaluation theory to examine
the economic efficiency of antimicrobial use reduction. This study provided a farm-level
decision-making tool and yielded interesting insights in terms of public policy implications
regarding AMU reduction.
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First, this analysis determined the critical point (threshold) of antimicrobial use at
which an additional unit of ALEA reduction will not be profitable to the farmer.

The marginal curve of ALEA variation (Figure 2) can be read in both directions for
decreased and increased exposure. In suboptimal situations, reducing the ALEA brings
additional income to the farmer (negative cost), but an increase in the level of ALEA
following the deterioration of hygiene is costly. Both the graphical representation of MAC
(Figure 2) and the marginal income of time (Figure 3) show an optimal range of ALEA values
from 1.5 to 2 (Figure 4). This optimum is first dependent on the calibration assumption of
the model. Model calibration was based on international peer-reviewed publications, and
this range is likely to be of interest in many locations, although this assumption needs to be
assessed. The identified optimum was also dependent on the limited technical alternatives
available for ALEA reduction. While the ALEA MAC followed an almost linear trend,
farmer labor costs follow an exponential trend; i.e., with a constant MAC, the working
time investment becomes increasingly important for the farmer, which is in line with the
model’s calibration parameters.

Second, an additional novelty of this study lies in its focus on finding alternatives
to AMU as a production input. The new approach developed in this model allowed
the exploration of substitutions between time required for hygiene and ALEA. It also
allowed the examination of the time required to reduce ALEA. Farmer workload is a key
management constraint and is hardly estimated by farmers. Beyond the cost of mastitis
prevention incurred by the farmer workload, the priority need for its evaluation lies in
the comparison of allocation among the different possible combinations of management
strategies [27].

Working time, which was defined relatively in the biological simulation model, was
considered an adjustable variable in economic analyses and not a cost of wages. This
innovative approach made it possible to consider the farmer’s working time constraints
to refine the optimization results and to observe the marginal income of additional work
dedicated to hygiene as well as the time required for AMU reduction.

The results demonstrate that a significant reduction in ALEA can only be achieved
with additional time devoted to hygiene, indicating that hygiene is a key factor in reducing
the use of antibiotics in dairy farms. The results also show a lower time requirement for
hygiene to reduce ALEA under the technical scenario of treatment at dry-off, with which
the most mammary infections occurred (220 h for T2). Moreover, the times invested in
the barn and milking parlor can be substituted. If the objective is to decrease AMU while
limiting the workload, barn hygiene must be prioritized over that of the milking parlor. If
the workload is not limited, then decreasing AMU is preferentially achieved through the
improvement of milking hygiene. Moreover, in situations wherein the ALEA is lower than
the optimum, the time investment required for hygiene is inefficient, but saving time will
have little impact on income and the ALEA. The economic value of the farmer’s working
time is difficult, if not impossible, to monetize within a framework of limited strategy
choices. This analysis should be reproduced in a framework wherein trade-offs of farmer’s
working time investment can be evaluated between different dairy farming tasks such as
reproduction management, lameness detection and prevention and early detection of other
major production diseases. In a sense, the results illustrate a loss of farmer profit if he or
she increases his or her level of ALEA, but also the possibility of reducing animal exposure
to antibiotics through changes in practice. Even if costs related to hygiene consumables and
straw purchases are necessary to improve hygiene and, therefore, reduce the ALEA, the
time cost to the farmer remains the main driver of improvement in our context, in which
proposals for change are limited to improving farm hygiene.

Third, the optimal ALEA range identified was between 1.5 and 2, and within this
optimal zone, an objective that can be achieved by public authorities at a lower cost can
be identified. Beyond this level, the use of antibiotics and the time dedicated to farm
hygiene are not efficient from the producer’s point of view, and public intervention is
necessary. A restrictive public intervention could lead to significant distortion in the
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dairy value chain [36], and even in countries with low usage, motivation and spillover
effects in farmer’s networks seem to be efficient technical levers for reducing the use of
antibiotics [37]. For producers, we believe that incentive interventions, such as technical
levers [38] and awareness promotion [39] provided at the community level [40], are more
effective in efforts to reduce the exposure of production animals to antibiotics, hence the
interest in place-based mesoeconomic approaches to support public interventions [41]. The
results obtained in this work demonstrate that public interventions must also be targeted to
achieve results. An incentive that encourages farmers to devote more time to or facilitates
access to agricultural labor for hygiene maintenance will be effective, especially for farmers
whose ALEA level is above the optimal range. For farmers whose ALEA level is lower than
the optimal level, an incentive measure that provides possible substitutions for farmers’
working time, such as robotization for hygiene maintenance, will be more efficient.

5. Conclusions

The present work is one of the rare publications analyzing AMU with an approach
based on the MAC. The optimal AMU determined in the present study corresponds to
an ALEA of 1.5 to 2, considering both income and labor. We estimated an MAC of EUR
10,000 per unit ALEA for ALEA values below 1.5. The method used in this work is based
on bioeconomic modeling associated with a marginal analysis of AMU reduction which
focuses on considering mastitis management strategies as alternatives to AMU. AMU and
the farmer’s workload are considered as production inputs which allowed us to define
the trade-offs between mastitis-related AMU decrease, farmer labor and farm economic
performance. Results determined a critical point of AMU beyond which an additional unit
of ALEA reduction will not be profitable to the farmer and public intervention is necessary.
Above this point, an objective that can be achieved by public authorities at a lower cost can
be identified.
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