
HAL Id: hal-04072018
https://hal.inrae.fr/hal-04072018v1

Submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sidestepping Darwin: horizontal gene transfer from
plants to insects

Clément Gilbert, Florian Maumus

To cite this version:
Clément Gilbert, Florian Maumus. Sidestepping Darwin: horizontal gene transfer from plants to
insects. Current Opinion in Insect Science, 2023, 57, pp.101035. �10.1016/j.cois.2023.101035�. �hal-
04072018�

https://hal.inrae.fr/hal-04072018v1
https://hal.archives-ouvertes.fr


1 

 

Sidestepping Darwin: horizontal gene transfer from plants to insects 1 

Clément Gilbert1, Florian Maumus2 2 

1Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, Gif-sur-3 

Yvette, France 4 

2Université Paris-Saclay, INRAE, URGI, Versailles, France 5 

Abstract 6 

Horizontal transfer of genetic material (HT) is the passage of DNA between organisms by means other 7 

than reproduction. Increasing numbers of HT are reported in insects, with bacteria, fungi, plants and 8 

insects acting as the main sources of these transfers. Here, we provide a detailed account of plant-to-9 

insect HT events. At least 14 insect species belonging to 6 orders are known to have received plant 10 

genetic material through HT. One of them, the whitefly Bemisia tabaci (MEAM1), concentrates most 11 

of these transfers, with no less than 28 HT events yielding 55 plant-derived genes in this species. 12 

Several plant-to-insect HT events reported so far involve gene families known to play a role in plant-13 

parasite interactions. We highlight methodological approaches that may further help characterize 14 

these transfers. We argue that plant-to-insect HT is likely more frequent than currently appreciated 15 

and that in-depth studies of these transfers will shed new light on plant-insect interactions.   16 

 17 

Highlights 18 

• Recent HGT detection workflows enable large-scale studies of HGT among eukaryotes 19 

• At least 14 insect species belonging to 6 orders contain plant-derived genes 20 

• Many plant-derived genes have putative functions involved in plant-parasite interactions 21 

• The impact of plant-to-insect HGT on insect evolution remains to be characterized 22 

  23 
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Introduction 24 

Darwin proposed that evolution occurs through natural selection of intraspecific variations transmitted 25 

across generations [1]. But he was unable to provide a satisfactory explanation for the origin of these 26 

variations and the mechanism underlying their transmission. Darwin and Mendel were 27 

contemporaries, but they never met and Mendel’s work was ignored by Darwin [2]. About 50 years 28 

after Darwin and Mendel died, Darwin’s natural selection and Mendelian inheritance, which posits that 29 

individuals inherit a combination of alleles from their parents, became two pillars of the modern 30 

synthesis. Remarkably, observations made in bacteria as early as 1928 – i.e., before the modern 31 

synthesis was initiated – suggested that genetic information could also be transmitted between 32 

individuals through horizontal transfer (HT), i.e., through means other than vertical, parent-to-33 

offspring, inheritance [3]. In the second half of the 20ieth century it became apparent that HT of genes 34 

was rampant in prokaryotes and that it was a major source of bacterial innovation [4]. The first hint 35 

that HT of genetic material was not restricted to prokaryotes but could also occur in eukaryotes may 36 

correspond to the discovery of endogenous retroviruses in vertebrate genomes during the late 1960s 37 

and early 1970s [5]. It was then suggested that the endosymbiotic origin of eukaryotes was 38 

accompanied by the relocation (through HT) of many organellar genes to the nuclear genome [6], and 39 

that transposable elements (TEs) [7,8], as well as non-organellar genes [9,10] could be acquired 40 

horizontally in these taxa. These pioneering works were followed by the observation that the genome 41 

of phagotrophic single-cell eukaryotes contained many genes captured from their prokaryote and 42 

microbial eukaryote preys [11–13]. Today, the importance of HT of genes in recent eukaryote evolution 43 

remains a matter of debate [14–18]. But as a matter of fact, we are witnessing an increasing number 44 

of HT reports in both uni- and multi-cellular eukaryotes, largely fueled by the many high-quality new 45 

whole genome sequences that are deposited on a daily basis in public databases [19–24]. Importantly, 46 

many of these transfers likely facilitated the adaptation of the receiving species to a new ecological 47 

niche [25–27]. In multicellular eukaryotes, most HT of genes reported so far involve genes of bacterial, 48 

fungi, or viral origin [23,25,28–31]. Aside from HT of TEs which are not rare [32], relatively few HT of 49 

genes between multicellular eukaryotes have so far been uncovered. This trend is seemingly changing 50 

in plants, in which numerous recent cases of plant-to-plant HT have been characterized [33–36]. In 51 

vertebrates, a single such event is known so far, which involves transfer of a gene coding an antifreeze 52 

protein between the Atlantic herring and the rainbow smelt [37]. Here, we provide a comprehensive 53 

account of another type of eukaryote-to-eukaryote HT, namely plant-to-insect HT, highlight 54 

methodological challenges inherent to the detection of such transfers, and discuss the possible 55 

mechanisms underlying these HT as well as their impact on insect genome evolution and plant insect 56 

interactions.  57 
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How many genes of plant origin in insect genomes? 58 

The first claim of plant-to-insect HT was published in a 2015 article in which hundreds of transcripts 59 

from the mosquito Anopheles culicifacies were reported to encode proteins 100% identical to proteins 60 

found in plants [38]. However, using plant proteins listed in supplementary table 1 of Sharma et al., 61 

(2015) [38], we were unable to recover plant-derived genes in the genome of A. culicifacies, which is 62 

now available in Genbank (accession number: AXCM00000000.1). Two cases of TE transfer between 63 

plants and arthropods have been described but in both studies, HT was deemed more likely to have 64 

occurred from arthropod to plants rather than in the opposite direction [39,40]. The first robust case 65 

of plant-to-insect HT is thus the one reported in Lapadula et al., (2020 ) [41], in which a gene of plant 66 

origin encoding a ribosome inactivating protein (RIP) has been acquired at least 80 million years ago 67 

by an ancestor of two whitefly species (Bemisia tabaci and Trialeurodes vaporariorum). Whiteflies 68 

(family Aleyrodidae; Hemiptera) are important agricultural pests as they are able to feed upon a large 69 

spectrum of host plants and they can transmit many viruses to plants [42]. After transfer from an 70 

unknown plant donor, the RIP gene was duplicated once and twice in the lineage leading to B. tabaci 71 

and T. vaporariorum, respectively. Quickly following this report, two other plant-derived genes 72 

encoding BAHD acyltransferases were characterized, again in the whitefly B. tabaci [43].  73 

These studies prompted us to perform a systematic search for plant-to-B. tabaci HT, which yielded no 74 

less than 49 plant-derived genes in the genome of the Middle East Asia Minor 1 (MEAM1) whitefly 75 

[44]. We found that these genes could be clustered in 24 orthogroups, 20 of which have members in 76 

another whitefly cryptic species (Sub-Saharan Africa - East and Central Africa [SSA-ECA]), which 77 

diverged at least five MYA from the MEAM1 whitefly [45]. We uncovered another two plant-derived 78 

genes in T. vaporariorum, which diverged several dozens of MYA from B. tabaci [46], but we were 79 

unable to firmly conclude on whether these genes were acquired from plants independently in this 80 

species or whether they were transferred in an ancestor of B. tabaci and T. vaporariorum.  81 

In parallel to our study, a large-scale, systematic survey of HT performed by Li et al. (2022) [31] in 218 82 

insect species uncovered no less than 1410 foreign genes. While the vast majority of these genes have 83 

a bacterial source, many were transferred from fungi and viruses and a total of 43 were assigned a 84 

plant origin.  Just by itself, B. tabaci accounts for 24 of these 43 genes, most of them being also 85 

reported in our study (see next section). The reason why B. tabaci has a much higher number of plant-86 

derived genes than other insects is not immediately evident but we note that this species also has a 87 

higher number of genes transferred from bacteria and the higher overall number of horizontally 88 

acquired genes (170 versus 68 in Contarinia nasturtii, the species with the second higher number of 89 

foreign genes). Whether horizontal gene flux is higher in B. tabaci or whether it is similar to other 90 
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insects but foreign genes have a higher chance to be retained in B. tabaci remains to be assessed. 91 

Interestingly, Li et al. (2022) [31] also uncovered plant-derived genes in three other species of 92 

Hemiptera, one Coleoptera, three Diptera, one Hymenoptera, one Orthoptera and two Thysanoptera. 93 

In total, and accounting for the redundancy between our results [44] and those of Li et al. (2022) [31] 94 

for B. tabaci, a total of 156 genes of plant origin have been so far uncovered in the genome of 14 insect 95 

species belonging to six orders (Figure 1). It is noteworthy that nine plant-derived genes are annotated 96 

as plant transposons in Aedes mosquitoes [31], begging the question of whether these genes 97 

correspond to recently acquired TEs that may still be able to transpose or whether they arise from 98 

molecular domestication of ancient plant TEs horizontally acquired by an ancestor of Aedes 99 

mosquitoes. 100 

 101 

Figure 1. Number of plant-derived genes identified in insect genomes. The number of plant-derived 102 

genes in Bemisia tabaci MEAM1 results from our merging of results from [31] and [44]. Details 103 

regarding which genes were found in which study and on the predicted function of these genes are 104 

given in Supplementary Table 1. The tree and divergence times were taken from REF. 46 and 79. 105 

Numbers at nodes in Aleyrodidae correspond to putative numbers of horizontal transfer events that 106 

took place in the ancestors of Aleyrodidae, as inferred in [44] based on the delineation of orthogroups.  107 

Nine of the plant-derived genes from Aedes mosquitoes are annotated as encoding plant transposon 108 

proteins in supplementary table 2 of [31]. 109 

 110 
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Methodological challenges to detect horizontal gene transfer 111 

Inferences of HGT are plagued by methodological issues and several hypotheses alternative to HGT 112 

must be considered before HGT is favored [44,47,48]. It is for example essential to check that what 113 

looks like a horizontally acquired gene is not instead a contaminant. This may be done using fluorescent 114 

in situ hybridization, as in Dunning Hotopp et al. (2007) [49] or PCR as in Li et al. (2022) [31]. Another 115 

way to discard the possibility of contamination is to find orthologs of horizontally acquired genes in a 116 

group of species, the genome assembly of which were produced independently in different labs. Other 117 

recommendations on HGT validation have been discussed in previous papers [44,47,48,50]. Yet, even 118 

when greatest care is taken, large-scale studies of HGT may yield different results due to differences 119 

in the bioinformatics approach being implemented. This is particularly well-illustrated by the two 120 

recent reports of HGT from plants in B. tabaci (MEAM1) [31,44]. Both studies used overall similar 121 

workflows, being based on sequence similarity search between B. tabaci query proteins and a target 122 

database followed by the analysis of the taxonomic distribution of hits to identify candidate HT 123 

proteins. Homologs of each candidate were then retrieved and used to build phylogenetic trees that 124 

were manually examined for HGT validation. However, the two workflows present key differences 125 

(Figure 2). First, they rely on different target databases. Li et al. (2022) [31] used Refseq proteins from 126 

NCBI (approx. 240 million proteins as of September 2022, 127 

https://www.ncbi.nlm.nih.gov/refseq/statistics/) combined with the proteomes from the 218 insects 128 

they studied. Instead, Gilbert & Maumus (2022) [44] used UniRef90 from Uniprot 129 

(https://www.ebi.ac.uk/uniprot/TrEMBLstats), which is composed of representative proteins from 130 

UniRef100 clustered at 90% (152 million proteins as of November 2022 being representative of 318 131 

millions).   132 

Furthermore, the two studies differ in how they call HGT candidates from the result of similarity 133 

searches. In Li et al. (2022) [31], an « alien index » (AI) is calculated, which was first introduced in 134 

Koutsovoulos et al. (2022) [51], and broadly used to select HGT candidates [e.g. 50]. The AI, computed 135 

for each HGT candidate, measures the extent to which the best hit against targets from the query 136 

taxonomic group (ingroups) differs from that obtained against targets from other groups (outgroups).  137 

To limit the number of false positives, Li et al. (2022) [31] also calculated the percentage of outgroup 138 

species among the top hits. This percentage will be low if the homolog is not conserved in outgroups 139 

or if the gene family is comparably distant to homologs across several taxa. By contrast, Gilbert & 140 

Maumus (2022) [44]  have used an original approach in which the UniRef90 target database is depleted 141 

of ingroup proteins (here Aleyrodidae) to infer the last common ancestor (LCA) of each query protein. 142 

Using this taxonomic exclusion, the placement of a protein LCA in Viridiplantae (plants) occurs when a 143 

significant proportion of its best homologs are plant proteins, suggesting a plant origin. The study 144 
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applied three different modes of LCA inference implemented in the taxonomy module of the MMseqs2 145 

program [52], in which the taxonomical assignment of the LCA can be inferred using two methods 146 

derived from the 2bLCA protocol [53] or using lowest common ancestor of equal-scoring top hits (this 147 

last mode being theoretically similar to AI-based measures). To focus on most robust HGT candidates, 148 

only the proteins with LCA in Viridiplantae below the genus level were considered as a filter attesting 149 

for their conservation in plants.   150 

 151 

Figure 2. Graphical comparison of the HT detection workflows used in Li et al. (2022) [31] and Gilbert 152 

& Maumus (2022) [44]. The main steps of the workflows are separated in grey boxes and the methods 153 

used at each step by REF. 31 and REF. 44 are indicated in salmon and blue rectangles, respectively. 154 

 155 

Using deep protein clustering (35% identity), Gilbert & Maumus (2022) [44]  found that the 49 plant-156 

derived proteins from B. tabaci MEAM1 correspond to 24 clusters. Here, we applied the same 157 

clustering to the 24 plant-derived proteins from Li et al. (2022) [31], which resulted in 18 clusters. We 158 

found that only 13 clusters comprise proteins from the two studies while 11 and 5 are unique to REF. 159 

44 or REF. 31, respectively (Figure 2 and Supplementary Table 1). One cluster unique to REF. 31 160 
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comprises two genes (XP_018917389.1 and XP_018909952.1) for which we could not confirm plant 161 

origin. Two other clusters unique to REF. 31 have no homolog in the MEAM1 proteome used in REF. 162 

44. This comparison shows that the HT detection workflow we used in REF. 44 is more sensitive, but it 163 

is not entirely comprehensive. Understanding the causes of reciprocal false negatives will help 164 

improving the sensitivity of HT detection. This comparison also shows that the number of insect HGT 165 

reported in REF. 31 may be largely underestimated and that HGT, including from plants, may have had 166 

an even stronger impact on insects than what is apparent from this study. 167 

Functional impact of plant genes in insects 168 

Only one experimental study characterized the function of a plant-derived gene in insect [43]. Together 169 

with the predicted function of all plant-derived genes in B. tabaci, it suggests that much like bacteria-170 

to-insect HGT [54], plant-to-insect HGT was a source of important new functions to insects, which may 171 

have facilitated adaptation to their environment. REF. 43 showed that the protein encoded by the 172 

BtPMaT1 plant-derived gene in B. tabaci has malonyl-transferase activity, that is, it catalyzes the 173 

transfer of a malonyl group onto several phenolic glucosides, which are secondary compounds 174 

produced by many plants to defend themselves against herbivorous insects. Malonylation detoxifies 175 

phenolic glucosides and renders them harmless to whiteflies. In agreement with this, whiteflies feeding 176 

on transgenic tomato plants that express small interfering RNAs targeting BtPMaT1 are unable to 177 

survive [43]. Thus, whiteflies harnessed a plant gene which allows them to thwart plant defenses and 178 

was perhaps essential in the evolution of these hemipterans towards becoming generalist herbivores 179 

[43,55].  180 

In addition to this functional study, indirect evidence including evolution under purifying selection and 181 

expression suggests that most if not all other plant-derived genes in B. tabaci encode important 182 

functions [41,44]. To help explore these putative functions, we provide a table compiling predicted 183 

functions of all B. tabaci plant-derived proteins reported in Li et al. (2022) [31] and Gilbert & Maumus 184 

[44] (Supplementary Table 1). Several of these proteins have predicted functions previously shown to 185 

play a role in plant-parasite interactions and response to pathogens, not necessarily insects but rather 186 

fungi and oomycetes. It remains unclear however if and how these genes enabled whiteflies to adapt 187 

to different host plants. The protein functions inferred are based on the annotation of homologs and 188 

only speculative. Only three plant-derived gene clusters have a potentially evident role in helping the 189 

insect bypassing host defenses. These include BtPMat1 [43] as well as a predicted plant cell wall 190 

degrading enzyme (PCWDE) and a predicted alpha-(1,4)-fucosyltransferase which could be involved in 191 

cell wall patterning [56]. Perhaps more surprisingly, many plant-derived genes have putative functions 192 

linked to the production and activation of plant defenses. For instance, plant-derived genes annotated 193 
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as BAHD acyltransferase and phenylalanine ammonialyase have putative functions in the production 194 

of phenolic secondary metabolites [57], many being defense compounds. That said, the B. tabaci plant-195 

derived BAHD acyltransferase has best BLAST hits against Dcr-like (Defective in Cuticular Ridges) 196 

homologs. Dcr is not involved in production of phenolic compounds but is instead required for the 197 

assembly of cutin polymers, which are the major components of the outermost layer of plant defense, 198 

the cuticle [58,59]. The whitefly plant-derived genes also comprise homologs of pathogen-related 199 

proteins (which are produced by plants upon biotic attack) and proteins that have known roles in plants 200 

in pathogen recognition and/or defense signaling pathways including Thaumatin [60], subtilisin-like 201 

protease [61] or glucan endo-1,3-beta-glucosidase [62]. An advantage to herbivory could generally 202 

make sense if the encoded proteins are inactive and simply tether plant enzymes or occupy receptors 203 

to limit the defense response. It is also possible that some plant-derived genes may be recycled by 204 

insects to protect themselves against pathogens, parasites or predators. In agreement with this 205 

scenario, the RIP genes reported in REF. 41 are toxic N-glycosidases playing a role in plant defense 206 

against pathogens and insect predators [63]. As pointed out by Lapadula et al., the whitefly RIPs might 207 

play a role similar to those produced by Spiroplasma endosymbionts in Drosophila, known to protect 208 

their host against nematodes [64] and parasitic wasps [65].  209 

Other plant-derived genes in B. tabaci may have predicted functions in nutrient and micronutrient 210 

assimilation, glycoprotein secondary modifications, and fatty-acid desaturation including a large family 211 

of delta(12) fatty acid desaturases (Supplementary Table 1). It will be interesting to develop 212 

experimental approaches to characterize these genes and how they may have been beneficial to 213 

whiteflies compared to genes acquired from bacteria [54]. In this context, testing the function of the 214 

B. tabaci plant-derived pectinesterase should be relatively straightforward as it has a clear predictable 215 

function in degrading plant cell walls. It would also be worth addressing whether the catalytic sites in 216 

predicted plant-derived enzymes are conserved to assess their catalytic potential and which plant-217 

derived genes are specifically expressed in the insect saliva or gut to suggest a direct link with 218 

herbivory. 219 

How can plant DNA be transferred to insects? 220 

The mechanisms underlying HT in eukaryotes remain poorly understood. That most foreign genes so 221 

far reported in eukaryotes are from prokaryotes (this is especially true for insects [31,66]) may in part 222 

be due to the capacity of several bacteria to transfer their DNA to eukaryotic cells through conjugation 223 

[67]. Furthermore, many arthropod and other metazoan species harbor obligate or facultative 224 

intracellular symbionts [68], some of which are in close contact with the host germline genome, 225 

facilitating HT [30]. The higher proportion of foreign prokaryotic versus eukaryotic genes so far 226 



9 

 

uncovered in eukaryote genomes may also have methodological underpinnings. Transfers are easier 227 

to infer between distantly related species (e.g. between prokaryotes and eukaryotes) than between 228 

more closely related ones (e.g. between two eukaryotes). Systematic studies focusing on detecting 229 

eukaryote-to-eukaryote HT remain scarce. In any case, this later type of transfer is more difficult to 230 

explain than prokaryote-to-eukaryote transfers because no mechanism dedicated to HT is known in 231 

eukaryotes (but see [69]). Plant-to-plant HTs have been proposed to occur accidentally through whole 232 

genome transfer in heterospecific grafts [70], illegitimate pollination, haustoria in parasitic plants [71], 233 

or root-to-rhizome contact [33]. Regarding plant-to-insect transfers, one might argue that the close 234 

ecological interactions existing between plants and most insects facilitate HT. Indeed, all insect species 235 

in which plant-derived genes have been found so far (Figure 1) are herbivorous or nectarivores. 236 

Whether DNA can be transferred from plants to insects through feeding, as proposed in the case of 237 

bacteria-to-single cell eukaryotes HT [11] remains to be tested. In this context, it is noteworthy that 238 

insects can internalize dsRNA produced by plants through feeding [43,72], so one could speculate that 239 

DNA from their food may also occasionally penetrate into insect cells. However, the « you are what 240 

you eat » hypothesis may not be fully sufficient to explain plant-to-insect HT as the majority of 241 

herbivorous insects included in REF. 31 are devoid of plant-derived genes. Another, non-mutually 242 

exclusive hypothesis is that vectors such as exosomes or viruses are involved in plant-to-insect HT 243 

[73,74]. If true, the known exposure of B. tabaci to a very large diversity of plant viruses, several of 244 

which are known to replicate in whitefly cells [75], may in part explain the higher number of foreign 245 

genes found in this, compared to other insect species [31,44]. In this context, it is noteworthy that 246 

whiteflies are the main insect vectors of dozens of Begomovirus species, which are highly successful 247 

plant viruses. Some of these circular single-stranded DNA viruses are able to replicate in insect cells, 248 

persist during the entire lifetime in the insect and can undergo transovarial transmission [76]. 249 

Acquisition of foreign genes by B. tabaci under the form of DNA, rather than RNA, through the 250 

intermediate of DNA viruses is consistent with the fact that most plant-like genes uncovered in 251 

whiteflies contain at least one intron [44]. However, it is also possible that these genes were 252 

transferred through an RNA-mediated mechanism and later acquired introns once in the B. tabaci 253 

genome.  254 

Conclusions and outstanding questions 255 

The first plant-to-insect HGT was reported recently [41] and since then 156 plant-derived genes have 256 

been found in 14 insect species from six orders. The reasons why the whitefly B. tabaci concentrates 257 

most of these genes, as well as most non-plant foreign genes among insects, are unknown. Based on 258 

a comparison between two recent studies [31,44], we contend that the number of horizontally 259 

acquired genes in insects, including those acquired from plants, is likely strongly underestimated. In 260 
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addition to improve current HGT pipelines that rely on the use of annotated protein-coding sequences, 261 

it would be interesting to perform more comprehensive HGT searches using whole genomes. This 262 

would allow assessing whether the currently observed higher number of horizontally acquired plant 263 

genes versus plant TEs in insect genomes has biological underpinnings or is merely due to 264 

methodological limitations. Should the current trend hold, it would be in striking contrast with the 265 

trend observed for insect-to-insect HTs, as most if not all currently known such events involve TEs and 266 

not genes [77]. Future large-scale examination of plant-to-insect HGT may also shed light on the factors 267 

possibly influencing such transfers and on whether some plant and/or insect life history traits correlate 268 

with HT numbers. Of particular relevance will be to identify recent plant-to-insect HGT events, as this 269 

may help identifying donor plants species and the mechanisms underlying transfer.  A deeper 270 

understanding of the impact of plant-to-insect HGT will only be reachable through multiple functional 271 

studies of insect plant-derived genes, such as the one performed in REF. 43. In addition to help 272 

decipher the intricacy of plant-insect interactions, such studies have the potential to unveil new targets 273 

for controlling insect pests, which may in some contexts be less problematic than pesticide-based 274 

strategies [78].  275 

 276 

  277 
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Legends of additional elements 278 

Supplementary Table 1. Annotation of MEAM1 plant-derived proteins found in REF. 31 and REF. 44. 279 

The alternating shades of grey distinguish the clusters established at 35% amino-acid sequence identity 280 

using MMseqs2. The false positive cluster from Li et al. (2022) is not indicated.  The Genbank protein 281 

identifiers begin with "XP" while the WhiteflyDB identifiers begin with "Bta". The annotations 282 

correspond to the transfer of annotations of the best hits obtained by BLAST against Genbank. The 283 

functional category and putative function are only speculative. 284 
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