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Abstract: Evolutionary algorithms have been widely studied in the literature to find sub-optimal
solutions to complex problems as the Traveling Salesman Problem (TSP). In such a problem, the
target positions are usually static and punctually defined. The objective is to minimize a cost function
as the minimal distance, time or energy. However, in some applications, as the one addressed in this
paper—namely the data collection of buried sensor nodes by means of an Unmanned Aerial Vehicle—
the targets are areas with varying sizes: they are defined with respect to the radio communication
range of each node, ranging from a few meters to several hundred meters according to various
parameters (e.g., soil moisture, burial depth, transmit power). The Unmanned Aerial Vehicle has to
enter successively in these dynamic areas to collect the data, without the need to pass at the vertical
of each node. Some areas can obviously intersect. That leads to solve the Close Enough TSP. To
determine a sub-optimal trajectory for the Unmanned Aerial Vehicle, this paper presents an original
and efficient strategy based on an evolutionary algorithm completed with geometrical heuristics. The
performances of the algorithm are highlighted through scenarios with respectively 15 and 50 target
locations. The results are analyzed with respect to the total route length. Finally, conclusions and
future research directions are discussed.

Keywords: Close Enough Traveling Salesman Problem; evolutionary algorithm; genetic algorithm;
Wireless Underground Sensor Networks; Unmanned Aerial Vehicle; optimal trajectory planning

1. Introduction

The recent advances in Unmanned Aerial Vehicles (UAVs), such as increased payload,
operating time and autonomous flight capacities, enable today to consider their use in a
growing number of applications. In automatic mode, they can even autonomously take
off, follow a previously defined trajectory and landing, [1]. They can act, for example,
in smart farming, environmental monitoring, emergency aid and parcel delivery [2,3].
Moreover, combined with Wireless Sensor Networks (WSNs), they can collect data through
radio communication, play the role of mobile gateway or communication relay in case of
connectivity failure, and perform accurate operations, see [4–6].

However, planning the trajectory to be followed by an Unmanned Aerial Vehicle
(UAV) in automatic mode can rapidly become a challenging task, in particular when the
minimization of a cost function, as distance, time or energy, is pursued due the limited flight
time of the UAV. For example, in the case of several static waypoints to be visited by the
UAV in a free-obstacle working space, the search for the optimal trajectory requires to solve
the Traveling Salesman Problem (TSP) [7–9]. The waypoints can be regarded as the cities to
be visited. The time complexity of the TSP increases exponentially with the number of cities
according to (nbcities − 1)!, leading rapidly to prohibitive calculation costs. For example,
25 cities represent already 24! ' 1023 possible routes. By considering a computer able to
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calculate 1 billion routes per second, it would take 10 million years to a brute force algorithm
to calculate all the possible combinations (1023/(109 ∗ 60 ∗ 60 ∗ 24 ∗ 365) ' 107) to next find
the best solution. An alternative is to accept to not find the optimal solution and seek a sub-
optimal solution. Numerous algorithms have been proposed to that end in the literature.
Some of them are inspired by the natural selection (e.g., genetic algorithms [10]) or animal
behavior (e.g., Ant Colony Optimization algorithms [11], Particle Swarm Optimization
algorithms [12]). These approaches are non-deterministic, iteratives, and a criteria is
required to stop the algorithm (e.g., number of iterations, threshold reached). Additional
constraints can be considered, leading to variants of TSP. In the classical TSP problem,
called Symmetric TSP (STSP), the route between two cities can be performed indifferently in
one direction or the other. In the Asymmetric TSP (ATSP), the travel cost can be different to
travel from city A to city B, than to travel from city B to city A—see [13]. In the Precedence
Constrained TSP (TSP-PC), an additional constraint is that a city A should not be visited
unless the city B was visited first—see [14]. We can also mention the Capacited Vehicle
Routing Problem (CVRP) where the vehicle has limited carrying capacity, requiring to go
back to the depot when the vehicle is full—see [15]. Another variant is that the cities are
not represented by points, i.e., an exact location, but by areas with various shapes called
neighborhoods—see [16]. In this case, the vehicle has to enter successively within the areas
without the need to pass through the center. The problem is called TSP with Neighborhoods
(TSPN). A similar problem is the Close Enough TSP (CETSP) where the areas are defined
by circles of different radius—see [17,18].

1.1. Application and Objective

The development of Wireless Underground Sensor Networks (WUSNs) is a recent
research axis based on sensor nodes buried at a few dozen centimeters deep to not impact
the aboveground activities [19–22], with as main applications the environmental monitoring
and precision agriculture [23–25]. The radio communication ranges of the buried sensor
nodes are however limited due to the high attenuation of the electromagnetic waves in soil.
Our previous work highlighted that the communication ranges of radio devices based on
LoRa technology can vary from a few meters to several hundred meters with respect to
various parameters (e.g., burial depth, soil moisture, transmit power, frequency—see [26].
The idea consists to use an UAV to collect the data: that approach has the advantage to
avoid the installation of numerous and costly gateway in the environment, and offer the
possibility to rapidly and safely cover wide areas. To that end, the trajectory of the UAV
has to be determined, entering successively within the communication ranges of each node
to perform the data collection task with the minimal route length.

The objective of this paper is to propose a trajectory planning algorithm enabling
an UAV to successively and optimally pass through several circular areas of different
radius, representing the radio communication ranges of the buried sensor nodes, see the
illustration in Figure 1 and the problem statement in Figure 2.

Figure 1. The objective is to optimally plan the trajectory of an UAV having to collect the data through
radio communication of several buried sensor nodes distributed in the environment.
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Figure 2. Problem statement in 2D: find the optimal trajectory passing through the circular disks
representing the radio communication ranges of the buried sensor nodes at the altitude h.

It is assumed that the UAV flies at a constant altitude h, leading to targets in the form
of circular areas of radius r. The UAV does not need to pass at the center of the circles but
only within the disks to receive the data. The circles can intersect, offering the possibility to
position the UAV at the intersections. We can also mention that it is assumed that the flying
height is smaller than the smallest communication range of the nodes to access to all the
data. That application necessitates clearly to address the Close Enough TSP.

1.2. Related Works

For several years, numerous algorithms have been developed for solving the TSP,
mainly the symmetric TSP. A classification of some of these algorithms is presented in
Figure 3.

Figure 3. Algorithms for solving TSP.

The exact algorithms aim to find the optimal solution to a TSP. For example, the Brute
Force algorithm calculates all the possible permutations, whereas the Cutting Plane [27],
the Branch-and-Bound [28] and the Branch-and-Cut methods [29] limit the number of
possibilities to reduce the calculation time. Concorde is an exact solver which combines
several of these techniques, and is able to solve TSP with numerous cities (tens of thou-
sands) [30]. The limitation of these exact algorithms is however the calculation time which
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can be rapidly become excessive in case of numerous cities to be visited. A strategy can be
to parallelize the algorithms and distribute the calculation on several CPU [31].

Another approach consists to develop approximate algorithms, with the objective
to find a sub-optimal solution in a limited amount of time. As depicted in Figure 3,
the approximate algorithms can be classified into three main groups, those based on
constructive heuristics, those based on improvement heuristics and those based on meta-
heuristics, see [32]. The principle of constructive heuristics is to start from an empty tour
and iteratively extend the tour, for example by incorporating the nearest neighbor. The
strategy of improvement heuristics is different because they start from a complete tour,
which is progressively improved, for example using local permutations (e.g., K-opt [33],
Lin-Kernigan-Helsgaun [34]). Meta-heuristic algorithms are generic algorithms able to
deal with a broad range of problems. They have generally better performances than the
heuristics algorithms, in particular by enabling to consider more complex and large TSP.
They are usually based on the evolution of one or more starting populations (e.g., Genetic
Algorithm [35], Ant Colony Optimization [36], Particle Swarm optimization [12]).

In the literature, the CETSP has been mainly addressed with meta-heuristic approaches.
The difficulty of that problem is that the target areas are continuous, as at each point is
associated a neighborhood, leading that even exact approaches are not easily applica-
ble. The shapes of the neighborhoods are most of the time considered as discs with the
same dimensions.

Initially, the CETSP was addressed by [37,38] to find the shortest route for a truck to
perform automatic meter reading of customers from radio communication systems (e.g.,
remote electricity or water consumption measurements). Clustering-based and convex
hull-based algorithms were proposed to group the customer nodes before applying a TSP
solver. This approach is mainly based on the search for the adequate definition and
position of groups of nodes, called supernodes, i.e., circles with a predetermined radius
covering several customers. A CETSP with time window (CETSP-TW) was studied by [18]
to take into account that each customer is available only for a limited period of time during
the day. Ref. [39] introduced the Steiner Zones (intersection of the neighbohoods of degree
k) and presented different methods to reduce the graphs. Ref. [40] proposed a branch-and-
bound algorithm to address the CETSP in two and three dimensions, and [17] presented
a method to estimate previously a tour length from the knowledge of several variables.
Refs. [41,42] proposed discretization schemes to define first a finite number of points on
the circumferences and inside the neighborhoods (hitting points), and next apply a TSP
algorithm. Ref. [43] assumed disjoint regions and applied first a TSP algorithm to next
modify the hitting points.

1.3. Contributions and Paper Organization

The definition of the optimal trajectory of an UAV to collect data from buried sensor
nodes is an emerging application that, to the best of our knowledge, has not yet been
addressed in the literature. The contribution of this paper is to propose an efficient algo-
rithm, fast and easy programmable, to solve the CETSP applied to this application. The
algorithm is decomposed of three steps, namely the definition of new target locations in
case of intersections, the use of an evolutionary algorithm to find a sub-optimal order, and
finally an iterative geometrical reduction to significantly reduce the trajectory length. This
algorithm is programmed in a software developed in C++. In comparison to the previously
presented work, this algorithm combines the resolution of a combinatorial problem (TSP)
with geometrical heuristics, applied to a problem including the possibility of intersections.

The paper is organized as follows. The modeling and the methodology proposed are
presented in Section 2. The algorithm is applied to two user cases. The results are reported
in Section 3. The conclusion, discussions and future research directions are presented in
Section 4.
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2. Methodology
2.1. Modeling and Methodology Proposed

We consider a set of n circles of variable sizes, distributed in a Euclidean plane, see
Figure 2. Each circle is defined by the coordinates (xi, yi, ri) where xi, yi are the coordinates
of the center of the circle and ri its radius. The circles can intersect. The objective is to define
a tour, having the minimal total distance, passing through all the circles. The trajectory will
be composed of segment lines connecting the different circles.

To address this issue, we propose a methodology based on three successive steps. The
first one determines new target locations for the nodes having some communication range
intersections. The second one presents an evolutionary algorithm able to find a sub-optimal
order to successively visit the target locations. Finally, from geometrical heuristics, the
third one reduces significantly the length of the trajectory by passing either inside the areas
(without the necessity to go by the center) or at the boundary of the areas.

2.2. First Step: New Target Locations in Case of Intersections

The communication ranges of some nodes can intersect. In this case, the UAV can
be advantageously positioned at the intersections to communicate with several nodes
simultaneously. The first step consists then to change the target locations by the points
located at the center of the intersection areas, see Figure 4. That enables to reduce the
number of target locations that will lead to reduce the tour length. For simplicity reasons,
the communication ranges of these new points are defined by circles centered on the new
point and whose radius is defined with respect to the boundaries of the previous circles.
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Figure 4. New target location defined by the intersection of communication ranges.

2.3. Second Step: Evolutionary Algorithm to Find a Sub Optimal Order

The second step consists to define an algorithm able to find a sub-optimal order to
reach the different locations. The cost function is the shortest distance. The principle
of the proposed algorithm is depicted in Figure 5. It is a genetic algorithm based on
three mutations.

Figure 5. Principle of the evolutionary algorithm to generate a new population.
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The algorithm starts with the creation of a set of initial solutions (list of node numbers
whose order is randomly determined): that forms the initial population. This population
is next divided in groups: in each group, the best solution, that means the one with the
route having the minimal Euclidean distance, is kept and called the survivor. The other
routes of the group are replaced by copies of the survivor with mutations: on a random
interval, the node orders are either reversed, shifted or swapped, see the details in Figure 6.
All the routes are then randomly remixed to form the new population. This process is
repeated until a stop criteria is satisfied (number of iterations). The advantage of such an
algorithm is to be relatively simple and easy to program. The main parameters are the
initial size chosen for the population and the number of iterations to stop the algorithm. A
compromise has obviously to be reached between the calculation cost and the opportunity
to find a good solution.

Figure 6. Mutations.

2.4. Step 3: Geometrical Reduction

An important aspect of the Close Enough TSP (CETSP) is that the trajectory can pass
within the circular disks. To take this possibility into account, the strategy proposed consists,
for each location, to consider the triangle formed with the previous and next locations, see
Figure 7.

Figure 7. In the triangle ABC, relocation of the point A in A’: (left) either on the boundary of the
communication range if the limit is reached, (right) on the straight line (BC).

In the triangle ABC, the bisecting line is determined from the point A. If the length of
the bisector is superior to the radius of the circle centered in A (left case on Figure 7), the
point A is deplaced in A’ (intersection of the bisector and the circle). On the contrary, the
point A’ is defined as being the intersection point between the bisector and the line (BC),
(right case on Figure 7). This strategy is repeated on all the points in the order defined in
step 2. At each iteration, the position of the previously calculated point is a vertex of the
new triangle, see Figure 8. Once this procedure is applied on all the points, the trajectory
length is significantly reduced. This procedure can be repeated until the shape of the
trajectory stops changing.
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Figure 8. The previously calculated point C is the vertex of the next triangle ABC.

The algorithm is summarized in the diagram presented Figure 9.

Figure 9. Diagram of the algorithm.

3. Results
3.1. Preliminary Test

The algorithm is first tested on a situation with a limited node numbers to easily
highlight the different steps of the algorithm. To that end, 15 nodes are considered. That
leads to 14! ' 8.1010 route possibles. The coordinates of the nodes are given in Appendix A,
Table A1, and presented in Figure 10 (screenshot of our software developed in C++).
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Figure 10. Display of the node locations in the developed software. At each node location is assigned
a number from 1 to 15, see Appendix A, Table A1.

We first applied the evolutionary algorithm on the data without taking account the
intersections and communication ranges. The parameters are a population of 100 combina-
tions, 25 groups, and stop criteria defined as 1000 iterations. The result is the node order
“15 6 4 8 12 3 2 1 5 11 9 10 13 14 7” leading to a total route length of 4635 m, see Figure 11.
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Figure 11. Initial test of the evolutionary algorithm on the 15 nodes: the route length is 4635 m.

The proposed algorithm in three steps is then applied. In step 1, the fact to take into
account the intersections leads to reduce the node number to 13 as depicted on Figure 12a.
Step 2 is the application of the evolutionary algorithm. The result is presented in Figure 12b.
The total route length obtained is 4410 m. That means a reduction of 4.8% in comparison
to the previous result. Step 3 is the geometrical reduction of the trajectory found at step 2.
Two iterations are carried out. The first iteration reduces significantly the trajectory length,
see Figure 12c. The second one improves further the result, see Figure 12d.
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(a) (b)

(c) (d)

Figure 12. The three steps of the proposed algorithm. (a) Step 1: reduction of the node number;
(b) Step 2: evolutionary algorithm; (c) Step 3: geometrical reduction (1st iteration); (d) Step 3:
geometrical reduction (2nd iteration)

The final result is represented with the 15 nodes on Figure 13a,b. The trajectory length
is 3267 m, that means a reduction of 29.5% with respect to the initial result (4635 m).

(a) (b)
Figure 13. Display of the final result. (a) Final result; (b) Display in the software.

3.2. Test with 50 Nodes

The algorithm is then tested on a greater number of data (50 nodes). The coordinates
of the nodes are given in Appendix A (Table A3) and are displayed in Figure 14. There are
49! ' 1063 possible routes.
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Figure 14. Node locations with their respective communication ranges.

To compare the benefit of the algorithm, we first applied the evolutionary algorithm
(population size: 100, group number: 25, iteration number: 1000) on the data without
taking account the intersections and communication ranges. The result is presented on
Figure 15: the total route length is 15,249 m with the node order “11 5 1 2 3 4 8 12 20 19 36
37 41 42 22 21 23 24 38 43 49 39 47 46 40 44 45 48 34 25 33 50 30 29 35 28 27 26 31 32 18 17 15
6 16 14 13 7 9 10 11”.
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Figure 15. Initial test with the evolutionary algorithm on the 50 nodes: the route length is 15,249 m.

The algorithm in three steps is applied on these data. Step 1 found nine intersections,
enabling to reduce the number of nodes. The result of the first step is presented in Figure 16a.
Step 2 applies the evolutionary algorithm. A trajectory of length 13,382 m is obtained,
see Figure 16b, that represents a reduction of 12.2% in comparison to the initial trajectory.
Finally, step 3 is applied, based on geomtrical reductions. The result of step 3 is presented
in Figure 16c. The length of the trajectory is 10,910 m. That represents a reduction of 28.4%
with respect to the initial trajectory. The final result is represented with the 50 nodes in
Figure 16d.
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(a) (b)

(c) (d)
Figure 16. The proposed algorithm applied to the 50 nodes. (a) Step 1: reduction of the node number;
(b) Step 2: evolutionary algorithm; (c) Step 3: geometrical reduction; (d) Final result.

4. Conclusions

This paper addresses the Close Enough TSP to find a sub-optimal trajectory in term of
minimal distance for an UAV having to collect data from buried sensor nodes distributed in
the environment. The problem is addressed in 2D with the representation of the communi-
cation ranges by circular disks. An algorithm is proposed in three successive steps: the first
one redefines some target points in case of intersections that enables to reduce the number
of nodes. The second one is an evolutionary algorithm enables to find a sub-optimal order
to visit the different nodes. Finally, the third step reduces significantly the length of the
trajectory through geometrical heuristics. The algorithm is applied on two scenarios with
respectively 15 and 50 nodes. The results highlight the obtention of limited trajectory
length for the UAV. In particular, if the evolutionary algorithm is applied directly without
geometrical heuristics on the 50 nodes, the obtained route length was 15,249 m. That
distance was reduced by 28.4% (10,910 m) if the complete algorithm is applied.

This algorithm has been implemented in a software developed in C++. The advantage
of this algorithm is to have a low implementation cost. It is easily programmable without
the need of external libraries. The inputs, displayed in a geo-referenced map, are the GPS
coordinates of the target locations with their respective communication ranges. These
coordinates are first converted into Cartesian ones, to apply next the algorithm. The evolu-
tionary algorithm proposed in this paper (genetic algorithm), as well as the geometrical
heuristics, are easy to program and deliver a sub-optimal solution in a few seconds. The
output is the trajectory to be followed by the UAV, with the successive waypoints.

5. Discussions and Future Work
5.1. Comparison with Other Works

To evaluate the performance of the algorithm proposed in this paper, we tested our
algorithm on the “eil5” benchmark from TSPLIB composed of 51 nodes. The coordinates of
the nodes and the corresponding radius are given in Appendix A (Table A3). We obtained
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the result presented in Figure 17, with a trajectory length of 320.6 m. In comparison with
other works on this same benchmark, the approximation algorithm developed by [41] led
to a trajectory with a length of 354 m, see [43]. The algorithm proposed by [43], based on the
combination of a TSP solver and heuristics, found a very similar trajectory in comparison
to the one depicted in Figure 17, with a length around 320 m. That solution seems to be the
optimal one. That result clearly highlights the performance of our algorithm having the
capacity to deliver pertinent results for such Close Enough TSP.
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Figure 17. Test of our algorithm on the “eil5” benchmark from TSPLIB composed of 51 nodes. The
length of the obtained trajectory is 320.6 m.

5.2. Future Work

The CETSP was evaluated in this paper in 2D. The assumption was made that the soil
can be considered as a plane and that the UAV flies at a constant altitude (in a free-obstacle
workspace). A first interesting perspective is to determine the optimal altitude for the
UAV. In fact, the configuration of the problem changes with respect to the flight altitude as
highlighted with the illustration on Figure 18. A flight at low altitude is more dangerous
for the UAV with the possibility to encounter numerous obstacles (e.g., trees), but better in
terms of quality of communication with the buried sensor nodes. On the contrary, a flight
at high altitude is safer but the areas of the communication ranges are reduced.

Figure 18. The communication ranges of the buried sensor nodes are represented by hemispherical
shapes. The problem consists to find the optimal altitude of the UAV.

The problem could also be approached directly in three dimensions to take into
account the altitude variations of the ground. The approach presented in this paper will
be completed to that end: the georeferenced points will be defined by 3D coordinates
(longitude, latitude, altitude). In the first step, the intersections of the communication
range will be determined by spheres. In the second step, the calculation of the Euclidean
distance in the evolutionary algorithm will be calculated in 3D. Finally, in the third step,
the geometrical reduction will be carried out by considering 3D shapes.
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Another interesting way of improvement is to add some constraints on the curvature
variations of the trajectory. In fact, the kinematic and dynamic behavior of the UAV could be
advantageously considered to avoid sharp movements of the UAV, all the more at high speed.
The consideration of obstacles in the workspace of the UAV could also be required when the
UAV flies at low altitude, e.g., in case of very short communication ranges of the buried sensor
nodes. A preliminary flight could also be performed to learn the actual communication ranges
of the buried sensor nodes and model the variations with respect to different environmental
measurements. Finally, it would be interesting to complete the trajectory with temporal
aspects, in particular to take into account the time to collect the data at each node location.
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Abbreviations
The following abbreviations are used in this manuscript:

ATSP Asymmetric Traveling Salesman Problem
CETSP Close Enough Traveling Salesman Problem
CVRP Capacited Vehicle Routing Problem
STSP Symmetric Traveling Salesman Problem
TSP Traveling Salesman Problem
TSPN Traveling Salesman Problem with Neighborhoods
TSP-PC Precedence Constrained Traveling Salesman Problem
UAV Unmanned Aerial Vehicle
WUSN Wireless Underground Sensor Network

Appendix A

Table A1. Georeferenced and metric coordinates of 15 nodes to be visited with their respective radio
communication ranges: benchmark used to test the algorithm in the Section 3.1.

n Latitude (°) Longitude (°) x (m) y (m) Range (m)

1 46.343386 3.434335 0 0 150
2 46.346520 3.435697 100 350 90
3 46.347632 3.437019 200 475 90
4 46.347387 3.439093 360 450 110
5 46.344879 3.437938 275 170 90
6 46.348953 3.444582 780 630 90
7 46.346051 3.446861 960 310 215
8 46.349827 3.437973 270 720 80
9 46.346187 3.442187 600 320 80
10 46.345326 3.442819 650 225 70
11 46.343771 3.440838 500 50 120
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Table A1. Cont.

n Latitude (°) Longitude (°) x (m) y (m) Range (m)

12 46.349679 3.434721 20 700 150
13 46.342789 3.449263 1150 −50 50
14 46.344312 3.449944 1200 120 50
15 46.349992 3.448761 1100 750 120

Table A2. Benchmark of 50 nodes used to test the algorithm in the Section 3.2.

n x (m) y (m) Radius (m) n x (m) y (m) Radius (m)

1 0 0 150 26 2000 50 50
2 100 350 90 27 2100 200 50
3 200 475 90 28 2200 400 90
4 360 450 110 29 2300 500 110
5 275 170 90 30 2400 800 90
6 780 630 90 31 1600 50 120
7 960 310 215 32 1800 400 100
8 270 720 80 33 1900 1000 50
9 600 320 80 34 2400 1200 80
10 650 225 70 35 2400 400 150
11 500 50 120 36 250 1400 120
12 20 700 150 37 400 1500 80
13 1150 −50 50 38 800 1450 120
14 1200 120 50 39 1200 1600 100
15 1100 750 120 40 2000 1500 90
16 1200 400 150 41 100 1800 150
17 1350 800 90 42 500 1700 50
18 1400 600 50 43 900 1600 90
19 0 1200 50 44 2000 1700 80
20 100 900 50 45 2100 1800 120
21 450 1000 100 46 1800 1600 80
22 500 1200 50 47 1500 1800 100
23 600 1050 100 48 2400 1500 90
24 700 1200 50 49 1200 1200 100
25 1600 1200 90 50 2000 600 90

Table A3. Benchmark of 51 nodes (eil5 from TSPLIB) used to test the algorithm in the Section 5.1.

n x (m) y (m) Radius (m) n x (m) y (m) Radius (m)

1 37 52 2.8 27 30 48 3.3
2 49 49 3.3 28 43 67 3.0
3 52 64 3.0 29 58 48 3.0
4 20 26 2.7 30 58 27 3.6
5 40 30 0.2 31 37 69 2.0
6 21 47 3.0 32 38 46 3.2
7 17 63 4.0 33 46 10 3.6
8 31 62 3.7 34 61 33 3.0
9 52 33 2.0 35 62 63 2.0

10 51 21 2.0 36 63 69 2.6
11 42 41 2.5 37 32 22 2.4
12 31 32 2.7 38 45 35 3.0
13 5 25 3.4 39 59 15 2.5
14 12 42 2.8 40 5 6 3.4
15 36 16 2.4 41 10 17 2.9
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Table A3. Cont.

n x (m) y (m) Radius (m) n x (m) y (m) Radius (m)

16 52 41 2.8 42 21 10 4.0
17 27 23 2.2 43 5 64 3.0
18 17 33 3.2 44 30 15 3.4
19 13 13 2.0 45 39 10 2.8
20 57 58 3.0 46 32 39 0.8
21 62 42 2.3 47 25 32 3.0
22 42 57 2.5 48 25 55 2.0
23 16 57 2.0 49 48 28 2.0
24 8 52 3.0 50 56 37 2.8
25 7 38 2.8 51 30 40 1.0
26 27 68 3.4
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