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1  |  INTRODUC TION

The production of wheat, the most important source of food for 
humans (Igrejas & Branlard,  2020), is increasingly variable due to 
climatic extremes, which threatens to disrupt global efforts toward 

abolishing poverty and ensuring food security and peace (Nóia 
Júnior et al.,  2021; Perez,  2013; Shew et al.,  2020). Europe is re-
sponsible for 35% of global wheat production (FAO stat, 2022). 
Drought and heatwaves are the main causes of the historical crop 
failures widespread across the breadbasket regions of the continent, 
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Abstract
France suffered, in 2016, the most extreme wheat yield decline in recent history, with 
some districts losing 55% yield. To attribute causes, we combined the largest coherent 
detailed wheat field experimental dataset with statistical and crop model techniques, 
climate information, and yield physiology. The 2016 yield was composed of up to 40% 
fewer grains that were up to 30% lighter than expected across eight research sta-
tions in France. The flowering stage was affected by prolonged cloud cover and heavy 
rainfall when 31% of the loss in grain yield was incurred from reduced solar radiation 
and 19% from floret damage. Grain filling was also affected as 26% of grain yield 
loss was caused by soil anoxia, 11% by fungal foliar diseases, and 10% by ear blight. 
Compounding climate effects caused the extreme yield decline. The likelihood of 
these compound factors recurring under future climate change is estimated to change 
with a higher frequency of extremely low wheat yields.
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compounding factors, extreme weather, food security, grain number, grain size, temporally and 
multivariate events
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as experienced by northern European countries in 2018 (Beillouin 
et al., 2020; Webber et al., 2020). Such adverse weather conditions 
will become more pronounced and widespread with climate change 
(Battisti & Naylor, 2009; IPCC, 2021; Trnka et al., 2014). For exam-
ple, in 2010, Russia suffered from the worst heatwave on record 
according to the Warm Spell Duration Index (Hoag,  2014). Initial 
attempts have been made to identify the future risk posed by heat 
and drought to local agriculture (Bailey et al.,  2015; Rosenzweig 
et al., 2013). Several wheat crop modeling approaches have been de-
veloped and improved to estimate wheat yield responses to extreme 
weather conditions (Ceglar et al.,  2019; Jägermeyr et al.,  2021; 
Lischeid et al., 2022; Martre et al., 2015; Rötter et al., 2018; Wang 
et al., 2017; Webber et al., 2017). These studies have helped to iden-
tify future regional risks to national and global wheat production di-
rectly caused by extreme weather disasters (Asseng et al., 2011; Liu 
et al., 2019; Webber et al., 2018), and have been incorporated into 
wheat yield forecast systems to anticipate seasonal food shortages 
(Bussay et al., 2015; Lecerf et al., 2019; van der Velde & Nisini, 2019).

A major wheat production decline occurred in 2016 in Western 
Europe, centered around France, the fourth largest wheat-exporting 
country in the world (Ben-Ari et al., 2018). The national wheat yield 
of France dropped by 27% in 2016. This was the most extreme 
wheat yield decline in France since 1960 causing a shortfall of about 
2.3 billion $USD in the country's trade balance (Ben-Ari et al., 2018). 
The public European forecasting system failed to anticipate the 
magnitude of this wheat yield loss until shortly before harvest (van 
der Velde et al., 2020), which has been explained by the complex-
ity (sequence, timing, or connectedness) of likely yield-determining 
events in 2016. Indeed, the 2016 yield failure was not caused by a 
single event. Winter wheat usually remains dormant during the cold 
of winter, flowering in the drier, warmer spring weather. However, 
the combination of a warm, wet winter and an extended period of 
precipitation in the spring of 2016 led to a number of simultane-
ous or consecutive yield-reducing factors, including heavy rainfall, 
crop diseases, low solar radiation, and anoxia, affecting both grain 
set and grain filling (Ben-Ari et al., 2018). Temporal and multivariate 
compound events (Bevacqua et al., 2021; Zscheischler et al., 2020) 
caused the extreme 2016 wheat yield failure. Most crop model-
ing approaches only consider seasonal water shortage and heat 
stress, thus neglecting the connected or compound nature of many 
extreme climate- (Lischeid et al., 2022; Raymond et al., 2020) and 
weather-related events on crop growth and development. For exam-
ple, heavy rainfall may damage fragile flowers, immediately reducing 
the potential to set grain, while waterlogging the soil and depriv-
ing roots of oxygen, simultaneously creating humid conditions that 
encourage the spread of plant diseases with detrimental effects on 
grain yield and quality. By not accounting for the complex effects or 
concurrence of multiple factors, the predictive ability of crop fore-
cast systems for Europe is limited, especially for extreme weather 
(Ruane et al., 2021; van der Velde et al., 2020).

The inability of crop and statistical models to predict the ex-
tremely low 2016 wheat yield in France suggests that we are po-
tentially underestimating the projected impacts of climate change 

on agriculture (van der Velde et al., 2020; Webber et al., 2020). To 
improve seasonal forecasting systems, we aimed to quantify the im-
pact on yield formation of the possible causes of the poor 2016 yield 
in France proposed by Ben-Ari et al. (2018). We used a unique de-
tailed dataset from ARVALIS-Institut du vegetal, with observations 
from 3512 experimental unit treatments at eight locations across the 
French breadbasket region over 6 years spanning the 2016 extreme 
(2014–2019). Multi-model regressions, process-based crop growth 
simulation modeling, and observations of yield physiology were 
used to separate and quantify various climate impacts on the main 
wheat yield components in 2016, comparing locations and seasons. 
We then extended the analysis based on long-term climate change 
scenarios—from the recent Coupled Model Intercomparison Project 
phase 6 (CMIP6) climate model ensemble for 2020 to 2100—to an-
alyze the frequency of future concurrent or consecutive weather 
events potentially causing similar compound yield losses in France.

2  |  MATERIAL S AND METHODS

The breadbasket of France, accounting for around 70% of France's 
total wheat production, extends over 27 departments, all impacted 
by the extreme yield losses in 2016 (Figure 1). ARVALIS-Institut du 
Végétal wheat field trial data from 3512 experimental unit treat-
ments of 221 cultivars for six cropping seasons (2014–2019 har-
vests) at eight locations across the breadbasket region were used 
to quantify the individual contribution of nitrogen leaching, plant 
diseases, low solar radiation, anoxia, and high rainfall to variation in 
wheat yield in France in 2016.

2.1  |  ARVALIS-Institut du Végétal field 
trial management

The experimental unit treatments in the 2014–2019 field trials de-
signed and performed by ARVALIS-Institut du Végétal for different 
objectives were useful in analyzing the following specific aspects 
(Figure 2).

•	 Growth performance: 3188 experimental unit treatments tested 
the performance of a total of 221 winter wheat cultivars in eight 
research stations, here named 1 to 8 according to the magnitude 
of wheat yield loss (Figure 1). We used 738 of these experimental 
unit treatments (which included 172 in 2016) to compute yield 
component anomalies and develop grain number and grain size 
statistical models. Only cultivars that had experimental unit treat-
ments in 2016 and in at least one additional year were considered 
to ensure any yield anomaly was independent of the research 
station and department (Figure S27). The number of experimen-
tal unit treatments per research station is shown in Table S1. In 
addition, we tested the DSSAT-Nwheat (Kassie et al., 2016) crop 
simulation model with 42 wheat experimental unit treatments 
for simulating wheat yield of the winter wheat cultivar Rubisko 
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(Figures S30 and S31). Growth performance experiments had two 
types of experiments:
•	 Cultivar comparison: with around 92% of data, and in all re-

search stations. The objective of these experiments is to com-
pare the growth of several commonly used and developing 
wheat cultivars. Measurements of wheat ear emergence date, 
grain number per unit area, average single grain size, grain 
nitrogen concentration, and grain yield were performed. For 
these experiments, the flowering date was simulated consid-
ering a linear relationship with the ear emergence date, as pre-
sented in Figure S28.

•	 Observatory: with around 8% of data, and in all research 
stations. The objective of these experiments is to perform a 
detailed performance measurement of the most common cul-
tivars with greater prospects for use. Measurements of wheat 
ear emergence and flowering date, total aboveground biomass 
at anthesis and maturity, total aboveground nitrogen at anthe-
sis, ear density, grain number per unit area, grain number per 
ear, average single grain size, grain nitrogen concentration, 
and grain yield were performed.

•	 Nitrogen response: 124 experimental unit treatments testing 
the response of wheat cultivars to nitrogen fertilizer rates at re-
search stations 3, 5, and 8. Nitrogen fertilizer rates varied from 
0 to 350 kg ha−1 (Figure S12). Measurements of wheat ear emer-
gence and flowering date, total aboveground biomass at anthesis 
and maturity, total aboveground nitrogen at anthesis, ear density, 
grain number per unit area, grain number per ear, average sin-
gle grain size, grain nitrogen concentration, and grain yield were 
performed.

•	 Plant disease: 2650 experimental unit treatments had records 
of plant disease types and tests of fungicide efficiency. The ef-
ficiency of fungicides was obtained by comparing experimental 
unit treatments with and without a particular fungicide applica-
tion. Measurements of wheat yield were performed.

All experimental unit treatments were rainfed and sown from 
late September to November and harvested between the beginning 
of July and the end of August. For trials on growth performance and 
nitrogen response, the crop protection programs were similar to 
local farm practices which may have included fungicides, herbicides, 
and insecticides to prevent any damage to the crop. For growth per-
formance and plant disease, nitrogen fertilizer was usually applied 
in early February, mid-March, and late April, with the total amount 
applied varying from 175 to 225 kg N ha−1. Phosphorous and potas-
sium fertilizers were applied during autumn if needed to prevent 
late-season shortage of these nutrients affecting nitrogen uptake, 
yield, and grain quality.

A single experimental plot was typically 2 m wide and 10 m long, 
with 11 rows, and the 7 middle rows were harvested. For each ex-
perimental unit treatment, we used the average of three single ex-
perimental plots, as described by Cohan et al. (Cohan et al., 2019). 
These field trials sufficiently capture the broader regional impact 
that occurred in 2016 (Figure S27).

2.2  |  Anomalies in wheat yield components

Anomalies in the wheat yield components (WC anomaly) of total 
aboveground biomass at anthesis and maturity, total aboveground 
nitrogen at anthesis, ear density, grain number per unit area, average 
single grain size, grain nitrogen concentration, grain number per ear, 
and grain yield were calculated based on the 738 growth perfor-
mance trials. Observed data for grain number per unit area, average 
single grain size, grain nitrogen concentration, and grain yield were 
available for all these trials. However, only 40% of the trials had ob-
served data for grain number per ear, and only 10% had observed 
data for total aboveground biomass at anthesis and maturity, total 
aboveground nitrogen at anthesis, and ear density.

No WC anomaly was found for total aboveground biomass at an-
thesis at research stations 2 and 3, or for ear density and grains per 
ear at research station 2.

For each yield component, the 2016 WC anomaly relative to the 
2014–2019 (omitting 2016) reference period was calculated as:

where WC2014−2019 (ijk) and WC2016 (ijk)are the wheat yield components 
for the ith research station for the 2014–2019 reference period and 
the year 2016, respectively, jth represents the different wheat yield 
components, and C is the number of cultivars, each individually rep-
resented by kth.

2.3  |  Analysis of the causes of the 2016 
anomalies of grain number per unit area and average 
single grain size

To identify the causes of the 2016 wheat yield failure, we first ana-
lyzed the climatic anomalies that occurred across the research stations 
in France, and noticed that a remarkably wet and warm winter was 
followed by increased rainfall in late spring, around the time of wheat 
anthesis. We created indices to analyze the effect of excessive rainfall, 
low solar radiation, and anoxia, as shown in Tables S2 and S3. We also 
analyzed the possibility that nitrogen leaching may have affected crop 
nitrogen uptake, as shown in Section 2.3.1. According to the frequency 
of diseases observed in the plant disease trials, wheat fusarium ear 
blight (Microdochium nivale), septoria leaf blotch (Zymoseptoria tritici), 
and leaf rust (Puccinia striiformis f. sp. tritici) were the main diseases of 
the 2016 wheat-cropping season. Oidium (Blumeria graminis) was re-
ported in 0.2% of all the experimental unit treatments and considered 
not significant for the wheat yield losses of 2016.

The potential contribution of plant diseases, anoxia, heavy rain-
fall, and nitrogen leaching to the poor 2016 wheat yield was indi-
vidually analyzed, and separated into those that occurred around 
anthesis (thus affecting wheat grain number per unit area) and those 
that occurred during grain filling (thus affecting average single grain 
size).

(1)WC anomaly(ij) =
1

C(ij)

∑C(ij)

k=1

WC2014−2019 (ijk) −WC2016 (ijk)

WC2014−2019 (ijk)
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2.3.1  |  Effects of nitrogen leaching on wheat yield

To determine if nitrogen leaching caused nitrogen deficit stress on 
plants, we analyzed the results of the nitrogen response and growth 
performance trials. With these data, the nitrogen nutrition index 
(NNI), proposed by Justes et al. (1994), was calculated at anthesis for 
each research station and cropping season, as follows:

where %N (g N 100 g−1 DM) is the nitrogen concentration in the abo-
veground biomass at anthesis, and %Nc is the critical nitrogen concen-
tration, calculated as:

where Biomassant (t N ha−1) is the total aboveground biomass at anthe-
sis. The crop nitrogen status (Justes et al., 1994) is considered optimal 
when NNI equals 1, limiting when <1, and “luxury” when >1.

To assess whether crop nitrogen uptake was affected in 2016, 
the mass of nitrogen that had been taken up by the crops at anthe-
sis and the mass of nitrogen that was translocated from the abo-
veground vegetative tissues to grains during the grain-filling period 
were calculated for the years 2016 to 2019 (Figure S13), based on 
the nitrogen content in straw and grain measured in the experimen-
tal unit treatments during these years. Nitrogen leaching was also 
simulated with DSSAT-Nwheat (see Section 2.4.3) to verify whether 
the crop simulation model simulated impacts on yield even under 
nitrogen leaching conditions (Figure S11).

2.3.2  |  Effects of solar radiation, rainfall, plant 
diseases, and anoxia on grain number per unit area and 
average single grain size

Wheat grain number per unit area is closely related to growing condi-
tions before and shortly after anthesis (Fischer, 1985), when the num-
ber of fertile florets is determined and when fertile florets set grains 
(Slafer et al., 2015). Therefore, solar radiation, rainfall, and tempera-
ture conditions were analyzed together with the modeled impact of 
plant diseases on grain number per unit area for the period around 
anthesis for each wheat cultivar and each location. The impact of 
fungal foliar diseases on grain number was not considered because 
differences between resistant and non-resistant cultivars were not 
observed in the field experiments (Figure S15). Plant diseases and an-
oxia were considered as causes of the average single grain size anom-
aly, as they mostly occurred during the grain-filling period in June and 
July. Both, septoria leaf blotch and leaf rust are favored by warm, wet 
winters and wet springs (te Beest et al., 2009), and their impacts were 
calculated together here as “fungal foliar diseases.”

Weather-based indices for low solar radiation, heavy rainfall, and 
anoxia, as well as other indexes, such as a photo-thermal quotient, 

were built using daily records of accumulated rainfall (mm), maximum 
and minimum air temperature (°C), and solar radiation (MJ m−2 day−1) 
from weather stations located close to each research stations. These 
weather-based indices were created considering wheat phenology, 
and further details on how these indices were developed and their 
equations are presented in Tables S2 and S3. Relevant plant disease 
infection rate models were originally developed and tested by te Beest 
et al. (2009) for fungal foliar diseases, namely septoria leaf blotch and 
leaf rust, and for ear blight by Madgwick et al. (2011), we used these 
models to quantify the incidence of these wheat diseases in France 
between 2014 and 2019 (Figure S32). Equations and further details of 
the plant disease models are described in Table S3. These equations 
were fitted as explanatory variables to calculate grain number per unit 
area and average single grain size anomalies of 2016.

2.4  |  Modeling grain number per unit area and 
average single grain size anomalies of 2016

2.4.1  |  Statistical models

Statistical models were built considering the anomalies of grain 
number per unit area and average grain size (calculated as in 
Equation 1) as the objective variables. Weather-based indices for 
heavy rainfall, solar radiation, and air temperature were used as 
explanatory variables for grain number per unit area anomalies 
(Table  S2). And weather-based indices for fungal foliar diseases, 
ear blight, and anoxia, as well as solar radiation and temperature, 
were the explanatory variables for average grain size anoma-
lies (Table S3). With these weather-based indices, the Gini index 
(Menze et al.,  2009) from the random forest machine learning 
method was calculated to identify the most influential indices de-
termining grain number per unit area and average single grain size 
anomalies for 2016 and each of the years of the reference period 
2014–2019 (excluding 2016).

A stepwise procedure was then used to select the best combina-
tion of input variables for quantifying extreme crop yields (Ben-Ari 
et al.,  2018; Nóia Júnior et al.,  2021). These stepwise procedures 
were also performed in R with the command step. Based on the Gini 
index, an indicator of the relative importance of the weather-related 
factors in determining the 2016 anomalies, statistical models were 
built using the explanatory variables of ear blight, low solar radiation, 
and high rainfall indices for grain number anomaly of 2016, and fun-
gal foliar diseases, ear blight, low solar radiation, and anoxia during 
grain filling for grain size anomaly of 2016. The statistical models 
for grain number or grain size (ŷg) were built as shown in Equation 4:

where ŷg is the objective variable (or grain number per unit area anom-
aly or average grain size anomaly of 2016), �0 is the estimate of in-
tercept, and �1and �D are the estimates of coefficient for each of the 
explanatory variables from x1 and xD.

(2)NNI =
%N

%Nc

(3)%Nc = 5.35 × Biomassant
−0.442

(4)ŷg = �0 + �1x1 + … + �DxD
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The research stations had different numbers of experimental 
unit treatments (Table S1), and to capture the spatial distribution of 
grain number and average single grain size anomalies, the statisti-
cal models were built 1000 times with parameter values perturbed 
through random selections of the variables, keeping two experimen-
tal unit treatments per research station (the experimental unit treat-
ment values within the same research station usually correspond to 
different cultivars). Thus, the statistical models were always trained 
for two experimental units simultaneously in eight research stations, 
summing up to 16 values of grain number or grain size anomalies 
fitting their 16 corresponding values of each explanatory variable. 
The performance of the models (r2) was computed in a randomly se-
lected grain number or grain size anomaly of 2016 not included in 
the trained dataset (out-of-sample analysis). The influential weather-
based indices were selected using the Akaike information criterion 
(AIC) independently for each of the 1000 models for grain number 
per unit area and average grain size. Thus, the final contribution of 
each index considered in the grain number per unit area and average 
single grain size anomaly models was assessed with the mean of an 
ensemble of 1000 statistical models (quantification of the impacts of 
different indices is detailed and explained in Section 2.4.2).

Grain number and average single grain size were observed in 
field experiments from 738 (with 172 in 2016) performance trials. 
Anomalies were calculated from these observed grain numbers and 
grain sizes.

2.4.2  |  Quantifying the impacts of individual  
yield-limiting factors in 2016

The 1000 models of grain number and grain size anomalies in the 2016 
cropping season were executed by initially taking the 2016 values for 
each input variable (derived from weather-based indices and plant dis-
ease model outputs). The models were executed again, but this time, 
value of an explanatory variable for 2016 was replaced by that for 
each of the years in the reference period from 2014 to 2019 except 
2016 (Figure S29). This step was repeated, replacing the value of each 
input variable in turn. Thus, the contribution of each factor to the 2016 
wheat yield anomaly was calculated as the difference between the es-
timated grain number or average single grain size values from running 
the models with all variables for 2016, and the estimates from run-
ning the statistical models with all variables of 2016 except one from 
a reference year (Figure S29). For example, to calculate the contribu-
tion of low solar radiation to the grain number per unit area in 2016, 
all the 1000 models of grain number were executed with all variables 
(weather-based indices inputs) from the 2016 cropping season. At the 
same time, the same 1000 models were executed with all variables for 
2016 but low solar radiation index was from 2014 to 2019 (excluding 
2016 and individually executed for each year of the reference period). 
As a result, there were 6000 grain number anomaly estimates (1000 
for 2016 with all variables from 2016 and 5000 for 2016 with modified 
solar radiation from 2014 to 2019 reference period). The difference 
between the average of the 1000 estimates for 2016 with all variables 

from 2016 (“R1: in Figure S29) and the average of the 5000 estimates 
for 2016 with modified solar radiation from 2014 to 2019 reference pe-
riod (“R2”−“Rx” in Figure S29) was considered to be the size of the im-
pact of low solar radiation. This procedure was repeated for each input 
variable (weather-based indices and plant disease model outputs) for 
grain number per unit area and average grain size. The impacts on yield 
were computed considering that grain yield is the result of the product 
of grain number per unit area and average grain size. The calculated 
impact of each variable was summed up and proportionally divided 
according to the size of the anomaly of grain number per unit area, 
average grain size, and grain yield of each location. The residual is con-
sidered as the difference between the estimated and observed anoma-
lies (Figures 3h and 4j). Additional details are presented in Text S1.

This is similar to the method proposed by Asseng et al. (2011) for 
separating the impacts of temperature from other factors on wheat 
yield. The contribution of each factor calculated with the statistical 
models was compared with solar radiation impacts simulated by the 
DSSAT-Nwheat crop simulation model (described in Section 2.4.3, 
Figure  S17) and impact of plant diseases calculated with resistant 
and sensitive cultivars in the plant disease trials.

Weather-based indices highly correlated as heavy rainfall and 
anoxia were explanatory variables for different objective variables 
(heavy rainfall for grain number and anoxia for grain size, as de-
scribed in Section 2.3.2). The impacts of low solar radiation index 
(which is correlated with heavy rainfall, both explanatory variables 
of grain number per unit area) were also quantified with a crop sim-
ulation model as an independent analysis.

2.4.3  |  DSSAT-Nwheat crop simulation model

The DSSAT-Nwheat process-based crop simulation model used in this 
study is part of the DSSAT crop modeling framework (https://dssat.
net/). DSSAT-Nwheat has been widely tested in wheat modeling 
growth studies across the world (Kassie et al., 2016). The calibration 
of DSSAT-Nwheat to the breadbasket region of France was done for 
cultivar Rubisko grown in the 42 experimental unit treatments in 2014, 
2015, 2017, and 2019 (Text S1). Although data from 2016 and 2018 
were available, they were not used for calibration because of the 
high incidence of wheat diseases in these years, which is not simu-
lated by the Nwheat model. The root-mean-square error (RMSE) for 
total aboveground biomass and grain yield was 0.8 kg ha−1 (4%) and 
0.6 kg ha−1 (6%), respectively. The precision of Nwheat was satisfac-
tory for total aboveground biomass (r2 = .83) and grain yield (r2 = .70) 
(Figure S30). After calibrating, Nwheat was tested for 2016 and 2018 
with the result that total aboveground biomass and grain yield were 
both overestimated (Figure S31). This was expected because Nwheat 
does not account for how the stress factors of heavy rainfall around 
anthesis, anoxia, and diseases affect plant growth. However, Nwheat 
was still used to quantify the solar radiation (Figures  S16 and S17) 
and nitrogen leaching (Figure S11) impacts on wheat grain yield. The 
calibrated coefficients are shown in Table S4. The impact of low solar 
radiation with DSSAT-Nwheat was calculated by modifying the 2016 
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6  |    NÓIA JÚNIOR et al.

seasonal daily solar radiation inputs with the other years in the refer-
ence period 2014–2019, the same as the method applied to statistical 
models (described in Section 2.4.2).

2.5  |  Climate change scenarios

Daily climate data for the 1960–2100 period were drawn from the 
Inter-Sectoral Impacts Model Intercomparison Project (ISIMIP) 
(Lange,  2019), which provides bias-adjusted and spatially disaggre-
gated climate model outputs from the Coupled Model Intercomparison 
Project phase 6 (CMIP6) (Eyring et al., 2016). Historical simulations be-
fore 2015 are from climate models forced by the historical trends in the 
main natural and anthropogenic factors. After 2015, simulations follow 
the Shared Socioeconomic Pathway and Representative Concentration 
Pathway SSP5-8.5 (O'Neill et al., 2020). The IPCC describes this as a 
“very high” emissions scenario (IPCC, 2021), and we use it here to il-
lustrate the upper tail of future risk (analysis was also performed for 
SSP5-2.6 and the results are shown in Figure  S21). We considered 
five CMIP6 models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-2-HR, 
MRI-ESM2-0, and UKESM1-0-LL) that include high, medium, and 
low climate sensitivity models similar to the full CMIP6 distribution 
(Jägermeyr et al., 2021). We used daily weather data from the ISIMIP 
downscaled projections for the five selected models to quantify fu-
ture frequency of ear blight, foliar fungal diseases, heavy rainfall, low 
solar radiation around anthesis (with anthesis date fixed at 1 June), and 
anoxia during wheat grain filling (from 1 June to 31 July) using the indi-
ces previously described (Tables S2 and S3) for predicting wheat grain 
number per unit area and average single grain size anomalies of 2016. 
To minimize uncertainties related to fixed anthesis and grain-filling pe-
riods, we carried out an additional analysis considering different fixed 
dates of anthesis (with anthesis date fixed at 1 May), and anoxia during 
wheat grain filling (from 1 May to 15 June) (Figures S19–S34).

The extreme 2016 wheat yield failure occurred once in 62 years from 
1960 to 2021, with 1.6% frequency. Similarly, extreme low national wheat 
yield was here estimated for each GCM separately and defined as the 1st 
percentile of each wheat yield component during 1960–2020 (which as a 
1% frequency is equivalent to once every 100 years), with the grain num-
ber and grain size anomaly models used for quantifying the impacts of 
individual yield-limiting factors in 2016. We averaged the simulated grain 
number and grain size for the eight research stations to scale-up to the 
regional level, as suggested by Ben-Ari et al. (2018). Individual results for 
each research station are presented in Figure S19.

With weather-based index used for building the grain number per 
unit area and average grain size statistical models (Tables S2 and S3), 
we refitted a new statistical model to estimate grain yield from 1984 
to 2020 in the breadbasket of France (Figure S33). This new statistical 
model for wheat yield was built as described in Section 2.4.1. We ap-
plied the new wheat yield model used to project the future frequency 
of extremely low wheat yield years in the breadbasket of France and 
the results are shown in Figure S33b. This was performed to reduce 
uncertainties of projections for future frequency of the extreme 2016 
wheat yield failure in the breadbasket of France.

2.6  |  Statistical analysis

All data analyses and statistical analyses were carried out using the 
statistical program software R (R Core Team, 2017). To analyze the 
yield component anomalies across research stations, the data were 
submitted to an analysis of variance (ANOVA) and, when significant, 
the mean values were compared using the Tukey test. The random 
forest models were fitted to the data by using the function random-
Forest of the R package “randomForest.” ANOVA (mean of squares) 
were carried out to determine the degree to which the climatic vari-
ables selected by the statistical models could explain wheat grain 
number per unit area and average single grain size anomalies of 2016 
across all the studied research stations (i.e., ANOVA was only com-
puted for 2016 anomaly). Statistically significant differences were 
judged at alpha = .05. An ANOVA was performed with the function 
aov. As the statistical models, ANOVA was computed 1000 times. 
The importance of each variable to explain spatial variation of wheat 
grain number per unit area and average grain size anomalies in 2016 
was calculated as the average of 1000 ANOVA analyses.

3  |  RESULTS

3.1  |  Extreme yield loss and weather conditions in 
2016 in France

The 2015/2016 wheat-growing season in France started with unu-
sually high temperatures, with monthly averages of 3°C above 
November and December (autumn and early winter) averages for the 
2010–2020 period (Figure 1b). Late winter was particularly wet, with 
accumulated rainfall of 90 mm in March, twice the 2010–2020 average 
for this month (Figure 1c). After the warm and wet winter, spring 2016 
was on average 1.5°C cooler than the average spring temperature of 
the 2010–2020 period. There was high rainfall from late May to early 
June in 2016. The accumulated rainfall in this period was the high-
est recorded in 30 years (Figure S3). Cloud cover associated with the 
high rainfall led to a 30% decrease in monthly solar radiation in May 
and June compared to the 2010–2020 average. Low solar radiation 
and high rainfall continued until early July. The weather conditions 
in France and other parts of Western Europe in 2016 were similar 
(Figure 1a; Figures S1 and S2), but the accumulated rainfall in May and 
June was not uniformly high, as some northwestern areas of France 
received less rainfall including around research station 8 (Figure S1).

3.2  |  Yield components during the wheat-growing 
season for the 2016 harvest in France

For each of the eight research stations across France, the 2016, 
anomaly in various wheat growth and yield components was cal-
culated with respect to the 2014–2019 reference period (omitting 
2016; Figure 2) from field experiment data. Total aboveground bio-
mass at anthesis (Figure 2a) and ear density (Figure 2b) for 2016 was 
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    |  7NÓIA JÚNIOR et al.

similar to those of the reference period averages, with anomalies 
varying from −10% to 10% at the different research stations. DSSAT-
Nwheat crop growth model simulation results suggest that nitrogen 
leaching in 2016 occurred between the stem elongation and anthe-
sis (Figure S11). Despite this, total aboveground nitrogen at anthesis 
was up to 25% higher (Figure 2c), and the corresponding nitrogen 
nutrition index at anthesis was 5%–20% higher in 2016 than during 
the reference period (Figure 2f).

Observed total aboveground biomass at maturity dropped 
by as much as 40% (Figure 2d), while grain number per ear and 
per m2 fell by as much as 40% and 50%, respectively, in 2016 
(Figure 2e,g). A negative anomaly of about 40% in grain size (i.e., 
average single grain size) was also found for 2016 (Figure 2h) com-
pared with the reference period. As a result, the grain yield loss in 
2016 compared to 2014–2019 varied from 15% to 72% according 
to the research station (Figure 2i), and the greatest loss across a 
district was 55%.

Wheat yield is the result of wheat grain number and grain size, 
and their values are indicative of stresses that occur within a season 
and the timing of those stresses. For example, grain number per unit 
area is related to growing conditions before and shortly after anthesis 
(Fischer, 1985), when most fertile florets set grains (Slafer et al., 2015). 
Therefore, we first identified the growing conditions potentially caus-
ing the wheat yield anomaly in 2016, and placed these effects in the 
phenological context of when they would have occurred.

3.3  |  Grain number and extremes of high 
rainfall and low solar radiation around anthesis

In 2016, anthesis occurred a few days later than usual because the 
low temperatures of late winter and early spring delayed wheat phe-
nology (Figure 3a,c). The delayed anthesis coincided with abnormally 
heavy rainfalls (i.e., daily rainfall >20 mm) and low solar radiation in 
late May and early June (Figure 3b,d). In addition to numerous heavy 
rainfall events, the accumulated rainfall during the 15 days around 
anthesis, varying from 45 mm to 180 mm depending on the research 
station, was up to five times more than expected for the period. 
Indeed, records show that this was the longest period of rainfall in 
30 years. Anthesis occurred during 54  h of almost uninterrupted 
rainfall (Figure S8) in a week when hourly solar radiation mostly re-
mained below the wheat light compensation point of 50 W m−2 (Pang 
et al., 2018). The 2016 anomaly in grain number per unit area was the 
most drastic in the research stations receiving more rainfall and less 
solar radiation around anthesis, and was particularly low for specific 
cultivars which underwent anthesis just at the time of peak rainfall in 
this period of maximum daily accumulated rainfall (Figure 3e). For ex-
ample, the grain number anomaly was −13% for the cultivar Rubisko 
in research station 8, which is less extreme than the −45% anomaly 
for this cultivar in research station 1, but more extreme than the 
decline seen for cultivar Soissons grown in the same research station 
but which underwent anthesis earlier (Figure 3e).

F I G U R E  1  Extremely low wheat yields in Western Europe in 2016. (a) Spatial distribution of the observed 2016 trend-corrected wheat 
yield anomaly. The breadbasket region of France is outlined by bold black contours with locations and names of the research stations (yellow 
dots) shown also in the inset (upper right). Boxplot of monthly (b) mean temperature (T mean), (c) solar radiation, and (d) rainfall, over the 
wheat-growing season for 2013–2020 harvest years for the most severely affected region at Égreville, France (research station 1). Lower 
whiskers extend below the 25% quantile (Q1) and upper whiskers above the 75% quantile (Q3) by 1.5 times the interquartile range (interval 
between Q3 and Q1). Values for the 2015/2016 growing season are plotted as red asterisks. Weather data for the other field sites studied 
and across Europe are shown in Figures S1–S8. Map lines delineate study areas and do not necessarily depict accepted national boundaries.
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8  |    NÓIA JÚNIOR et al.

To assess the impacts of low solar radiation and high rainfall and 
other possible limiting factors on the 2016 grain number anomaly, we 
determined the Gini index to show the importance of the variables 
in a random forest and a multi-model regression model fitted using 
a stepwise selection procedure. Both the Gini index and the multi-
model regressions were calculated 1000 times through random selec-
tions of wheat grain number anomalies. Thus, the circular graphs in 
Figure 3f,g represent the frequency of selection of each limiting factor 
as the first, second, or third most important variable for explaining 
wheat grain number in 2016 (Figure 3f) and for the reference period 
of 2014–2019 (without 2016) (Figure 3g). The photo-thermal quotient 
(Fischer, 1985) (Table S2) was by far the most important factor for de-
fining wheat grain number per unit area in the 2014–2019 reference 
period, whereas the variation of grain number among the stations and 
cultivars in 2016 was explained mainly by the level of solar radiation 

and heavy rainfall events, both around anthesis. In the multi-model re-
gression models, these variables together explain most of the 2016 
anomaly of grain number per unit across the eight locations represen-
tative of the breadbasket region of France (Figure 3h).

3.4  |  Grain size and plant diseases and anoxia

The autumn and early winter of 2015 were unusually warm, including 
several days when the mean temperature was 10°C higher than the 
2010–2020 average (Figure 4a,c). This was followed by higher-than-
normal amounts of precipitation during late winter and early spring, 
with a total accumulated rainfall of up to 300 mm (Figure 4b,d). Such 
warm and moist conditions were propitious to foliar diseases and 
Septoria leaf blotch was observed in 91% and wheat leaf rust in 

F I G U R E  2  Components of 2016 wheat yield anomalies that occurred at eight sites in the main breadbasket of France. Observed 
positive (blue) and negative (red) anomalies in 2016 in relation to the average for 2014–2019 (omitting 2016) wheat harvests for the growth 
components, (a) total aboveground biomass at anthesis, (b) ear density (ear number per unit area), (c) total aboveground nitrogen at anthesis, 
(d) total aboveground biomass at maturity, (e) grain number per ear, (f) nitrogen nutrition index, (g) grain number per unit area, (h) average 
single grain size, and (i) final grain yield. Different letters within each panel represent statistically significant differences in the component 
anomaly between the research stations (p < .05). For each yield component, bar shading indicates the ranking in magnitude of anomalies (as 
in i) for each site from the largest (dark) to the smallest (pale). The research stations were numbered from 1 to 8 according to the magnitude 
of their wheat yield loss in 2016 (as in i, location 1 had the highest yield loss in 2016 and location 8 the lowest): 1, Égreville; 2, Chevry; 3, 
Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots.
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    |  9NÓIA JÚNIOR et al.

17% of all experimental unit treatments studied by ARVALIS across 
the breadbasket region of France (Figure 4g). High rainfall around 
anthesis led to widespread soil saturation and flooding during the 
wheat grain-filling period (Figure  4e) and a high incidence of ear 
blight. Usually marginal, ear blight was observed in 27% of all the 
experimental unit treatments in 2016 (Figure  4g). Water balance 
simulations, accounting for the difference between daily refer-
ence evapotranspiration and rainfall, indicated an excess of water 

of up to 120 mm from early June until late July, spanning most of 
the wheat grain-filling period (Figure 4e). Water was in excess at all 
the research stations except research station 8, which notably had 
the smallest yield loss (Figure 4f). The combination of these extreme 
conditions, plus the stress from disease and anoxia, and limited solar 
radiation during grain filling, may have affected grain size (Text S1 
and Figure  S23). The effect of these variables was confirmed by 
ranking their importance using the Gini index (Figure 4h,  i). Overall, 

F I G U R E  3  Wheat grain number as affected by adverse weather conditions around anthesis. (a–d) Comparison of wheat anthesis date 
and weather conditions during late winter and spring for 2016 and the mean of 2014–2019 (without 2016) harvests at (a, b) research 
station 1 and (c, d) research station 8. (a, c) Mean temperature traces with boxplots of anthesis dates of all cultivars grown at each site. 
(b, d) Daily solar radiation (trace) and accumulated rainfall (bars) with dotted lines indicating the anthesis dates of individual cultivars. 
(e) Relationship between observed anomaly in grain number of different winter wheat cultivars for the 2016 and 2014–2019 harvests 
and the time lapse between the date when 50% of individuals had flowered (50% anthesis date) and the day with highest rainfall (see 
Table S2). (f, g) The three most important variables selected according to the Gini index from 1000 different models estimated from 
random forest variable selector method for estimating wheat grain number anomalies in France considering (f) only the 2016 harvest, 
and (g) all harvests from 2014 to 2019 excluding 2016. (h) Comparison between the observed and simulated 2016 wheat grain number 
per unit area anomaly using a multiple regression linear model, from 1000 different models in an out-of-sample analysis – errors bars 
show the standard errors from the 1000 simulations (vertical errors bars) and the observed grain number anomaly (horizontal errors 
bars) in (h). The research stations (R) are as follows: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 7, 
Barbarey-Saint-Sulpice; and 8, Rots.
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10  |    NÓIA JÚNIOR et al.

in multi-model regressions, fungal foliar diseases, ear blight, anoxia, 
and low solar radiation could explain most of the 2016 anomaly in 
grain size (Figure 4j).

3.5  |  Causes of wheat yield decline in 2016

Based on the skill of the multi-regression models at estimating 
grain number and grain size anomalies, we extended the analysis 

to quantify the contribution of each of these factors to the 2016 
losses in grain number per unit area, grain size, and grain yield at 
each research stations (Figure 5). ANOVA results indicated that the 
2016 grain number per unit area anomaly was mainly caused by 
low solar radiation (56%) and heavy rainfall (41%) considering data 
from all research stations, with a 3% residual not explained by these 
variables. At individual research stations, the impacts of low solar 
radiation on grain number per unit area varied from 4% to 33%, im-
pacts of heavy rainfall varied from 1% to 15%, and the impact of ear 

F I G U R E  4  Wheat grain size affected by plant diseases and excess water. (a–d) Weather conditions during the 2016 winter at (a, b) 
research station 1 and (c, d) research station 8. (a, c) Mean temperature in 2016 (red trace) compared to the average (grey trace) for the 
reference period of 2014–2019 (omitting 2016) and (b, d) daily accumulated rainfall (red trace) compared to other individual years in the 
reference period of 2014–2019 (grey traces). (e, f) Accumulated daily difference between reference evapotranspiration (ETo) and rainfall 
(water balance) around anthesis in 2016 in (e) research station 1 and (d) research station 8. Red bars indicate a negative balance, and black 
bars indicate a positive balance. The flowering time of the Rubisko cultivar at each site is indicated. (f) Frequency of plant diseases reported 
in ARVALIS plant disease trials across the breadbasket region of France in 2016 compared to the average (Hist.) of 2014–2019 (omitting 
2016). (h, i) The three most important variables selected according to the Gini index from 1000 different models estimated from random 
forest variable selector for estimating average single grain size anomalies considering (h) only 2016, and (i) all the harvests from 2014 
to 2019, excluding 2016. (j) Comparison between the simulated and observed 2016 anomaly in average single grain size with a multiple 
regression linear model, from 1000 different models in an out-of-sample analysis – errors bars show the standard errors from the 1000 
simulations (vertical errors bars) and the observed grain size anomaly (horizontal errors bars) in (j). The research stations are as follows: 1, 
Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 5, Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots.
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    |  11NÓIA JÚNIOR et al.

blight was less than 1%. For grain size, the main causes of decline 
were anoxia (51%), fungal foliar disease (21%), ear blight (19%), and 
low solar radiation during grain filling (6%), with 3% not explained 
by these variables. Apart from research station 8 where there was 
no waterlogging, the impact of anoxia on the decrease in grain size 
varied from 2% to 20%. Grain size was also affected by fungal foliar 
diseases, ear blight, and low solar radiation, which caused grain size 
decreases of up to 8% at individual research stations. The relatively 
low impact of low solar radiation on grain size (8% at most) compared 
to grain number (33% at most) was consistent with simulation results 
from the DSSAT-Nwheat model (Figures S16 and S17).

The contribution to grain yield of individual limiting factors in 
2016 was estimated by combining the contributions to grain num-
ber per unit area and grain size. Overall, when ranked by the size of 
impact, the 2016 yield drop can primarily be explained by reduced 
solar radiation around anthesis (31%), anoxia during grain filling 
(26%), heavy rainfall events at anthesis (19%), fungal foliar diseases 
(11%), and ear blight during grain filling (10%), with 3% of the loss not 
explained (Figure 5).

3.6  |  Increased frequency of adverse weather 
conditions for wheat yield under future climate

We used bias-adjusted climate projections from the CMIP6 sub-
set to anticipate risks similar to the 2016 impacts over the shared 
socioeconomic pathway SSP5-8.5 for the 2020–2100 period. We 
thus assessed whether future climate change trends might change 
the frequencies of heavy rainfall and solar radiation around wheat 
anthesis, ear blight, fungal foliar diseases, and anoxia during grain 
filling, as experienced in 2016 (Figure 6, which shows the average 
climate projections for eight research station across the breadbasket 
of France). Results indicate that under the SSP5-8.5 scenario, heavy 
rainfall around anthesis is projected to become up to 100% more 
frequent after 2040 (Figure 6a), while small changes are possible in 
average solar radiation around anthesis, increasing by 5% by 2100 
(Figure 6b). Similarly, under the SSP5-8.5 scenario, the frequency of 
ear blight would increase by 110% and fungal foliar diseases would 
increase by 50% by 2100 due to warmer winter and spring (Table S3). 
By contrast, anoxia during June to July, the grain-filling period, is 
projected to become up to 25% less frequent under the SSP5-8.5 
scenario. All factors which caused the large yield drop in 2016 would 
become more pronounced with future climate change, but low solar 
radiation and anoxia would be limiting less often. Similar projections 
are expected in other regions of Europe and for different wheat an-
thesis dates (Figures S19 and S20). High decadal variability is shown 
for all projected weather-based index (Figure 6a–e), but particularly 
for heavy rainfall at anthesis (Figure 6a) and ear blight (Figure 6b), 
which may be linked to the uncertainties of the ensemble means 
based on the CMIP6 global climate models.

Extreme low wheat yields are here statistically defined as the 
<2nd percentile of occurrence of simulated wheat yields during 
1960–2020, thus with a probability which occurred once in 60 years 

in the past (corresponding to the frequency of the 2016 wheat yield 
failure). With increasing solar radiation and heavy rainfall during an-
thesis, the frequency of extreme low wheat grain number due to cli-
matic factors that occurred in 2016 is projected to remain unchanged 
(Figure 6f). However, with increasing plant disease, extremely low 
wheat grain size and hence grain yields are projected to become five 
times more frequent by the end of the century under the SSP5-8.5 
scenario (Figure 6g,h). Similar results are expected under the SSP5-
2.6 scenario (Figure S21). Yet, these projections may vary according 
to the modeling approach used (Figure S33).

4  |  DISCUSSION

Grain yield in wheat is determined by grain number per unit area 
and average single grain size. There is a negative relationship be-
tween the two components, which suggests that wheat partially 
compensates during development for variation in grain number 
per unit area by modifying grain size once grain number is deter-
mined (Zhang et al.,  2010). However, we showed here that the 
large and sudden drop in wheat yield in 2016 in France occurred 
due to simultaneous drops in grain number per unit area and in 
average single grain size due to a combination of adverse climate 
events (Figure  S22). The low grain number was partly driven by 
low solar radiation around anthesis in France in spring of 2016. 
An 18% decrease in grain number due to 65% less solar radia-
tion centered around anthesis was reported by Fischer  (1985). A 
shading experiment by Yang et al.  (2020) showed a 58% drop in 
grain number when two wheat cultivars were 90% shaded dur-
ing the early microspore stage of flower development when grain 
number is determined. These reports are in accordance with the 
estimates from regression and crop simulation models presented 
here. Broadly compared to other years before and after, only one-
fifth of the solar radiation was received during the crucial flow-
ering period with one-third fewer grains formed in some of the 
experimental locations in 2016 (Figures S4 and S5). High rainfall 
is often linked to low grain numbers due to its indirect effect on 
plant disease spread and nitrogen leaching (Mäkinen et al., 2018). 
From the data presented here, it is more likely that the intense 
rainfall around anthesis in 2016 in France directly caused flower 
abortion (Lawson & Rands, 2019) or increased lodging during an-
thesis (Fischer & Stapper, 1987; Niu et al., 2016).

Waterlogging, simply indicated here by water balance, was a 
widespread phenomenon in 2016, leading to flooding in wheat 
fields across the Seine River basin (Ben-Ari et al.,  2018). Anoxia 
probably only occurred during the wheat grain-filling period. Marti 
et al. (2015) reported a grain yield decline of 20% due to 10–15 days 
of waterlogging with a high impact on grain number due to the ex-
cess of water just before anthesis. The timing of the impact on grain 
size is therefore different from that reported here. Fungal foliar dis-
eases also reduced average wheat grain size, with ear blight and low 
solar radiation exacerbating the decrease. Similar effects of low ra-
diation during different growth periods were observed by Shimoda 
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and Sugikawa (2020) and estimated by Asseng et al. (2017) using the 
same wheat crop model as in this study. In the model, the determi-
nation of grain number is source limited while grain growth beyond 
the onset of grain filling is often sink limited (Asseng et al., 2017). In 
the absence of any disease control, up to 30% decline in yield may 
be caused by ear blight (Shah et al., 2018) and up to 50% by septo-
ria blotch (Fones & Gurr, 2015). The impact of plant diseases esti-
mated here using regression models was smaller. However, resistant 
cultivars or fungicide applications during the growing season  

(Fones & Gurr, 2015; Shah et al., 2018) (up to three applications are 
common practice in Western Europe including the experimental unit 
treatments in France analyzed here) may have limited the wheat 
yield decline due to these diseases to between 5% and 10%.

European countries are global hotspots for climate change-driven 
compound events with the potential to cause severe impacts on ag-
riculture (Ranasinghe et al., 2021; Ridder et al., 2020). Recent studies 
showed that drought and heat stress during wheat anthesis and grain 
filling would become more frequent by 2100 with climate change, in 

F I G U R E  5  Causes of the extremely low wheat yield in France in 2016. Comparison of the observed (a) grain number per unit area, (b) 
average single grain size, and (c) grain yield reported in 2016 and the average of 2014, 2015, 2017, 2018, and 2019 harvests. The colored 
arrows represent the different causes of the 2016 decline in grain number, size, and yield, and the length represents the magnitude of each 
contribution. The donut charts in the right upper corner of each panel show ANOVA (mean of squares) results with the amount of variation in 
(a) grain number per unit area, (b) average single grain size, and (c) grain yield explained by different factors in 2016 across all research stations: 
SRad., solar radiation; Hrain, heavy rainfall; F. Dis., foliar diseases; Ear B., ear blight; Anox., anoxia; and Res., residual. The research stations are 
as follows: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots.
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many European wheat-growing countries (Trnka et al., 2014, 2019; 
Webber et al., 2018). This is consistent with our projections of less 
anoxia from rainfall during wheat grain filling by 2100. However, 
wheat diseases and heavy rainfall around anthesis, which together 
caused the majority of the wheat yield decline in 2016 in France, 
are both projected to become more frequent with climate change 

in the region (Figure 6). Heavy rainfall has already become more in-
tense in Central Europe (Zeder & Fischer,  2020). Therefore, if cli-
mate extremes of drought and heat stress during wheat anthesis and 
grain filling are compounded with elevated pressure from disease 
and more heavy early rainfall events, future episodes of extremely 
low wheat production in Western Europe are to be expected. This 

F I G U R E  6  Projected future frequency of the extreme weather on the 2016 wheat yield failure in France. Estimated running mean change 
for future 30 years of (a) heavy rainfall (daily rainfall >20 mm) at ±5 days around anthesis, (b) solar radiation at ±15 days around anthesis, 
(c) ear blight index, (d) fungal foliar disease index, and (e) anoxia index during grain filling in relation to the reference period 1960–2020. 
Estimated running mean change for future 30 years frequency of extremely low wheat (f) grain number per unit area, (g) average single 
grain size, and (c) grain yield from 1990 to 2085, with each year as the middle of a 30-year period. (a–e) Bars are ensemble means based on 
five bias-adjusted CMIP6 global climate models (GCMs) for SSP5-8.5. (f–h) Lines are ensemble means based on five bias-adjusted CMIP6 
GCMs for SSP5-8.5 (lines) and shading shows ±1 SE. In the simulations, anthesis was fixed as 1 June, and the anoxia index was calculated 
every year from 1 June to 31 July. CMIP6 GCMs for SSP5-8.5 data are an average of climate projections for the following eight research 
stations: 1, Égreville; 2, Chevry; 3, Saint-Quentin; 4, Saint-Florent; 5, Fagnières; 6, Issoudun; 7, Barbarey-Saint-Sulpice; and 8, Rots. Individual 
results for these research stations and other locations in Europe, as well as with different anthesis dates, are shown in Figures S19 and S20, 
respectively. Climate projections for monthly maximum and minimum temperature, solar radiation, and rainfall, are shown in Figure S18. 
Projected future frequency of the extreme weather on the 2016 wheat yield failure in France for SSP5-2.6 is shown in Figure S21. 
Thresholds for heavy rainfall (daily rainfall >20 mm) are similar in both observed climate and climate models (Figure S9), and modeled 
weather-based indices have similar distribution in both observed climate and climate models (Figure S10).
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parallels recent widespread wheat crop failures in other countries 
of Europe and the world. For example, in 2018, a combination of 
a warm, wet winter, with increased wheat disease pressure, fol-
lowed by a severely hot and dry summer in central-northern Europe 
(Beillouin et al.,  2020; Moravec et al.,  2021; Webber et al.,  2020) 
caused the national wheat yield of France to drop by 10%. This was 
also the lowest wheat-yielding year in the recent history of Germany 
(after trend correction, Figure S25) and of many northern European 
countries (Beillouin et al., 2020; Webber et al., 2020), with a total 
wheat shortfall of 13 million tons in the European Union compared 
to 2017. These examples of climate change driving extremely low 
wheat production seasons in other parts of the world demon-
strate the risks of simultaneous global breadbasket failures (Gaupp 
et al., 2020), and have implications for global food security. For ex-
ample, the simultaneous wheat production failures in several wheat-
exporting countries in 2008 contributed to food riots across many 
countries in the world (IMF, 2008). And, the heatwave in Russia and 
Ukraine in 2010 decimates 24 million tons of wheat, contributing to 
a 50% spike in global wheat price this year (FAO stat, 2022).

The simultaneous occurrence of multiple limiting impacts 
often makes it difficult to forecast extremely low wheat-yielding 
seasons. Forecasting seasons like 2016 in France are often ham-
pered by the poor representation of waterlogging and plant 
disease in both crop simulation and statistical models (Ben-Ari 
et al., 2018). New routines accounting for plant diseases (Berton 
Ferreira et al., 2021; Bregaglio et al., 2021) and waterlogging im-
pact (Liu et al.,  2021) need to be developed and integrated into 
crop simulation models to capture the extent of such compound-
ing factors. In the meantime, the simple relationships developed 
here capture some of the physiological impacts of waterlogging 
and diseases, as first steps toward a more comprehensive cropping 
systems analysis.

Our modeling approach included some assumptions. Factors 
affecting grain number per unit area were rather simply separated 
from those affecting average single grain size, even though potential 
grain size is also determined during the period when grain number 
per unit area is set (Acreche & Slafer, 2006; Calderini et al., 2021). 
Even with the large and detailed dataset studied, the available mea-
surements did not allow us to quantify the impact of climate factors 
on the potential grain size during anthesis. Also, the anthesis dates 
and grain-filling duration for the future climate change impact analy-
sis were kept constant, but these timings might change with increas-
ing temperatures or future cultivars. Depending on the direction of 
the changes in anthesis date and grain-filling period (whether earlier 
anthesis and shorter grain filling with current cultivars or unaltered 
or later anthesis with possible future cultivars [Asseng et al., 2019]), 
the overall impact might vary.

While the data analysis focused on the breadbasket of France, 
the approach used here could be extended to other countries in 
Western Europe which suffered similar weather anomalies during the 
wheat cropping season of 2016 (Figure 1). Our framework provides 
a basis for future improvement of the prediction capacity of crop 
simulation models and yields forecast systems, and for developing 

wheat cultivars with an increased ecophysiological capacity to grow 
in complex environments, like those in 2016 in France. Forecasting 
and planning for such compound yield-reducing events may to some 
extent mitigate the instability of future grain production under more 
extreme climates.
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