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Abstract
Statistical testing is classically used as an exploratory tool to search for associa-
tion between a phenotype and many possible explanatory variables. This approach
often leads to multiple testing under dependence. We assume a hierarchical structure
between tests via an Ornstein-Uhlenbeck process on a tree. The process correlation
structure is used for smoothing the p-values. We design a penalized estimation of the
mean of the Ornstein-Uhlenbeck process for p-value computation. The performances
of the algorithm are assessed via simulations. Its ability to discover new associations
is demonstrated on a metagenomic dataset. The corresponding R package is available
from https://github.com/abichat/zazou.

Keywords Multiple testing · Ornstein-Uhlenbeck process · Lasso · Debiasing · FDR
control · Metagenomic

1 Introduction

Inmany fields, statistical testing is classically used as an exploratory tool to look for the
association between a variable of interest andmany possible explanatory variables. For
example, in transcriptomics, the link between a phenotype and the expression of tens
of thousands of genes is tested (McLachlan et al. 2005), in GenomeWide Association
Studies (GWAS) the association betweenmillions ofmarkers and a phenotype is tested
(Bush and Moore 2012), in functional Magnetic Resonance Imaging (fMRI), the goal
is to identify voxels that are significantly activated in two different conditions (Cremers
et al. 2017).
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This problem of multiple comparisons dates back to the work of Tukey (Tukey
1953). It has since been the subject of abundant literature and aims at controlling a
probability of error of some sort. Most of the literature focus on the control of the
Familiy Wise Error Rate (FWER) (Bland and Altman 1995), being the probability of
at least one false discovery among detections, or of the False Discovery Rate (FDR)
(Benjamini and Hochberg 1995), defined as the expected proportion of false positives
among detections.

Most of the correction procedures for controlling FWER or FDR, such as the
popular Benjamini-Hochberg (BH) procedure, rely on independence, or some form
of weak dependence, among the hypotheses, which is rarely observed in practice.
Multiple testing under dependence is a difficult problem occurring in many fields. In
transcriptomics, differential analysis has to deal with gene expressions that are often
highly correlated. When performing GWAS, the linkage desiquilibrium imposes a
strong spatial dependence between markers, and in Functional Magnetic Resonance
Imaging (fMRI), two spatially close voxels have often comparable activation.

The control of the FDR remains valid under arbitrary dependency structures by
replacing the BH procedure with the more conservative BY procedure of Benjamini
and Yekutieli (2001). However, based on results obtained from simulated datasets, it
is obvious that there is a substantial loss of power when the real dependency structure
is not taken into account, as discussed in depth in Blanchard et al. (2020).

An alternative approach for dealing with multiple testing is to reduce the number of
tests by aggregating certain hypotheses. Aggregation strategies vary and can be based
on a priori knowledge (e.g. metabolic pathways, functional modules of genes) or on
clustering algorithms (Sankaran and Holmes 2014; Renaux et al. 2020).

This article aims to take into account the dependencies between variables in order to
offer a powerful statistical procedure of multiple testing. A hierarchical dependency
structure between variables is assumed to be known up to certain constants. This
assumption is common in our motivating example of microbiome studies (Sankaran
and Holmes 2014; Xiao et al. 2017; Huang et al. 2021; Matsen IV and Evans 2013;
Silverman et al. 2017), where the phylogeny is a natural hierarchical structure encod-
ing similarities between variables (or namely species in that context). The hypotheses
tested can then be organized in a tree structure which captures correlations at different
scales of observation. This type of hierarchical structure is observable in transcrip-
tomics differential analysis, where gene expressions can easily be represented by a
hierarchy based on gene expression correlation. In GWAS and fMRI, spatial depen-
dence also proves to be very suitable for hierarchical modeling (Ambroise et al. 2019;
Eickhoff et al. 2015; Sesia et al. 2020).

We propose to model the hierarchical structure of the multiple tests through an
Ornstein-Uhlenbeck process on a tree. The process correlation structure is used for
smoothing the p-values, after conversion to z-scores, similarly to the algorithm pro-
posed in Xiao et al. (2017) but with an explicit underlying model.

We then consider a three stage approach for our differential analysis procedure. The
first stage reframes the initial problem as a linear regression problem that preserves
the hierarchical structure. This linear problem is ill defined (p ∼ 2n) and we therefore
resort to an �1 penalized estimation of the mean of the Ornstein-Uhlenbeck process.
The second stage produces asymptotically valid p-values. The output of �1 penalized
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Hierarchical correction of p-values 997

estimation produces are indeed biased and offer no theoretical guarantees about their
asymptotic distribution; we therefore correct them using a debiasing procedure (Javan-
mard and Montanari 2013, 2014; Zhang and Zhang 2014) to compute valid p-values.
The third and final stage controls the FDR of the overall procedure, using the tuning
strategy of Javanmard et al. (2019).

The selection strength of the Ornstein-Uhlenbeck process and the penalty param-
eter are hyperparameters of our model, whose selection is achieved via a Bayesian
Information Criterion (BIC). We provide some background on hierarchical proce-
dures in Sect. 2, introduce the model and statistical procedure in Sect. 3 and detail the
computational steps in Sect. 4. The performances of the algorithm are assessed via
simulations in Sect. 5. The use of the proposed model is illustrated in Sect. 6, where
we demonstrate its ability to discover novel associations in a metagenomic dataset.

2 Background

2.1 Examples of multiple testing strategies

A classic example in genomics consists in grouping the markers according to whether
they belong to the same genes (aggregation by a prior). The genes can then be grouped
according to their similarity, computed for example from expression profiles. Kim
et al. (2010) have, for example, proposed a hierarchical testing strategy controlling
the FWER in a hierarchical manner, by testing clusters of genes, then individual genes
associatedwith a phenotype with the goal of finding genomic regions associatedwith a
specific type of cancer. This type of top-down approach uses the concept of sequential
rejection principle (Goeman and Finos 2012; Meinshausen 2008; Renaux et al. 2020).

fMRI is another domain where tests are aggregated: neighboring voxels that are
highly correlated are aggregated into a single voxel cluster. Benjamini and Heller
(2007) propose an adaptation of the False Discovery Rate (FDR) to allow for cluster-
level multiple testing for fMRI data.

Ad hoc aggregatingmethods for multiple testing also exist inMetagenomics. LEfSe
(Segata et al. 2011) performs a bottom up approach where a factorial Kruskal-Wallis
rank sum test is applied to each feature with respect to a class factor, followed by
a pairwise Wilcoxon test, and a linear discriminant analysis. MiLineage (Tang et al.
2017) performs multivariate tests concerning multiple taxa in a lineage to test the
association of lineages to a phenotypic outcome.

2.2 Independence assumption

The assumption of independence of tests is convenient as it enables for both exact anal-
yses and simple error bounds for classical procedures (Benjamini and Hochberg 1995,
e.g.). It is however unrealistic in practice. In many fields, including all the previous
examples, measurements typically exhibit strong correlations. Some correction proce-
dures, like the one proposed byBenjamini andYekutieli (2001),make few assumptions
while guaranteeing control of the FDR. Those general guarantees come with a high
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998 A. Bichat et al.

cost in terms of statistical power: the nominal FDR typically is much smaller that the
target, resulting in many FN. Permutation procedures are an appealing alernative that
can automatically adapt to the dependence structure of the p-values (Tusher et al. 2001)
but may fail when confronted to unbalanced design or correlated data. Knowledge of
the correlation structure can be leveraged to increase the power while still controling
the FDR below a given target. Several approaches have been developed along those
lines when the tests are organized along a hierarchical structure, typically encoded in
a tree.

2.3 Hierarchical testing

The Hierarchical FDR (hFDR) introduced by Yekutieli (2008) and implemented in the
R packagestructSSI (Sankaran andHolmes 2014), proposes a top-down algorithm
to sequentially reject hypotheses organized in a tree. The same approach is used
in (Renaux et al. 2020) to select a group of variables arranged in a clustering tree.
However, this approach suffers from some limitations, as shown in (Bichat et al. 2020;
Huang et al. 2021). First, the algorithm in its vanilla formulation commonly fails to
move down on the tree because of failure to reject the topmost node. Second, it only
controls for an a posteriori FDR level, which is a complex function of the (user-
defined) a priori FDR level and the structure of rejected nodes. This makes it difficult
to calibrate the a priori FDR that would achieve a target a posteriori FDR and thus
to compare it to other correction methods. Finally, it does not produce a corrected
p-value, or q-value, per leaf, but only a reject / no reject decision and was shown in
(Bichat et al. 2020) to perform no better than BH in many instances. Given all these
drawbacks, we did not include the hFDR in our benchmark and use BH as a baseline
instead.

StructFDR (Xiao et al. 2017) was developed for metagenomics Differential
Abundance Testing (DAT) and relies on z-scores / p-values smoothing followed by
permutation correction. Given any taxa-wise DAT procedure, p-values p are first com-
puted for allm taxa (i.e. leaves of the tree) and then transformed to z-scores z. The tree
is used to compute a distance matrix

(
Di, j

)
and then turned into a correlation matrix

Cρ = (
exp

(−2ρDi, j
))

between taxa using a Gaussian kernel. The z-scores are then
smoothed using the following hierarchical model:

z | μ ∼ Nm

(
μ, σ 2Im

)
,

μ ∼ Nm

(
γ 1m, τ 2Cρ

)
,

where μ captures the effect size of each taxa and z is a noisy observation of μ. The
maximum a posteriori estimator μ∗ of μ is given by

μ∗ =
(
Im + kC−1

ρ

)−1 (
kC−1

ρ γ 1m + z
)

where k = σ 2/τ 2.
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Hierarchical correction of p-values 999

The FDR is controlled bymeans of a resampling procedure to estimate the distribution
of μ∗ under H0 and estimate adjusted p-values qsf. This method is implemented in
the StructFDR package (Chen 2018).

TreeclimbR (Huang et al. 2021) is a bottom-up approach also developed for
metagenomics DAT but with a broader scope. It relies on aggregating abundances at
each node of the tree (understood as a cluster of taxa) and performing a test to compute
one p-value per node (compared one test per leaf for StructFDR). The main idea is
then to use those p-values to compute a score for node i

Ui (t) =
∣
∣∣∣

∑
k∈B(i) sk1{pk≤t}

#B(i)

∣
∣∣∣

where B(i) is the set of descendants of node i , pk and sk ∈ {−1,+1} are the p-value
of the node k and the sign of the associated effect, and t is a tuning parameter. A
node i will be considered as candidate if Ui (t) � 1 and pi < α. This ensure that all
descendants are (i) significant at level t with (ii) effects of coherent sign. At the end,
multiplicity correction is only done on nodes (including leaves) that do not descend
from another candidate.

3 Models and algorithms

Our correction methods assumes that p-values, or rather z-scores, evolve according to
an Ornstein-Uhlenbeck process on a tree. We thus use the corresponding correlation
structure to decorrelate the z-scores and, in turn, the p-values. This is similar in spirit
to the smoothing algorithm of Xiao et al. (2017) but we derive our procedure from
first principles and explicit assumptions. We first remind a few properties of Ornstein-
Uhlenbeck processes before proceeding to our model and procedure.

3.1 Ornstein-Uhlenbeck process on a tree

An Ornstein-Uhlenbeck (OU) process (Wt ) with optimal value (also called drift) βou,
selection strengh (also called mean reversion parameter) αou and variance of the white
noise σ 2

ou, is a Gaussian process that satisfies the stochastic differential equation:

dWt = −αou(Wt − βou)dt + σoudBt .

The important properties of OU processes are bounded variance and conver-

gence to a stationary distribution centered on the optimal value βou, namely Wt
(d)−→

N
(
βou, σ

2
ou/2αou

)
when t → ∞. Thanks to those properties, OU processes have

become a popular model applied in various subfields of biology, ranging from evolu-
tion of continuous traits, such as body mass (Freckleton et al. 2003), fitness (Lande
1976) or CpG enrichment in viral sequences (MacLean et al. 2021) to animal move-
ment (Dunn andGipson 1977) and epidemiology (Nåsell 1999). They naturally emerge
as the continuous limit of broad range of discrete-time evolutionmodels (Lande 1976).
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1000 A. Bichat et al.

Ornstein-Uhlenbeck processes can be readily adapted to tree-like structures as illus-
trated in Fig. 1.

Formally, we consider a rooted ultrametric tree T with m leaves and n branches
(n = 2m − 1 for binary trees). The internal nodes are labeled N1 (the root) to Nn−m

and the leaves T1 to Tm . Let i be a node,Wi the value of the trait at that node and denote
pa(i) its unique parent. By convention, we set tN1 = 0 and assume WN1 = 0. The
branch leading to i from pa(i) is denoted bi and has length li = ti − tpa(i) where ti is
the time elapsed between the root and node i . Since the tree is ultrametric, ti = h for
all i ∈ {T1, . . . , Tm}. For any pair of nodes (i, j), let ti j be the time elapsed between
the root and the most recent common ancestor of i and j and denote di j = ti − t j −2ti j
the distance in the tree between nodes i and j . The distribution of the trait at node i is
given by:

Wi |Wpa(i) ∼ N
(

λiWpa(i) + (1 − λi )βou,i ,
σ 2
ou

2αou
(1 − λ2i )

)
(1)

where λi = exp(−αouli ) and βou,i is the optimal value on branch i . Remark that
the process mean value does not immediately shift to βou,i but lags behind it with
a shrinkage parameter controlled by 1 − λi . If βou,i = 0 for all i , straightforward
computations show that W = (WT1 , . . . ,WTm ) is a gaussian vector with distribution

W ∼ N (0,Σ) where Σi j = σ 2
ou

2αou
e−2αoudi j (1 − e−2αouti j ).

When, the optimal value can shift on a branch (e.g. the branch bN4 leading to
N4 in Fig. 1), the mean vector of W is a slightly more complex and depends on
both the tree topology and the location and magnitude of the shifts. Denote U the
m × (n + m) incidence matrix of T with rows labeled by leaves (i ∈ {T1, . . . , Tm})
and columns labeled by inner nodes and leaves ( j ∈ {N1, . . . , Nn−m, T1, . . . , Tm}),
with entries defined as Ui j = 1 if and only if leaf i is in the subtree rooted at node j .
Intuitively, columnU. j encodes all leaves descending fromnode j and rowUi . encodes
all ancestors of leaf i . Denote Δ the dimension n column vector with entries defined
as Δi = βou,i − βou,pa(i) where i ∈ {N1, . . . , Nn−m, T1, . . . , Tm}. Non-zero entries
of Δ correspond to shifts location, nodes for which the optimal value βou,i differ from
its parent’s and their values to shifts magnitude (see Figure 2 for an example). Finally
let Λ be the n diagonal matrix with diagonal entries Λi = 1 − exp(αou(h − tpa(i)))

where i ∈ {N1, . . . , Nn−m, T1, . . . , Tm}. Straightforward computations (see Bastide
et al. (2017) for detailed derivations) show that W is a gaussian vector with joint
distribution:

W ∼ N (μ,Σ) where μ = UΛΔ and Σi j = σ 2
ou

2αou
e−2αoudi j (1 − e−2αouti j ).

(2)

When T is known, the matrix T = UΛ is completely specified up to parameter
αou. The shifted Ornstein-Uhlenbeck model, with parameters αou, σ 2

ou and shift vector
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Hierarchical correction of p-values 1001

Fig. 1 (A) Phylogenetic tree with 5 leaves and 4 internal nodes (root N1 included). A shift occurs on the
branch leading to N4. (B) Ornstein-Uhlenbeck process with shifts on the tree defined in the left panel.
At each node, the process spawns two independent process with the same initial value. The shifts on the
optimal value on the branch leading to N4 results in a different mean value for N4 and all its offsprings (T1
and T2)

Fig. 2 IncidencematrixU , shift vectorΔ andmean vectorμ associatedwith Fig. 1.ΛN4 = 1−eαou(h−tN3 )

is the shrinkage parameter from equation (1)

Δ, has been used (Bastide et al. 2017; Khabbazian et al. 2016) to find adaptive events,
modeled as non zero values in Δ, in the evolution of continuous traits of interest
(turtle shell size, great monkey brain shape, etc). In this work, we apply the same
mathematical framework to the joint distribution of p-values transformed to z-scores.

3.2 Procedure

We show here how to use the previously described Ornstein-Uhlenbeck process to
incorporate the tree structure T in the correction of the p-values vector p.
Framework. Noting m1

i (resp. m
2
i ) the median count (or relative abundance) of taxon

i under condition 1 (resp. condition 2), we want to test Hi0 : m1
i = m2

i against
Hi1 : m1

i 	= m2
i and assume that we have a testing procedure that outputs p-values,

e.g. theWilcoxon-Mann-Whitney test (Mann andWhitney 1947;Wilcoxon 1992).We
first convert the p-values to z-scores using the quantile function Φ−1 of the standard
gaussian:

z = Φ−1(p).
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1002 A. Bichat et al.

Provided the use of a correct statistical test,weknown thatpi ∼ U([0, 1])underHi0,
so that zi ∼ N (0, 1). We also know that pi � U([0, 1]) and thus zi � N (0, 1) under
Hi1. We could also testHi0 : m1

i = m2
i againstHi1 : m1

i < m2
i orHi1 : m1

i > m2
i , we

only require the procedure to output p-values that satisfy the previous distributional
assumptions for these Hi0 and Hi1. Note that, even if the test statistic is itself a z-
score before being transformed to a p-value, the z-score zi may differ from the raw test
statistic zi because of the intermediate p-value pi . Indeed when considering the simple
case of testing equality of means in two samples of size n, with gaussian distributions
and known variance σ , the relation between zi and zi = √

n(m̂1
i − m̂2

i )/2σ is given
by:

zi = Φ−1(pi ) =

⎧
⎪⎨

⎪⎩

Φ−1(Φ(zi )) = zi ifHi1 : m1
i < m2

i

Φ−1(Φ(1 − zi )) = −zi ifHi1 : m1
i > m2

i

Φ−1(2Φ(−|zi |)) ifHi1 : m1
i 	= m2

i

After transformation, the test can be thus always be reframed as one-sided on zi :
Hi0 : E[zi ] = 0 against Hi1 : E[zi ] < 0. We make two assumptions regarding the
distribution of z.

(A1) Under Hi1, zi ∼ N (μi , 1) where μi ≤ 0;
(A2) z arises from a shifted Ornstein-Uhlenbeck process on an ultrametric tree T

with parameters αou, Δou and Δ.

Assumption (A1) is very classic when working with z-scores (McLachlan and Peel
2000): finding the alternative hypotheses is equivalent to finding the negative entries
of μ. Assumption (A2) allows us to specify the joint distribution of z as:

z ∼ Nm (μ,Σ) (3)

where Σ is fully specified by the parameters σou and αou. Note that the diagonal
coefficients of Σ are all equal to σ 2

ou/2αou(1 − 2e−2αouh). As they correspond to
marginal variances, this forces the equality σ 2

ou = (1 − 2e−2αouh)/2αou so that Σ

depends only on αou, i.e. Σ = Σ(αou). Finally, the decompositon μ = TΔ, where T
acts as a phylogenetic design matrix, ensures that alternative hypotheses are likely to
form clades, i.e. groups of leaves obtained by cutting a single branch in the tree.

This framework allows us to use T as a prior structure in the mean vector μ and
variancematrixΣ and to recast the hypothesis testing problemas a regression problem.

3.2.1 Parameter estimation

Estimation of μ̂. Assume first that Σ , or equivalently αou, is known. Our main goal is
to estimate the negative components of μ.

To leverage the known tree structure, we use the decomposition μ = TΔ and
estimate μ by means of Δ. Since Δ has dimension n compared to dimension m for μ,
we force Δ̂ to be sparse using a constrained lasso penalty (Tibshirani 1996) :
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Hierarchical correction of p-values 1003

Δ̂ = argmin
Δ∈Rn s.t. TΔ∈Rm−

1

2
‖z − TΔ‖2

Σ−1,2 + λ‖Δ‖1. (4)

where R− = {x ∈ R s.t. x ≤ 0}.
Intuitively, the decomposition together with the �1 penalty works as a nested group

lasso penalty for the components of μ, where the groups correspond to clades of
T , while the constraint TΔ ∈ R

m− forces components of μ to be non positive. For
compacity, we define the feasible set D = {Δ ∈ R

n s.t. TΔ ∈ R
m−}. Finally, we use

the Cholesky decomposition Σ−1 = RT R to simplify the problem into the very well
studied optimisation problem:

Δ̂ = argmin
Δ∈D

1

2
‖y − XΔ‖22 + λ‖Δ‖1 (5)

with y = Rz ∈ R
m and X = RT ∈ R

m×n . Note that y is a whitened version of z,
with independent components and spherical covariancematrix. This is a lasso problem
with a convex feasability constraint on Δ. The optimisation algorithm used to solve
this problem is detailed in Sect. 4.
Estimation of Σ̂ and tuning of λ.

Remember first thatΣ is completely determined by αou because of the link between
αou and σ 2

ou. There are no closed-form expression for the maximum likelihood esti-
mator of αou. We therefore resort to numerical optimisation. To tune the parameter λ,
we test several values to estimate models with different sparsity levels and select the
best one using a modified BIC criterion:

(α̂ou, λ̂) = argmin
α>0,λ≥0

∥∥z − TΔα,λ

∥∥2
Σ−1(α),2 + log |Σ(α)| + ‖Δα,λ‖0 log(logm) logm

(6)

where Δα,λ is the solution of problem (4) for Σ(α) and λ. In practice, α and λ vary
in a bidimensional grid and we select the values that minimize the objective. We use
a modified BIC, where log(logm) logm replaces logm, to account for the fact that m
scales like n as suggested in Fan and Tang (2013).

3.2.2 Confidence intervals

Lasso procedures are known to produce biased estimators and do not return confidence
intervals for the point estimate μ̂i . Instead of simply returning all negative components
of μ̂ = T Δ̂, we first debias the estimates and construct confidence intervals for the
components of Δ, and in turn of μ̂, using the debiasing procedure of Javanmard and
Montanari (2013, 2014); Zhang and Zhang (2014).
Debiasing. All debiasing procedures assume a model Y ∼ Nm

(
XΔ, σ 2 Im

)
and

require both an initial estimator Δ̂(init) of Δ and σ̂ of σ . We use the scaled lasso (Sun
and Zhang 2012) with the same negativity constraint as in (4):
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1004 A. Bichat et al.

(
Δ̂(init), σ̂

)
= argmin

Δ∈D,σ>0

‖y − XΔ‖22
2σm

+ σ

2
+ λscaled‖Δ‖1. (7)

Problem (7) can be solved efficiently by iterating between updates of (i) σ̂ using the
closed-form expression σ̂ = ‖y− XΔ̂‖2/√m and (ii) of Δ̂ by solving the constrained
lasso problem (5) with tuning parameter λscaled = λmσ̂ . Debiasing is achieved by the
corrected update:

Δ̂ j = Δ̂
(init)
j + 〈s j , y − XΔ̂(init)〉

〈s j , x j 〉 . (8)

where the s j form a score-system (SS). Intuitively, s j should form a relaxed orthogo-
nalization of x j against other column-vectors of X . The s j are used to decorrelate the
estimators.We used the strategy of Zhang and Zhang (2014) and take the residuals of a
lasso regression of x j against X− j . We also considered the alternative debiasing strat-
egy of Javanmard and Montanari (2013, 2014), which is based on a pseudo-inverse of

Σ̂ = XT X
m . Their debiased estimate is again a simple update of the initial scaled lasso

estimator:

Δ̂ = Δ̂(init) + 1

m
SXT

(
y − XΔ̂(init)

)

but the decorrelation matrix S is computed in a so-called colwise inverse approach
(CI), by inverting Σ̂ in a columnwise fashion. Column s j is solution of the optimization
problem :

{
s j = argmins∈Rn sT Σ̂s

s.t. ‖Σ̂s − e j‖∞ ≤ γ.
(9)

where e j is the j th canonical vector and γ ≥ 0 is a slack hyperparameter. If γ is too
small, the problem is not feasible (unless Σ̂ is non singular). If γ is too large, the
unique solution is s j = 0.
Confidence Interval. Zhang and Zhang (2014) showed that asymptotically Δ̂ ∼
N (Δ, V ) with the covariance matrix V defined by

vi j = σ̂ 2 〈si , s j 〉
〈si , xi 〉〈s j , x j 〉 . (10)

Similarly, the columnwise-inverse estimator of Javanmard and Montanari (2013) has
asymptotic distribution N (Δ, V ) with variance matrix V = SΣ̂ST /m. For both
procedures, the bilateral confidence interval at level α for Δ̂ j is

ICα(Δ̂ j ) =
[
Δ̂ j ± φ−1

(
1 − α

2

) √
v j j

]
.
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Hierarchical correction of p-values 1005

Note that the estimator of the i th component of μ can be written μ̂i = t Ti . Δ̂ with
t Ti . the i th row of T . Its unilateral confidence intervals at level α is thus given by[
−∞, μ̂i +

√
t Ti . V ti .φ−1 (1 − α)

]
. We can thus simply check whether 0 falls in the

interval to testHi0 : {μi = 0} versusHi1 : {μi < 0} at level α or compute the p-value
of the one-sided test as:

pssi = Φ

(
t Ti . Δ̂

(
t Ti . V ti .

)1/2

)

. (11)

3.2.3 FDR control

The debiasing procedure achieves marginally consistent interval estimation of the
shiftsΔ but additional care is required to control the FDRwhen testing all components
ofμ simultaneously.We use the procedure proposed in Javanmard et al. (2019), which

is specific to debiased lasso estimators, and relies on the t-scores ti = t Ti . Δ̂(
t Ti . V ti .

)1/2 .

Briefly, for FDR control at a given level α, let tmax = √
2 logm − 2 log logm and set:

t� = inf

{
0 ≤ t ≤ tmax : 2m(1 − Φ(t))

R(t) ∨ 1
≤ α

}

where R(t) = ∑m
i=1 1{ti≤−t} is the total number of rejections at threshold t , or t� =√

2 logm if the previous expression is empty. Applying the procedure from Javanmard
et al. (2019) strictly would replace 2m with m in the numerator, as we’re considering
one-sided tests instead of two-sided ones for μi . However, numerical analysis showed
that the extra 2 led to better control of the FDR and we thus kept it. Hypothesis Hi0
is rejected if ti ≤ −t� or in term of q-values if

qssi := pssi α

Φ(−t�)
≤ α. (12)

Since t itself depends on α, the corrected p-values depend on α, unlike in the standard
BH procedure, where they only depend on the order statistics.
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3.2.4 Algorithm

The algorithm 1 summarises our procedure.We call it zazou for "z-scores az Ornstein-
Uhlenbeck".

Algorithm 1 Zazou procedure
1: Compute the vector p of raw p-values
2: Transform it to the vector z of raw z-scores
3: for values of α and λ varying in a grid do
4: Compute Σ , R, y and X
5: Compute Δ̂α,λ and σ̂α,λ by solving (7)
6: Compute the BIC criterion (6)
7: end for
8: Select parameter values α̂ and λ̂ that minimize the BIC
9: Set Δ̂(init) = Δ̂

α̂,λ̂

10: Update Δ̂(init) according to (8) to debias it
11: Compute its covariance matrix V̂ with (10)
12: Compute the vector p-values pss of corrected with (11)
13: return Vector of corrected q-values qss computed from (12) for a target FDR level α.

4 Sign-constrained lasso

Our inference procedure is based on very standard estimates but requires to solve the
following constrained lasso problem:

Δ̂ = argmin
Δ s.t. TΔ∈Rm−

1

2
‖y − XΔ‖22 + λ‖Δ‖1.

For arbitrary vector y and matrices X and T . This a convex problem as both the
objective function and feasibility set are convex. We therefore adapt the shooting
algorithm (Fu 1998), an iterative algorithm used to solve the standard lasso by looping
over coordinates and solving simpler unidimensional problem, to our constrained
problem.

Let X− j (resp. Δ− j ) be the matrix X (resp. vector Δ) deprived of its j th column
(resp. j th coordinate). We can isolate Δ j in (5) and decompose the objective as ‖y −
XΔ‖22 +λ|Δ| = ‖y− z j − x jΔ j‖22 +λ|Δ j |+λ‖Δ− j‖1 where z j = X− jΔ− j ∈ R

m .
We can likewise decompose TΔ = u j + v jΔ j where u j = T− jΔ− j ∈ R

m and
v j = t j . When updating Δ j , we can thus consider the simpler univariate problem in
θ :

⎧
⎨

⎩

argmin
θ∈R

h(θ) = 1
2‖y − z − xθ‖22 + λ|θ |

s.t. u + vθ ≤ 0.
(13)
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Let I+ = {i : vi > 0} and I− = {i : vi < 0} and denote θmax = minI+{−ui/vi }
and θmin = maxI−{−ui/vi } with the usual conventions that max(∅) = −∞ and
min(∅) = +∞. Problem (13) is feasible only if (i) θmin ≤ θmax and (ii) for all i ,
vi = 0 ⇒ ui ≤ 0, in which case the feasible region is [θmin, θmax]. Computing the
subgradient ∂h(θ) of h and looking for values θ such that 0 ∈ ∂h(θ) leads to the usual
shrinked estimates:

⎧
⎪⎨

⎪⎩

(y−z)T x+λ

xT x
if (y − z)T x < −λ,

(y−z)T x−λ

xT x
if (y − z)T x > λ,

0 if |(y − z)T x | < λ.

By convexity of h, the solution of (13) can be found by projecting the previous uncon-
strained minimum to the feasibility set. If problem (13) is feasible, its solution is thus
given by

θ� =

⎧
⎪⎪⎨

⎪⎪⎩

PI
(

(y−z)T x+λ

xT x

)
if (y − z)T x < −λ,

PI
(

(y−z)T x−λ

xT x

)
if (y − z)T x > λ,

PI(0) if |(y − z)T x | < λ,

where PI : u �→ max(θmin,min(u, θmax)) is the projection of u on the segment
I = [θmin, θmax].

5 Synthetic data

5.1 Metagenomics

Metagenomics data are made up of three components. The first component is the count
or abundance matrix X = (xi j ), with 1 ≤ i ≤ m and 1 ≤ j ≤ p, which represents the
quantity of taxa i in sample j . The second component is a set of sample covariates,
such as disease status, environmental conditions, group, etc. The final component is
a phylogenetic tree which captures the shared evolutionary history of all taxa. When
performing DAT, we are interested in taxa whose abundance is significantly associated
to a covariate.

Most DAT procedures proceed with univariate tests (one test per species) followed
by a correction procedure. In the synthetic datasets, we consider discrete covariates
only. Dozens of full-fledged testing pipelines are published each year, including some
designed with omics data in mind. Since our goal is this study is to compare correction
procedures rather than full testing procedures, we use Wilcoxon or Kruskall-Wallis
tests, which are classical and widespread non parametric tests in metagenomics.

5.2 Simulations

Simulation scheme. We use the following simulation scheme:
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1. start with a homogeneous dataset,
2. assign each sample to group A or B at random
3. select differentially abundant taxa in a phylogenetically consistent manner (diffen-

tially abundant taxa)
4. apply a fold-change to the observed abundance of diffentially abundant taxa in

group B.

This non-parametric simulation schemewas previously used in Bichat et al. (2020).
We considered two variants for step 3, respectively called positive and negative. In
the negative variant, differentially abundant taxa were selected randomly across the
tree, so that the phylogeny is not informative. In the positive variant, taxa are instead
selected in a phylogenetically consistent manner. Formally, the phylogeny was first
used to compute the cophenetic (Sneath et al. 1973) distance matrix between taxa. A
partioning aroundmedoids algorithmwas then used to create cluster of related species.
One or more clusters were then picked at random and all species in those clusters were
selected as differentially abundant.

For each fold-change (fc ∈ {3, 5, 10}), 500 simulated datasets were created, with
a proportion of differentially abundant species ranging from 3 % to 35 %. For each
simulation, we corrected p-values using no correction (Raw), BH procedure (BH),
BY procedure (BY), StructFDR (TF) or our procedure with either score system
(SS) or colwise inverse debiasing (CI), targeting in all instances a 5% FDR level. We
compared the 6 procedures in terms of True Positive Rate (TPR), nominal FDR and
AUC (Area Under the Curve).
Positive simulations.

The results of positive simulations (i.e. where the phylogeny is informative) are
shown in Fig. 3. All correction methods have controlled the FDR at the target rate or
below when the fold change is larger than 5. For smaller fold changes, both SS and CI
variations of zazou exhibit nominal FDR slightly above the target level (up to 9% in
the worst case). In all settings, BY had the lowest TPR, whereas TF was comparable
to vanilla BH, in line with results of Bichat et al. (2020). Finally, zazou (both SS
and CI variations) had the best overall TPR, with largest gains observed in the lowest
fold-change setting.

The higher than intended FDR of zazou methods suggests that the problem of
finding an adequate threshold for pssi is not completely solved by Javanmard et al.
(2019) procedure. To assess the performance of zazou in a threshold-independent
manner, we also compared the AUC of all procedures. Fig. 4 shows that zazou (both
variants) has higher AUC than all other methods. As reported previously, TF and BH
are at the same level and BY has the lowest ROC curve. Focus on the beginning of
left hand side side of the curve shows that zazou is more efficient starting from the
first discoveries.
Negative simulations. The negative simulations are designed to assess the robustness
of our algorithm with respect to uninformative phylogenies, or equivalently mispeci-
fied hierarchies. Fig. 5 shows that, as expected, standard BH outperforms competing
methods (in terms of AUC) when the tree is mispecified. Forcing an inadequate tree
structure results in AUC losses ranging from 15 to 20 percentage points compared to
no structure. The puzzling lack of AUC loss for the TF procedure is explained by an
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Fig. 3 Boxplots and average (red point) TPR and FDR across positive simulation settings. Each facet
corresponds to a different fold-change (fc) and each boxplot is computed over 500 simulation replicates.
All corrections control the FDR at the target level or slightly above but zazou (SS and CI) achieve higher
TPR, especially for small fold changes

Fig. 4 AUC boxplots (top) and average ROC curves (bottom) across positive simulations settings. Facets
correspond to fold-changes (fc). ROC curves are computed for each simulation and linearly interpolated
over a fixed grid before being averaged. Each boxplot and each curve are computed over 500 replicates. In
all settings, SS/CI have the highest AUC / ROC curve, followed by BH/TF while BY has the lowest values

implementation trick: TF always performs BH correction in parallel to its hierarchical
procedure and falls back to BH when the hierarchical procedure detects much fewer
species than BH (Bichat et al. 2020; Xiao et al. 2017).
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Fig. 5 AUC boxplots (computed over 500 replicates) in negative simulations. BH outperforms SS and CI,
highlighting the cost of imposing a mispecified hierarchical structure

6 Application

We use our zazou procedure on a gut microbiota dataset from the Fiji Islands (Brito
et al. 2016; Pasolli et al. 2017) to identify species that are differentially abundant
between adults and children. The data sets consists in the abundances of p = 387
species among n = 146 islanders, split into 112 adults and 34 children.

To mimick the simulation study, we used Wilcoxon tests for the univariate tests.
Without correction, 21 species were detected as differentially abundant at the 5%
level. None of them remained significant after correction by BH, BY, TreeFDR or
treeclimbR. By contrast, zazou detected differentially abundant species with both
desparsification methods: 17 for SS and 6 for CI.

Fig. 6 shows that they are not a strict subset of the 21 detected with no correction.
Smoothing salvages some species that are closely related to one of the 21 without
being significant on their own (red box in the figure). It also illustrate some numerical
problems associated with colwise-inverse debiasing, which is highly sensitive to the
choice of the slack hyperparameter γ . The window of relevant values for γ is narrow
and too large or too small values γ respectively lead to no correction or a faulty p-value
correction.

7 Conclusion

In this work, we introduced zazou, a new method for correcting p values in a hier-
archical context. zazou is based on recasting the testing problem as a regression
problem, under the framework of stochastic processes on an ultrametric tree, and
using the tree topology as a regularization parameter.
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Fig. 6 Phylogeny of the 387 species from the Fidji dataset with associated z-scores (inner circle), evidence
(middle circle) and detection status (outer circle) under different correction procedures. Species detected by
zazou are generally close-by on the tree and often, but not always, detected by raw p-values. The red strip
highlight the smoothing property of the procedure in a subtree where individual species are not detected
when using independant univariate tests but are detected when accounting for the hierarchical structure

It outperforms competing methods, hierarchical (TreeFDR, TreeclimbR) or not
(BH, BY) in terms of AUC but this does not translate immediately to superior results
in terms of FDR and TPR. The threshold for rejecting hypotheses is turned out to be
quite difficult to calibrate while controling the FDR and warrants further work.

There are several other parts of the procedure that are not as powerful as expected.
First, the BIC step used to select λ and in turn the number of shifts tends to choose
models with very few shifts, and sometimes even none. In such instances, the rele-
vance of the debiasing step is limited. Second, the correction procedure proposed by
Javanmard et al. (2019) is too conservative for our purpose. It was indeed developed
to control both the FDR and the directional FDR (i.e. proportion of Type S errors,
where the effect size have the wrong sign, in the discoveries) whereas we only need
to control the former. For both these steps, specific developments taking into account
the sign constraint on μ̂ and the structure of the topology matrix of tree T could lead
to better performances for zazou.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
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