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Abstract

We consider a stochastic individual-based model for the evolution of a haploid, asex-
ually reproducing population. The space of possible traits is given by the vertices
of a (possibly directed) finite graph G = (V,E). The evolution of the population is
driven by births, deaths, competition, and mutations along the edges of G. We are
interested in the large population limit under a mutation rate µK given by a negative
power of the carrying capacity K of the system: µK = K−1/α, α > 0. This results in
several mutant traits being present at the same time and competing for invading the
resident population. We describe the time evolution of the orders of magnitude of
each sub-population on the logK time scale, as K tends to infinity. Using techniques
developed in [8], we show that these are piecewise affine continuous functions, whose
slopes are given by an algorithm describing the changes in the fitness landscape due
to the succession of new resident or emergent types. This work generalises [25] to the
stochastic setting, and Theorem 3.2 of [6] to any finite mutation graph. We illustrate
our theorem by a series of examples describing surprising phenomena arising from
the geometry of the graph and/or the rate of mutations.
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Stochastic individual-based models with power law mutation rate

1 Introduction

Adaptive dynamics is a biological theory that was developed to study the interplay
between ecology and evolution. It involves the three mechanisms of heredity, mutations,
and natural selection. It was first introduced in the 1990ies by Metz, Geritz, Bolker,
Pacala, Dieckmann, Law, and coauthors [30, 18, 23, 4, 5, 17], who mostly considered
a deterministic setting but also heuristically mentioned first stochastic versions. A
paradigm of adaptive dynamics is the separation of the slow evolutionary and the fast
ecological time scales, which is a result of reproduction with rare mutations. Invasion,
fixation or extinction of a mutant population is determined by its invasion fitness, that
describes the exponential growth rate of a single mutant in the current (coexisting)
population(s) at equilibrium.

Stochastic individual-based models of adaptive dynamics have been rigorously con-
structed and first studied in the seminal work of Fournier and Méléard [22], and there
is now a growing literature on these models. The population consists of a collection of
individuals who reproduce, with or without mutation, or die after random exponential
times depending on the current state of the whole population. The population size is
controlled by a carrying capacity K which represents the amount of available resources.
This class of models has first been studied in the original context of separation between
evolutionary and ecological time scales. That is in the joint limit of large populations and
rare mutations such that a mutant either dies out or fixates before the next mutation
occurs. Mathematically this amounts to considering a probability of mutation satisfying
in particular

µK � 1/K logK as K →∞. (1.1)

We will call this regime ‘rare mutation regime’ in the sequel. The description of the
succession of mutant invasions, on the mutation time scale 1/KµK , in a monomorphic
[7] or polymorphic [10, 2] asexual population gives rise respectively to the so-called Trait
Substitution Sequence or Polymorphic Evolution Sequence. Extensions of the question
to sexual populations were then studied, both in the haploid [39, 13] and the diploid
[12, 33] cases.

It is natural to consider the effect of a higher mutation rates, where mutation events
are no longer separated, if we want to describe several mutant traits being present
microscopically at the same time and competing for invading the resident population.
The mutation rate given by

µK = K−
1
α , for α > 0 (1.2)

was considered in different contexts [20, 40, 6, 8] and will be the concern of the present
paper. Notice that another mutation scale has been considered in [2, 3] to model the
interaction of few mutants in the case without recurrent mutations, namely µK of order
1/K logK.

Another approach to adaptive dynamics has been introduced by Maynard Smith
[29] under the name of adaptive walks. This was further developed by Kauffman and
Levin [24] and many others, as mentioned below. Here, a given finite graph represents
the possible types of individuals (vertices) together with their possibilities of mutation
(edges). A fixed, but possibly random, fitness landscape assigns real numbers to the
vertices of the graph. The evolution of the population is modelled as a random walk on
the graph that moves towards higher fitnesses. This can be interpreted as the adaptation
of the population to its environment. In contrast to the adaptive dynamics context, this
fitness landscape is not dependent on the current state of the population. Adaptive walks
move along edges towards neighbours of increasing fitness, according to some transition
law, towards a local or global maximum. In particular, in such models it is not possible
for a population to cross a fitness valley. This is partially solved by a variation of this
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model, called adaptive flight [32]. It consists in a walk jumping between local fitness
maxima, before eventually reaching a global maximum. The questions of the distribution
of maxima [34], the typical length of a walk [35], or the typical accessibility properties of
the fitness landscape [26, 38, 1] have been studied under different assumptions on the
graph structure, the fitness law, or the transition law of the walk. Moreover, comparisons
of these models with actual empirical fitness landscapes have been performed in [41]. As
Kraut and Bovier showed [25], adaptive walks and flights arise as the limit of individual-
based models of adaptive dynamics, when the large population followed by the rare
mutations limit is taken. They also conjecture, and this will be proved in the present
article, that similar results hold in the stochastic setting under the mutation rate (1.2),
as we detail below.

In this paper, we consider an individual-based Markov process that models the
evolution of a haploid, asexually reproducing population. The space of possible traits
is given by the vertices of a (possibly directed) finite graph G = (V,E). The evolution
of the population is driven by birth, death, and competition rates, which are fixed and
depend on the traits, as well as mutations towards nearest neighbours in the graph G.
We start with a macroscopic initial condition (that is to say of order K, see Definition
2.2) and we are interested in the stochastic process given by the large population limit
under the mutation rate (1.2). We describe the time evolution of the orders of magnitude
of each sub-population on the logK time scale, as K tends to infinity. We show that the
limiting process is deterministic, given by piecewise affine continuous functions, which
are determined by an algorithm describing the changes in the fitness landscape due to
the succession of new resident or emergent types.

This work constitutes an extension of the paper by Kraut and Bovier [25] to the
stochastic setting. They consider the deterministic system resulting from the large
population limit of the individual-based model (K →∞), and let the mutation probability
µ tend to zero. By rescaling the time by log(1/µ), they prove that the limiting process is
a deterministic adaptive walk that jumps between different equilibria of coexisting traits.
A corollary of our results gives the same behaviour, on the logK time scale, for the
stochastic process under the scaling (1.2) for α larger than the diameter of the graph G.
Kraut and Bovier also study a variation of the model, where they modify the deterministic
system such that the subpopulations can only reproduce when their size lies above a
certain threshold µα. This limits the radius in which a resident population can foster
mutants, and mimics the scaling (1.2) that we consider. The resulting limiting processes
are adaptive flights (which are not restricted to jumping to nearest neighbours), and
thus can cross valleys in the fitness landscape and reach a global fitness maximum. We
obtain the same behaviour, on the logK time scale, for the stochastic process under the
scaling (1.2) without any restriction on α.

The results of the present paper can also be seen as a generalisation of Theorem 3.2
in [6] by Bovier, Coquille and Smadi to any finite trait space. Indeed, they consider the
graph with vertices V = {0, . . . , L} embedded in N and choose parameters such that the
induced fitness landscape exhibits a valley: mutant individuals with negative fitness have
to be created in order for the population to reach a trait with positive fitness. Several
speeds of the mutation rate are considered, and in particular, when α > L, the exit time
of the valley is computed on the logK time scale. This becomes a corollary of our results,
and we can give an algorithmic description of the rescaled process for more general
graphs endowed with a fitness valley, as we discuss in several examples in Section 3.

Our proof heavily relies on couplings of the original process with logistic birth and
death processes with non-constant immigration, and the analysis of the latter simpler
processes on the logK time scale. This approach was developed by Champagnat,
Méléard, and Tran in [8]. They consider an individual-based model for the evolution
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of a discrete population performing horizontal gene transfer and mutations on V =

[0, 4] ∩ δN, δ > 0. Their goal is to analyze the trade-off between natural selection, which
drives the population to higher birth-rates, and transfer, which drives the population
to lower ones. Under the mutation rate (1.2), they exhibit parameter regimes where
different evolutionary outcomes appear, in particular evolutionary suicide and emergence
of a cyclic behaviour. As in the present paper, their results characterize the time
evolution of the orders of magnitude of each sub-population on the logK time scale,
which are shown to be piecewise affine continuous functions whose slopes are given
by an algorithm describing the succession of phases when a given type is dominant
or resident. Their proofs provide us with the main ingredients needed for our results.
However, the graph structure they choose simplifies the inductions and we have to
generalise their approach to treat the case of more general graphs, in the proof spirit of
Kraut and Bovier [25].

Our results are general, and could be applied to have a better understanding of
evolutionary trajectories in complex fitness landscapes. There are now more and more
empirical studies of fitness landscapes (see [15] for a comprehensive review of data
and tools up to 2014 for instance), and the probability and effect of specific mutations
in given landscapes are better and better understood. For instance oriented mutation
graphs can stem from mutation bias, through codon usage bias or similar molecular
phenomena which make some mutations more probable than others [36].

We present a series of specific examples where surprising phenomena arise from
the geometry of the graph G and/or the rate of mutations (1.2). Most of them could not
happen under a different scaling of mutation rates.

• In Example 3.2, we describe a scenario where the ancestry of the resident pop-
ulation consists, with high probability, of back mutations towards a previously
extinct trait, although the mutations that happen in between are not deleterious.
In other words, the final resident individuals, say of trait v, although they can be
produced from a wild type directly, come with high probability from a sequence
of non deleterious mutations which went back to the wild type before mutating to
v. This phenomenon can also happen in the rare mutation regime (1.1), that is for
α ∈ (0, 1), on the mutation time scale (1/KµK � logK), where invading mutants
fully replace the resident population before a new mutant arises. We show that it
can still occur for higher mutation rates of the form (1.2), on a logK time scale,
when parameters are chosen such that temporary extinction of the original trait is
likely. Such mutational reversions have been observed (see [16] for instance).

• If evolution and mutation time scales are separated (i.e. in the rare mutation regime
(1.1)), mutations occur one at a time, and the number of successive resident traits
from the wild type to the type gathering k successively beneficial mutations is k.
This is not the case if mutations are faster, in which case it is possible to observe
either more or less successive resident traits. We will show this in Examples 3.3
and 3.4.

• In Example 3.5, we show that adding a new possible mutation path towards a fit
trait can increase the time until it appears macroscopically. This is in the spirit
of the paradox called price of anarchy in game theory or more specifically Braess
paradox in the study of traffic networks congestion. Motter showed that this
paradox may often occur in biological and ecological systems [31]. He studies
the removal of part of a metabolic network to ensure its long term persistence,
with applications to cancer, antibiotics and metabolic diseases. Another field of
application is the food webs management, where selective removal of some species
from the network can potentially have a positive outcome of preventing a series of
further extinctions [37].
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• Another counter-intuitive phenomenon arising from the mutation rate (1.2), pre-
sented in Example 3.6, is the possibility to observe, for a cyclic clockwise oriented
mutation graph, successive counter-clockwise resident populations. This means
that the macroscopic succession of resident traits is not necessarily representative
of the mutation graph. In particular, this may call into question the interpretation
in terms of mutation graphs of some experiments in experimental evolution (see
[28] for instance).

• In Examples 3.7 and 3.8, we show that the mutation rate (1.2) does not restrict the
range of the corresponding adaptive flights on the trait space (i.e. the distance that
the limiting process can jump) to bαc.

• We finally study the framework of fitness valley crossings. Combining our results
with Theorem 3.3 of [6], we construct Examples 3.9 and 3.11, where effective
random walks on the trait space appear on the time scale Kβ, for some positive
β. Those limiting adaptive flights arise as a result of a “fast” equilibration on the
logK time scale followed by exponential waiting times until fitness valleys get
crossed. This makes sense biologically, since there may be traits with positive
invasion fitness that can be reached through several consecutive mutation steps
[27, 14].

The remainder of this paper is organised as follows. In Section 2 we define the
model and present our results. In Section 3 we illustrate our results by a series of
examples describing surprising phenomena arising from the geometry and/or the rate of
mutations. Section 4 is devoted to the proofs. In the Appendix, we present and extend
some technical results.

2 Convergence on the logK-time scale

2.1 Model

We consider an individual-based Markov process that models the evolution of a
haploid, asexually reproducing population. The space of possible traits is given by
the vertices of a (possibly directed) finite graph G = (V,E). Let Mp(V ) be the set of
probability measures on V .

For all traits v, w ∈ V and every K ∈ N, we introduce the following parameters:

• bv ∈ R+, the birth rate of an individual of trait v,

• dv ∈ R+, the (natural) death rate of an individual of trait v,

• cKv,w = cv,w/K ∈ R+, the competition imposed by an individual of trait w onto an
individual of trait v,

• µK ∈ [0, 1], the probability of mutation at a birth event,

• m(v, ·) ∈Mp(V ), the law of the trait of a mutant offspring produced by an individual
of trait v.

The process NK with values in D(R+,N
V ) describes the state of the population,

where NK
v (t) denotes the number of individuals of trait v ∈ V alive at time t ≥ 0. We

assume that edges in E mark the possibility of mutation and hence m(v, w) > 0 if and
only if (v, w) ∈ E.

Remark 2.1. We could also allow for µK to depend on v ∈ V as long as µK(v) = µKh(v)

for some strictly positive function h that is independent of K. However, this would not
change the characterisation of the limit, and hence we assume a constant µK to simplify
the notation.
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Moreover, we assume that, for every v ∈ V , cv,v > 0, which ensures the finitness
of the population size (see Corollary A.7). The parameter K is scaling the competitive
pressure and, through this self-competition, fixes the equilibrium size of the population
to the order of K.

As a consequence of our parameter definitions, the process NK is characterised by
its infinitesimal generator:

LKφ(N) =
∑
v∈V

(φ(N + δv)− φ(N))

(
Nvbv(1− µK) +

∑
w∈V

NwbwµKm(w, v)

)

+
∑
v∈V

(φ(N − δv)− φ(N))Nv

(
dv +

∑
w∈V

cKv,wNw

)
, (2.1)

where φ : NV → R is measurable and bounded. Such processes have been explicitely
constructed in terms of Poisson random measures in [22].

Due to the scaling of the competition cK , the population admits a quasi-stationary
distribution with a total population size of order K, when at least one type has a birth
rate b. strictly larger than its death rate d. (see [7] or [11] for details). Since the mutation
probability µK tends to zero as K → ∞, the process NK/K converges (on finite time
intervals) to the mutation-free Lotka-Volterra system (2.3) involving all initial coexisting
resident traits. We are interested in the long-term evolution of the population and want
to study successive invasions by new mutant populations. Given the fact that a mutant
population that is initially of order Kγ , γ < 1, needs a time of order logK to grow
exponentially to the order of K, we have to rescale the time by logK to obtain a non
trivial limit.

It is convenient to describe the population size of a certain trait v ∈ V by its K-
exponent at time t, βKv (t), defined by

βKv (t) :=
log(1 +NK

v (t logK))

logK
, t ≥ 0, (2.2)

which is equivalent to NK
v (t logK) = KβKv (t) − 1. Since the population size is restricted

to order K by the competition, βKv ranges between 0 and 1, as K → ∞ (see Corollary
A.7 for a rigorous statement).

For the sake of readability, we now introduce the terminology we will use in the
sequel.

Definition 2.2. 1. A trait v ∈ V with exponent βKv is called macroscopic if, for every
ε > 0, there exists Kε such that, for every K ≥ Kε, βKv > 1− ε.

2. A trait that is not macroscopic is called microscopic.

3. The set of living traits is the set {v ∈ V : βKv > 0}.
When K is large enough, the macroscopic traits interact on any finite time interval

according to the corresponding mutation-free Lotka-Volterra system (see Chapter 11,
Theorem 2.1 in [21] for the proof of this law of large numbers): Let v ⊂ V , then the
mutation-free Lotka-Volterra system associated to v is

ṅw(t) =

(
bw − dw −

∑
v∈v

cw,vnv(t)

)
nw(t), w ∈ v, t ≥ 0. (2.3)

For a subset v ⊂ V of traits, we denote by n̄(v) ∈ RV+ the unique stable equilibrium
of the Lotka-Volterra system (2.3), when it exists, and where to simplify notations, we
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extend it by n̄w(v) = 0 for w /∈ v. In the case where v = {v}, we obtain from classical
results on Lotka-Volterra models (see [7] for instance)

n̄v(v) = (bv − dv)/cv,v ∨ 0.

If v denotes the set of macroscopic traits, we call the traits v ∈ v such that n̄v(v) > 0

resident and denote them by ṽ.
The approximate rate at which a mutant of trait w grows in a population of coexisting

resident traits ṽ ⊂ v is called invasion fitness and is denoted by fw,v, where

fw,v := bw − dw −
∑
v∈v

cw,vn̄v(v).

If fw,v > 0, the trait w is called fit. If fw,v < 0, the trait w is called unfit. Note that for
all w ∈ v, fw,v ≤ 0, else the equilibrium would not be stable. The case of fw,v = 0, for
w ∈ V \v is excluded (see Remark 2.5).

Mutants can be produced along (directed) edges of the graph. We denote by d(v, w)

the graph distance, i.e. the length of the shortest (directed) path from v to w in G = (V,E).
For a subset v ⊂ V we define

d(v, w) := min
v∈v

d(v, w) and d(w, v) := min
v∈v

d(w, v).

2.2 Results

Let a finite graph G = (V,E) be given. We will always make two assumptions in the
sequel, that we present now. The first one ensures that there is a competition between
individuals of the same type, which prevents the population size from going to infinity.

Assumption 2.3.
cv,v > 0 ∀v ∈ V.

The second assumption is more technical. It excludes that mutants are produced at
distance α ∈ N from the resident traits or that non-resident traits have fitness fw,v = 0.
In both cases, the respective subpopulations can neither be approximated by sub- nor
super-critical branching processes. In the first case, the fixation of the population would
occur randomly, and in the second, the population could both grow or shrink due to
fluctuations.

Assumption 2.4.

α ∈ R∗+ \N and fw,v 6= 0 ∀ v ⊂ V, w /∈ {v ∈ v : n̄v(v) > 0}.

The trajectories (βw(t), w ∈ V ), which are limits of (βKw (t), w ∈ V ) (recall (2.2)), are
defined up to a stopping time T0 by the following inductive procedure:

Let v0 ⊂ V be the initial set of macroscopic (not necessarily resident) traits. For
simplicity, we assume that the initial orders of population sizes converge to βw(0) :=(

1− d(v0,w)
α

)
+

. More general initial conditions are discussed in Remark 2.9.

The increasing sequence of invasion times is denoted by (sk)k≥0, where s0 := 0 and,
for k ≥ 1,

sk := inf{t > sk−1 : ∃ w ∈ V \vk−1 : βw(t) = 1}.

Here, vk denotes the set of previously coexisting resident traits ṽk−1 together with the
trait w ∈ V \vk−1 that satisfies βw(sk) = 1.

For sk−1 ≤ t ≤ sk, for any w ∈ V , βw(t) is defined by

βw(t) := max
u∈V

[
βu(sk−1) + (t− tu,k ∧ t)fu,vk−1

− d(u,w)

α

]
∨ 0, (2.4)
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where, for any w ∈ V ,

tw,k :=

{
inf{t ≥ sk−1 : ∃ u ∈ V : d(u,w) = 1, βu(t) = 1

α} if βw(sk−1) = 0

sk−1 else
(2.5)

is the first time in [sk−1, sk] when this trait arises.
The stopping time T0, that terminates the inductive construction of the limiting

trajectories, is set to sk if

(a) there is more than one w ∈ V \vk−1 such that βw(sk) = 1;

(b) the mutation-free Lotka-Volterra system associated to vk does not have a unique
globally attractive stable equilibrium (in particular, if such an equilibrium does not
exist for v0, T0 is set to 0);

(c) there exists w ∈ V \ṽk−1 such that βw(sk) = 0 and βw(sk − ε) > 0 for all ε > 0 small
enough.

(d) there exists w ∈ V \vk−1 such that sk = tw,k.

Remark 2.5. Notice that conditions (a), (c), and (d) in the definition of T0 are here
to exclude very specific and non generic cases where one coordinate reaches 1 while
another reaches 1 or reaches 0 from above, or a new trait arises at the exact same time.
They are difficult to handle for technical reasons.

Condition (b) is necessary since we can only describe the system as long as the
Lotka-Volterra phases are governed by the convergence to a unique equilibrium. The
existence of such an equilibrium is not always guaranteed and not yet fully characterized
in arbitrary dimensions (see [42] for the case of dimension 3 for instance).

Remark 2.6. Note that βw(t) in (2.4) can never exceed 1 since fu,vk−1
≤ 0, for all

u ∈ vk−1, and the stopping time sk is triggered whenever a trait u ∈ V \vk−1 reaches
βu(t) = 1 (which implies βu(sk−1) + (t− tu,k ∧ t)fu,vk−1

≤ 1).
The tw,k’s do not keep track of traits that die out in [sk−1, sk] and then reappear.

However, since the fitnesses do not change between invasions, such a trait would have a
negative invasion fitness (else it would not die out). Hence, it would not start growing
on its own if it reappears, but only follow along another trait due to mutants. It would
therefore not contribute to the maximum over u ∈ V in (2.4).

With these definitions at hand we can now formulate the main results of this paper.
The first one describes the convergence of the orders of the population sizes.

Theorem 2.7. Let G = (V,E) be a finite graph. Suppose that Assumption 2.3 and 2.4
hold and consider the model defined by (2.1) with µK = K−1/α. Let v0 ⊂ V and assume
that, for every w ∈ V ,

βKw (0)→
(

1− d(v0, w)

α

)
+

, (K →∞) in probability. (2.6)

Then, for all T > 0, as K →∞, the sequence ((βKw (t), w ∈ V ), t ∈ [0, T ∧ T0]) converges
in probability in D([0, T ∧ T0],RV+) to the deterministic, piecewise affine, continuous
function ((βw(t), w ∈ V ), t ∈ [0, T ∧ T0]), which is defined in (2.4).

The second result describes the convergence of the rescaled population sizes and
precisely quantifies the times of invasions.

Proposition 2.8. Let G = (V,E) be a finite graph. Suppose that Assumption 2.3 and 2.4
hold and consider the model defined by (2.1) with µK = K−1/α. With the same notations
as in Theorem 2.7, for all T > 0, as K →∞, the sequence ((NK

w (t logK)/K,w ∈ V ), t ∈
[0, T ∧T0]) converges in the sense of the finite dimensional distributions to a deterministic
jump process ((Nw(t), w ∈ V ), t ∈ [0, T ∧ T0]), which is defined as follows:
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(i) For t ∈ [0, T0], N(t) jumps between different Lotka-Volterra equilibria according to

Nw(t) :=
∑

k∈N:sk+1≤T0

1sk≤t<sk+1
1w∈vk n̄w(vk).

(ii) The invasion times sk and the times tw,k when new mutants arise can be calcu-
lated as follows. We define the increasing sequence (τ`, ` ≥ 0) = {sk, k ≥ 0} ∪
{tw,k, w ∈ V, k ≥ 0} of invasion times or appearance times of new mutants, and
(M`, ` ≥ 0) the sets of living traits in the time interval (τ`, τ`+1]. Initially, τ0 = s0 = 0

and, according to (2.6), M0 = {w ∈ V : d(v0, w) < α} = {w ∈ V : βw(0) > 0}. For
sk−1 ≤ τ`−1 < sk, τ` is defined as

τ` := sk ∧min{tw,k : w ∈ V, tw,k > τl−1}.

Given τ` and M`−1, we set M` := (M`−1\{w ∈ V : βw(τ`) = 0})∪{w ∈ V : τ` = tw,k}.
τ` is then given by

τ` − τ`−1 = min
w∈M`−1:
fw,v`−1

>0

(
1 ∧ d(w,V \M`−1)

α

)
− βw(τ`−1)

fw,v`−1

. (2.7)

Remark 2.9. We could allow for more general initial conditions of the form

βKw (0)→ β̃w ∈ [0, 1],

with β̃w, w ∈ V , deterministic and v0 := {w ∈ V : β̃w = 1} 6= ∅. An inductive application
of Corollary A.7, similar to the induction proving (4.9), implies that within a time of order
1, for all w ∈ V , βKw ∼= maxu∈V [β̃u − d(u,w)/α]+. This is due to incoming mutations from
larger neighbouring populations. We therefore set βw(0) := maxu∈V [β̃u − d(u,w)/α]+ in
Theorem 2.7 and M0 := {w ∈ V : βw(0) > 0} in Proposition 2.8. The rest of the results
remains unchanged.

Note that the specific initial conditions that we choose in the results above are quite
natural as they depict the situation of a resident (wildtype) population spreading new
mutants. They are simply the βw(0)’s that arise from β̃w = 1 for w ∈ v0 and 0 else.

Remark 2.10. The limiting jump process N(t) resembles an adaptive walk or flight, as
studied in [35, 32, 38, 34, 1]. For a constant competition kernel cv,w ≡ c> 0, we consider
the fixed fitness landscape given by rv = bv − dv. Since in this case fw,v = rw − rv, the
process jumps along edges towards traits of increasing fitness r.

The above results are in the vein of Theorem 2.1 and Corollary 2.3 in [8]. There are
however many differences between the setting considered in [8] and our setting.

Due to the horizontal transfer between individuals, Champagnat and coauthors
obtained trajectories where a “dominant” population, i.e. with the size of highest order,
could be non resident, i.e. of order negligible with respect to K. They could also witness
extinction on a logK time scale as well as evolutionary suicide. The absence of horizontal
transfer in our case prevents such behaviours.

We consider a general finite graph of mutations with possible back mutations, whereas
their graph was embedded in Z and did not allow for back mutations. We also allow for
the coexistence of several resident traits in the population at equilibrium. The two main
difficulties in the proofs compared to [8] are thus to handle the generality of the graph
of mutations, and to extend some approximation results to the multidimensional case.
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3 Surprising phenomena arising from geometry and mutation
rate

In this section, we present some non intuitive behaviours of the population process,
which stem from the mutation scale or the generality of the mutational graph that we
allow for. They are direct applications of Theorem 2.7 and Proposition 2.8, and provide
explicit computations of exponents (2.4) and time intervals (2.7).

Several examples are built on directed graphs. Although this is not a necessary
condition to obtain the desired phenomena, it allows a simplified study (especially of the
decay phases).

The examples are supported by figures that display the respective exponents β over
time. Note that in the formulation of the examples we always assume monomorphic
initial conditions with one subpopulation (i.e. the wildtype) at its equilibrium and the
other traits at a population size of zero. These initial conditions are formulated in terms
of the limiting process, i.e. with the equilibrium size of a subpopulation being n̄ and not
n̄K. The monomorphic initial conditions allow a comparison between different graphs,
particularly in Example 4. The figures however display initial values for β’s that are
of the form of Theorem 2.7 and Proposition 2.8, where mutations of the wildtype have
spread in a radius of α. These are attained after a time of order 1, much in the spirit of
Remark 2.9.

We first introduce some notations for the sake of readability. Recall that the following
symbols are not transitive, which explains why we may witness such suprising dynamics.

Definition 3.1. Let w, v ∈ V and v ⊂ V . We write

1. with high probability to mean “with a probability converging to 1 as K →∞”,

2. w > v if and only if fw,v > 0, that is if w can invade in v,

3. w < v if and only if fw,v < 0, that is if w cannot invade in v,

4. w � v (or v � w) if and only if fw,v > 0 and fv,w < 0, that is if w can invade in v

and fixate,

5. w ≡ v if and only if fw,v > 0 and fv,w > 0, that is if w and v can coexist,

6. w _ v if and only if fw,v < 0 and fv,w < 0, that is if w and v can neither invade in
each other.

3.1 Back mutations before adaptation

In the following, we build an example where the ancestry of the resident population
comes from back mutations from an ancestral trait, even if the mutations happening in
between are not deleterious.

Example 3.2. Let us consider the graph G depicted on Figure 1 where V = {0, 1, 2, 3}
and E = {[0, 1], [1, 2], [2, 0], [0, 3]}. Let α > 2, an initial condition given by (n̄(0), 0, 0, 0) and
a fitness landscape given by

0� 1� 2, 3 _ 0, 3 _ 1

0 ≡ 2, 3 > {0, 2}, 2 < 3 (3.1)

f2,0 < 2f1,0 (3.2)

f0,1 ≥ f3,1, f2,0 ≤ f1,0 (3.3)

i1 :=
1− 1/α

f0,1
<
−(1− 4/α)

f2,1
=: i2 (3.4)

In this case, Proposition 2.8 implies that on the logK time scale, the rescaled macro-
scopic population then jumps from traits 0 − 1 − 2 then to coexistence between 0 and
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Figure 1: Graph G, phase portrait of traits 0-2-3, and exponents β(t) of Example 3.2.

2, followed by the invasion and fixation of 3 which is produced with high probability,
due to Condition (3.4), by individuals of type 0 which have the sequence 0 − 1 − 2 as
ancestry. In other words, the final resident individuals of trait 3, although they can be
produced by individuals of trait 0 directly, come from a sequence of mutations which
went around the loop 0 − 1 − 2 of G. Conditions (3.1), summarized in Figure 1, imply
phase portrait number 8 in the classification of Zeeman [42]. Condition (3.2) ensures
that trait 1 becomes resident before 2. Condition (3.3) is not necessary but allows to
simplify the setting. The exponents are drawn in Figure 1.

Note that this scenario can also happen in the rare mutation regime considered in
[7] (for example α ∈ (0, 1)): the average waiting time until a mutant of type 1 appears is
then of order O(1/KµK) = O(K−1+1/α)� logK. Once it has appeared, it survives with
positive probability and the succession of invasions and fixations above takes place on
the logK time scale, separated by mutation events on the K−1+1/α time scale. What is
new in our case is that such a scenario can still take place for higher mutation rates than
the ones considered in [7], and on a logK time scale.

3.2 Non-intuitive mutational pathways in the high mutation framework

3.2.1 Longer or shorter path than expected

If evolution and mutation time scales are separated (i.e. in the rare mutation regime),
mutations occur one at a time, and the number of successive resident traits from the
wild type to the type gathering k successively beneficial mutations is k. This is not the
case if mutations are faster, in which case it is possible to observe either more or less
resident traits, as the following examples show.

Example 3.3. Let us consider the directed graph G depicted on Figure 2, where V =

{00, 01, 10, 11} and E = {[00, 01], [00, 10], [01, 11], [10, 11]}. Let α > 2, an initial condition
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Figure 2: Graph G and exponents β(t) for Examples 3.3 and 3.4.

given by (n̄(00), 0, 0, 0) and a fitness landscape given by

00� 01� 10� 11, and 01� 11

10, 11 _ 00

f11,00 < f01,00 (3.5)

f10,01 > f11,01 (3.6)

In this case, in the rare mutation regime, the rescaled macroscopic population jumps
along 00− 01− 11.

In the regime of Theorem 2.7, Proposition 2.8 implies that the rescaled macroscopic
population jumps along 00 − 01 − 10 − 11 on the logK time scale. More precisely, the
exponents are drawn in Figure 2. Note that Condition (3.5) ensures that 11 does not
invade before 01, it is not necessary but allows to simplify the setting. Condition (3.6)
ensures that 11 does not invade before 10.

Example 3.4. Let us consider the directed graph G depicted on Figure 2, where V =

{00, 01, 10, 11} and E = {[00, 01], [00, 10], [01, 11], [10, 11]}. Let α > 2, an initial condition
given by (n̄(00), 0, 0, 0) and a fitness landscape given by

01 > 00, 11� 00

10 < 00 (3.7)

01, 10 < 11

2

f11,00
<

1

f01,00
(3.8)

In this case, in the rare mutation regime, the rescaled macroscopic population still
jumps along 00− 01− 11, under the additional assumption that f11,01 > 0.
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In the regime of Theorem 2.7, Proposition 2.8 implies that the rescaled macroscopic
population directly jumps from 00 to 11 on the logK time scale. More precisely, the
exponents are drawn in Figure 2. Condition (3.8) ensures that 11 fixates before 01.
Condition (3.7) is not necessary but allows to simplify the setting. Note that equation
(2.7) implies that s1 = 2/f11,00 and s̃1 = 1/f01,00.

3.2.2 Price of anarchy

We build an example where adding a new possible mutation path to a fit trait increases
the time until it appears macroscopically.

Example 3.5. Let us consider the graph G depicted on Figure 3, where V = {1, 2a, 2b, 3}
and the edge set is either E1 = {[1, 2a], [2a, 3], [2b, 3], [3, 2b]} or
E2 = {[1, 2a], [2a, 3], [2b, 3], [2a, 2b], [3, 2b]}. Let α > 3, an initial condition given by
(n̄(1), 0, 0, 0) and a fitness landscape given by

1� 2a� 3, and 2a� 2b (3.9)

1 < 2b, and, 1, 2b < 3

f2a,1 ≥ f3,1, f2b,1, and
1

f2b,2a
<

1

f3,2a
<

2

f2b,2a
(3.10)

0 <f3,2b < f3,2a. (3.11)

In this case, if the edge set isE1, Proposition 2.8 implies that the rescaled macroscopic
population jumps along traits 1− 2a− 3 in a time T on the logK time scale. But if the
edge set is E2, the population jumps along 1 − 2a − 2b − 3 and the time to reach 3 is
T̃ > T (see Figure 3). Condition (3.10) ensures that 2b invades first when the edge set
is E2 but not when it is E1, in other words β2b reaches 1 before β3 if started at 1− 1/α

but not at 1− 2/α. And Condition (3.11) enlarges the time of fixation of 3. Note that the
first inequality in Condition (3.10) is not necessary but allows to simplify the second one.
Moreover, observe that equation (2.7) implies s̃2 − s̃1 = 1/f2b,2a and s2 − s1 = 1/f3,2a.
Note that in the rare mutation regime we can observe this phenomenon on the mutation
time scale, but only with probability strictly smaller than 1, since both 2b and 3 are fit
with respect to 2a and can both invade with positive probability once they are produced.

3.2.3 Counter cycle

Example 3.6. Let us consider the graph G depicted on Figure 4, where V = {1, 2, 3} and
the edge set is E = {[1, 2], [2, 3], [3, 1]}. Let α > 2, an initial condition given by (n̄(1), 0, 0)

and a fitness landscape given by

1� 2, 2� 3, 3� 1.

In this case, Proposition 2.8 implies that the rescaled macroscopic population jumps
along traits 1 − 3 − 2 (in the clockwise sense) although the mutations are directed
counterclockwise. More precisely, the exponents are drawn in Figure 4. Moreover, if
Conditions (3.12) below are fulfilled the period is shorter and shorter, and acceleration
takes place, as it is depicted in Figure 4.

f2,3 > −f1,3

f1,2 > −f3,2

f3,1 > −f2,1 (3.12)

Note that in the rare mutation regime, with the chosen parameters, there would be
no evolution since 2 < 1. Moreover, there are no parameters such that counter cyclic or
accelerating behaviour could arise.
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Figure 3: Graph G and exponents β(t) for Example 3.5, with edge set E1 (above) and E2

(below).

Figure 4: Graph G and exponents β(t) for Example 3.6, without Assumption 3.12 (above)
and with Assumption 3.12 (below).
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3.3 Arbitrary large jumps on the logK-time scale

A natural question to ask is if the “cut-off” α restricts the range of the jumps, on the
logK time-scale, to traits which are at a distance less than α. The answer is no, as the
following example shows.

Example 3.7. Let us consider the graph G depicted on Figure 5, where V = {0, 1, 2, 3, 4}
and E = {[0, 1], [1, 2], [2, 3], [3, 4]}. Let α ∈ (3, 4), an initial condition given by
(n̄(0), 0, . . . , 0) and a fitness landscape given by

1, 2 < 0, 3, 4 > 0, 0, 1, 2, 3 < 4

1

f4,0
+
−1 + 4/α

f3,0
<

3/α

f3,0
(3.13)

In this case, the cut-off is in between traits 3 and 4 (meaning that KµiK → 0 for i > 3)
and thus the population of trait 4 vanishes at time 0. However, Proposition 2.8 implies
that the rescaled macroscopic population jumps from trait 0 to trait 4 in a time

s1 =
−1 + 4/α

f30
+

1

f40

on the logK time scale. More precisely, the exponents are drawn in Figure 5. Condition
(3.13) ensures that trait 4 fixates before trait 3.

It is easy to generalize this example to construct jumps to any distance L larger than
α, by taking larger and larger fitnesses after the negative fitness region. The condition
implying emergence of trait L is then a little more technical to write, since one has to
compute the time for the piecewise affine function βL(t) (with multiple slope-breaks) to
reach 1 before the other traits. Example 3.7 constitutes the simplest non-trivial example
of this phenomenon. Example 3.8 is a further case where a more distant trait fixates,
and two intermediate times t4,1 and t5,1 occur (recall the definition in (2.5)).

Example 3.8. Let us consider the graph G depicted on Figure 6, where
V = {0, 1, 2, 3, 4, 5} and E = {[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]}. Let α ∈ (3, 4), an initial
condition given by (n̄(0), 0, . . . , 0) and a fitness landscape given by

1, 2 < 0, 3, 4, 5 > 0, 0, 1, 2, 3, 4 < 5

f3,0 < f4,0 < f5,0 and
−1 + 4/α

f3,0
+
−4/α+ 5/α

f4,0
+

1

f5,0
<

3/α

f3,0
. (3.14)

In this case, the cut-off is in between traits 3 and 4 (meaning that KµiK → 0 for i > 3)
thus population of trait 4 and 5 vanishes at time 0. However, Proposition 2.8 implies that
the rescaled macroscopic population jumps from trait 0 to trait 5 in a time

s1 =
−1 + 4/α

f3,0
+
−4/α+ 5/α

f4,0
+

1

f5,0

on the logK time scale. More precisely, the exponents are drawn in Figure 6. Condition
(3.14) ensures that trait 5 fixates before traits 3 and 4. The first inequality is not needed
but allows to simplify the second one. The dotted lines in the figures allow to construct
the points where some exponents become positive.

3.4 Effective random walk across fitness valleys

The following two examples consider cases where there is no fitter trait within the
α-radius of the initial resident trait. The population hence has to cross a valley in the
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Figure 5: Graph G and exponents β(t) for Example 3.7.

Figure 6: Graph G and exponents β(t) for Example 3.8.

fitness landscape, with mutations that occur much more rarely than within a time of
order 1 or logK, resulting in evolutionary adaptation only being visible on a time scale
longer than logK. The examples combine a result from [6], which treats the crossing of
a fitness valley of width L > α on the time scale 1/KµLK , with the main results of this
paper, which describe the faster dynamics on the logK time scale once the valley is
crossed.

For the convenience of the reader, we briefly recall the key heuristics of the result
in [6] for our simple situation of a fitness valley of width 2. Think of the trait space of
{0, i, 1}, where 0 is the resident trait, i an intermediate unfit trait and 1 a fit trait (with
respect to 0). Mutation is possible from 0 to i and from i to 1 and we assume 1 < α < 2.
Then, within a time of order 1, trait 0 attains a population size close to n̄0K. It produces
mutants of type i at rate n̄0Kb0µK .

This mutant population has a growth rate of fi,0 < 0 and would therefore shrink and go
extinct without the incoming mutations from trait 0. The equilibrium size of trait i, where
the negative growth rate is exactly balanced by the incoming mutations is n̄0b0KµK/|fi,0|.
Consequently, mutants of trait 1 are produced by trait i at rate n̄0b0biKµ

2
K/|fi,0| � 1.

These mutations determine the time scale of 1/Kµ2
K = K−1+2/α � logK on which the

crossing of the fitness valley takes place.

Finally, the population size of mutants of trait 1, stemming from one of these rare
mutation events, can be approximated by a birth and death process with birth rate b1 and
death rate d1 − c1,0n̄0. The probability of invasion in the population, i.e. non-extinction,
is therefore (b1 − d1 − c1,0n̄0)/b1 = f1,0/b1, which is a classical result (see e.g. [7]). Note

EJP 26 (2021), paper 123.
Page 16/37

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP693
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stochastic individual-based models with power law mutation rate

that, on the time scale 1/Kµ2
K , only the jump from 0 to 1 is visible and it occurs at a

random exponential time with parameter n̄0b0bi/|fi,0| · f1,0/b1.
We now turn to the concrete examples.

3.4.1 2 effective sites

Example 3.9. Let us consider the graph G depicted on Figure 7, where V = {0, 1a, 1b, i}
and E = {[0, i], [i, 1a], [1a, 1b], [i, 1b]}. We suppose that whenever there are several outgo-
ing edges from a vertex v, the mutation kernel is uniform among the nearest neighbouring
vertices. Let α ∈ (1, 2), an initial condition given by (n̄(0), 0, . . . , 0) and a fitness landscape
given by

1a� 0� 1b� 1a

i < 0, i < 1a, i < 1b.

In this case, according to [6], the time to cross the fitness valley is of order
O(1/Kµ2

K) = O(K−1+2/α) � logK, thus the first mutant of type 1a will appear on
this time scale, and will invade with positive probability. Then, once 1a has become the
resident trait and the fitness landscape is changed, type 1b fixates deterministically in
a time of order O(logK) and one has to wait again a time of order O(K−1+2/α) until
the appearance of the next mutant of type 0. Thus, on the time scale O(K−1+2/α), the
population process converges to a jump process between the two states 0 and 1b with
positive jump rates although the fitness f1b,0 is negative.

Theorem 3.10. As K →∞, the following convergence holds

(NK
0 , NK

1b )(tK−1+2/α)/K ⇒ n̄(Xt)δXt

for finite dimensional distributions, where Xt is a continuous time Markov chain on
{0, 1b} with transition rates

r0→1b =
n̄(0)b0bi
2|fi,0|

f1a,0

b1a
,

r1b→0 =
n̄(1b)b1bbi

2|fi,1b|
f0,1b

b0
.

Note that the additional 1/2 in the rates, when compared to the heuristics above,
stems from the fact that mutants of trait i can be either of type 0 or 1 with probability
1/2 each and only one of those contributes to the respective jump rate.

3.4.2 3 effective sites

Example 3.11. Let us consider the graph G depicted on Figure 7. We suppose that
whenever there are several outgoing edges from a vertex v, the mutation kernel is
uniform among the nearest neighbouring vertices. Let α ∈ (1, 2), an initial condition
given by (n̄(0), 0, . . . , 0) and a fitness landscape given by

1a� 0 2a� 0 2a� 1b

1b� 1a 2b� 2a 1a� 2b

0� 1b 0� 2b 1b� 2b

i < 0 j < 0 k < 1a, k < 1b

i < 1a, i < 1b j < 2a, j < 2b k < 2a, k < 2b
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Figure 7: Graph G of Examples 3.9 and 3.11.

Thus, following [6] and the arguments of the previous example, on the time scale
O(K−1+2/α), the population process converges to a jump process between the three
states {0, 1b, 2b} with positive jump rates. More precisely,

Theorem 3.12. As K →∞, the following convergence holds

(NK
0 , NK

1b , N
K
2b )(tK−1+2/α)/K ⇒ n̄(Xt)δXt

for finite dimensional distributions, where Xt is a continuous time Markov chain on
{0, 1b, 2b} with transition rates:

r0→1b = n̄(0)b0bi
4|fi,0|

f1a,0
b1a

, r1b→0 = n̄(1b)b1bbi
4|fi,1b|

f0,1b
b0

r0→2b =
n̄(0)b0bj
4|fj,0|

f2a,0
b2a

, r2b→0 =
n̄(2b)b2bbj

4|fj,2b|
f0,2b
b0

r1b→2b = n̄(1b)b1bbk
4|fk,1b|

f2a,1b
b2a

, r2b→1b = n̄(2b)b2bbk
4|fk,2b|

f1a,2b
b1a

.

As above, the 1/4 is the result of multiple choices for mutant traits at mutation events.

4 Proof of Theorem 2.7 and Proposition 2.8

This section is dedicated to the proofs of our main results. As they are technical and
involve many stopping times, we begin with a rough outline of the strategy of the proof.

Throughout the proof, we define several stopping times to divide the times between
invasions into sub-steps. Heuristically they correspond to the following events:

• σKk , the time when the kth invasion has taken place and a new equilibrium is
reached.

• θKk,m,C , the first time after σKk−1 when either the macroscopic traits stray too far
from their equilibrium or at least one of the (formerly) microscopic traits becomes
macroscopic (recall Definition 2.2)

• sKk , the first time after σKk−1 when a microscopic trait becomes almost macroscopic,
i.e. reaches an order of K1−εk .

• tKw,k, the first time after σKk−1 when trait w has a positive population size. (tKw,k =

σKk−1 for all traits that are alive at this time.)

The conditions satisfied by m > 0, C > 0 and εk will be precised later on. m and εk
are typically small (see (4.27) and point (3) on page 19). The conditions satisfied by C
will be specified in Section 4.4.

As in Proposition 2.8, (τK` , ` ≥ 0) is the collection of both (sKk , k ≥ 0) and (tKw,k, k ≥
0, w ∈ V ). Figure 8 visualises the different stopping times for the case of one macroscopic
and two microscopic traits.

The proof consists of five parts, corresponding respectively to Sections 4.2 to 4.6
below:
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Figure 8: Schematic evolution of macroscopic trait v (blue) and microscopic traits w = lKk
(red) and u (green), where d(w, u) = 1, during the kth invasion step.

1. In the longest and most involved part of the proof, we study the growth dynamics of
the different subpopulations in the time interval [τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ],
making use of several results from [8], which are restated in the Appendix, and
generalised when needed. Similar to [25], we prove lower and upper bounds
for βKw (t) via an induction, successively taking into account incoming mutants
originating from traits of increasing distance to w. We prove that βKw (t) follows the
characterisation of βw(t) in Theorem 2.7 up to an error of order εk for large K. The
proof shows in addition that rescaled macroscopic populations remain arbitrarily
close to their Lotka-Volterra equilibrum provided K is taken large enough, which
implies part (i) of Proposition 2.8.

2. We construct the sets MK
` and calculate the value of τK` − τK`−1, proving part (ii) of

Proposition 2.8.

3. We prove that sKk and θKk,m,C are equal up to an error ηk that goes to zero as εk → 0

and conclude that sKk converges to sk when K →∞.

4. We prove that the stopping time θKk,m,C is triggered by a (formerly) microscopic
trait reaching order K, and not by the macroscopic traits deviating from their
equilibrium.

5. Knowing that we have non-vanishing population sizes at θKk,m,C , we finally consider

the Lotka-Volterra phase involving vk−1 and the trait lKk that has newly reached
order K, proving that the initial conditions for the next step, characterised in the
definition of σKk , are satisfied after a time of order 1. This concludes the proof of
Theorem 2.7.

Recall the definitions provided in Theorem 2.7 and Proposition 2.8, and the definition
of ṽ, the support of the mutation free Lotka-Volterra equilibrium associated to v, on page
7.

Similarly as in [8], the strategy of the proof consists in performing an induction on
successive phases k, during which the population sizes of the set of traits ṽk are close
to their equilibrium value and the population sizes of the set of traits V \ ṽk are small
with respect to K. To be more precise, we will introduce a sequence of stopping times
(σKk logK, k ∈ N) (see definition in (4.30)) satisfying the following conditions, as soon as
sk < T :
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Assumption 4.1.

1. σKk → sk in probability when K goes to infinity

2. For any 0 < εk < 1 ∧ infw∈ṽk n̄w(vk), with high probability

(a) For every w ∈ ṽk,

NK
w (σKk logK)

K
∈ [n̄w(vk)− εk, n̄w(vk) + εk] .

(b) For every w ∈ vk \ ṽk,

K1−εk ≤ NK
w (σKk logK) ≤ εkK.

(c) There exists c̄k < ∞ such that for every w /∈ vk, either NK
w (σKk logK) = 0 if

βw(sk) = 0 or

0 < βw(sk)− c̄kεk <
log
(
1 +NK

w (σKk logK)
)

logK
= βKw (σKk ) < βw(sk) + c̄kεk < 1.

To be more precise, for k ≥ 1, the time interval [σKk−1 logK,σKk logK] will be divided
into two parts:

• a ‘stochastic phase’ [σKk−1 logK, θKk,m,C logK] needed for the trait

lKk := vKk \ vKk−1

to reach a size of order K,

• a ‘deterministic phase’ [θKk,m,C logK,σKk logK] needed for the mutation free Lotka-

Volterra system associated to ṽKk−1 ∪ lKk to reach a neighbourhood of its equilibrium.

Initialisation of the induction.

• σK0 : By assumption,

βKw (0)
K→∞→

(
1− d(v0, w)

α

)
+

.

Let us choose a small ε0 > 0. Then from point (ii) of Lemma A.6, there exists a
deterministic T (ε0) <∞ such that

lim
K→∞

P
(
‖NK(T (ε0))/K − n̄(v0)‖∞ ≤ ε0

)
= 1.

Define σK0 := T (ε0)/ logK. We can check that σK0 is a stopping time converging in prob-
ability to s0 = 0 and satisfying Assumption 4.1. Moreover we know that the processes
(βKw , w ∈ V ) vary on a time scale of order logK (see [7, 8] for instance). In particular,
they do not vary during the time T (ε0) in the large K limit. This entails that σK0 satisfies
Assumption 4.1.

• σKk , k ≥ 1:

Assume that sk−1 < T0 and that σKk−1 logK is a stopping time satisfying Assumption
4.1. We will now construct σKk .
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4.1 Definitions and first properties

Let us introduce a small εk > 0 as well as a stopping time θKk,m,C logK via

θKk,m,C := inf

{
t ≥ σKk−1,∃w ∈ vk−1,

∣∣∣∣NK
w (t logK)

K
− n̄w(vk−1)

∣∣∣∣ ≥ Cεk
or

∑
w/∈vk−1

NK
w (t logK) ≥ mεkK

}
. (4.1)

Recall that the conditions satisfied by m > 0 and C > 0 will be precised later on.
We will now finely study the population dynamics on the time interval

[σKk−1 logK, (θKk,m,C ∧ T ) logK]. To this aim, we will couple the subpopulations of in-
dividuals with a given trait with branching processes with immigration and use results
on these processes derived in [8] and recalled (and generalized when needed) in the
Appendices. The main difficulty of this step comes from the fact that as we allow for any
finite graph of mutations, the immigration rate for a particular subpopulation may vary
a lot on the time interval [σKk−1 logK, (θKk,m,C ∧ T ) logK]. This is why we introduced in
Proposition 2.8 the sequence of times (τ`, ` ∈ N), which corresponds to the times when
mutants of a new type arise or a formerly microscopic trait becomes of order K.

Notice that although we make extensive use of the techniques and results developed
in [8], the authors of this paper considered a specific graph embedded in Z, and their
proof structure, in particular inductions, relies on their graph structure. The current
inductions are more involved and more in the proof spirit of [25].

To begin with, let us recall the rates of the different events for the population NK
w ,

with w ∈ V , at time t:

• Reproductions without mutation:

bw(t) := bw(1−K−1/α)NK
w (t). (4.2)

• Death:

dw(t) :=

(
dw +

∑
x∈V

cw,x
K

NK
x (t)

)
NK
w (t). (4.3)

• Reproductions with mutations towards the trait w:

bmw(t) := K−1/α
∑

x∈V,d(x,w)=1

bxm(x,w)NK
x (t). (4.4)

Notice that for K large enough, as σKk−1 satisfies Assumption 4.1 and by definition of
θKk,m,C , on the time interval [σKk−1 logK, (θKk,m,C ∧ T ) logK], we have

b(w, k,−)NK
w (t) ≤ bw(t) ≤ b(w, k,+)NK

w (t), (4.5)

d(w, ṽk−1, k,+)NK
w (t) ≤ dw(t) ≤ d(w, ṽk−1, k,−)NK

w (t), (4.6)

f(w, ṽk−1, k,−) ≤ fw,ṽk−1
≤ f(w, ṽk−1, k,+), (4.7)

where we have introduced the following notations, for any w ∈ V and ∗ ∈ {−,+},

b(w, k,−) := (1− εk)bw, b(w, k,+) := bw,

d(w, ṽk−1, k,−) := dw +
∑

x∈ṽk−1

cw,xn̄x(vk−1) +

(∑
x∈V

cw,x

)
(m+ C)εk,

d(w, ṽk−1, k,+) := dw +
∑

x∈ṽk−1

cw,xn̄x(vk−1)−

(∑
x∈V

cw,x

)
Cεk,

f(w, ṽk−1, k, ∗) := b(w, k, ∗)− d(w, ṽk−1, k, ∗). (4.8)
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Hence the rate of reproduction without mutation, as well as the death rate do not
vary significantly during the time interval [σKk−1 logK, (θKk,m,C ∧ T ) logK]. The difficulty
comes from the rate of mutations towards a given trait, which depends on the population
sizes of its neighbours in the graph G, which themselves depend on the population sizes
of their neighbours and so on.

Let us introduce the times τK` and the sets MK
` , which correspond respectively to

the times of invasion or appearance of new mutants (and will be the time steps of the
algorithm to be described shortly later) and to the sets of living traits in the time interval
(τK` , τ

K
`+1]. To be more precise,

Definition 4.2. Let sKk := inf{t ≥ σKk−1 : ∃w ∈ V \ vKk−1, β
K
w (t) > 1− εk}, and

tKw,k :=

{
inf{t ≥ σKk−1 : ∃ u ∈ V : d(u,w) = 1, βKu (t) = 1

α} if βKw (σKk−1) = 0

σKk−1 else,

The sequences (τK` , ` ≥ 0) and (MK
` , ` ≥ 0) are defined as follows:

τK0 = σK0 and, for σKk−1 ≤ τK`−1 < sKk ,

τK` = sKk ∧min {tKw,k : w ∈ V, tKw,k > τK`−1},

that is to say the minimum between the time when a previously microscopic population
becomes (almost) macroscopic, and the time of appearance of a new mutant. From the
definition of the sequence (τK` , ` ≥ 0) we can now define the sequence of sets of living
traits (MK

` , ` ≥ 0) via

MK
` = {w ∈ V : βKw (τK` ) > 0 or τK` = tKw,k}

=
(
MK
`−1\{w ∈ V : βKw (τK` ) = 0}

)
∪ {w ∈ V : τK` = tKw,k}.

4.2 Dynamics of the process on [τK`−1 logK, τK` logK]

In this section, we study the growth dynamics of the different subpopulations in
the time interval [τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ]. We prove that βKw (t) follows the
characterisation of βw(t) in Theorem 2.7 up to an error of order εk for large K.

We will first prove that there exists a finite and positive constant C` such that with
high probability, for every w ∈MK

`−1 and t ∈ [τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ],

max
u∈MK

`−1

[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

≤ βKw (t) ≤

max
u∈MK

`−1

[
βKu (τK`−1)− d(u,w)

α
+ C`εk + (t− τK`−1)f(u, ṽk−1, k,+)

]
+

(4.9)

Let us thus take t in [τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ]. To obtain the lower bound in
(4.9), we show by induction that, for any n ≥ 0 and with high probability,

βKw (t) ≥ max
u∈MK

`−1:

d(u,w)≤n

[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

(4.10)

Induction lower bound: • n = 0: let w ∈ MK
`−1. From (4.5) and (4.6), we see that we

can couple NK
w with a process ZK with law BPK

(
b(w, k,−), d(w, ṽk−1, k,−), βKw (τK`−1)

)
(see the definition of BPK in Section A.1) in such a way that

NK
w (t logK) ≥ ZK((t− τK`−1) logK).
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Hence, from Corollary A.4, we obtain that with high probability,

βKw (t) ≥
[
βKw (τK`−1) + (t− τK`−1)f(w, ṽk−1, k,−)

]
+
.

Remark 4.3. Notice that the application of Lemma A.1 (which has been derived in [8])
would require βKw (τK`−1) > 0 and that this condition may not be satisfied for one of the w ∈
ṽk−1 (the trait which becomes macroscopic at time τK`−1 logK). However, the population
of individuals w grows exponentially due to the mutations coming from another trait and
there exists a finite c such that, for small δ > 0, NK

w ((τK`−1 + δ) logK) ≥ Kcδ. We could
thus apply Lemma A.1 at this time, and later on let δ go to 0 to get the result. This is in
words the statement of Corollary A.4.

• n→ n+ 1: Let w, u′, u ∈MK
`−1 such that d(u′, w) = 1 and d(u, u′) ≤ n. From now on, we

will use the notation BPIK , which is defined in Section A.2. From (4.5), (4.6), and (4.7),
by looking only at the immigration coming from u′, we see that we can couple NK

w with a
process ZK with law

BPIK

(
b(w, k,−), d(w, ṽk−1, k,−), f(u′, ṽk−1, k,−), βKu′ (τ

K
`−1)− 1

α
, βKw (τK`−1)

)
in such a way that

NK
w (t logK) ≥ ZK((t− τK`−1) logK).

By the induction hypothesis, with high probability,

βKu′ (t) ≥
[
βKu (τK`−1)− d(u, u′)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

, (4.11)

which implies that we can couple ZK with a process Y K with law

BPIK

(
b(w, k,−), d(w, ṽk−1, k,−), f(u, ṽk−1, k,−), βKu (τK`−1)− d(u, u′) + 1

α
, βKw (τK`−1)

)
in such a way that

ZK((t− τK`−1) logK) ≥ Y K((t− τK`−1) logK).

Hence, from Corollary A.4, even if we have to work in a time interval [τK`−1 + δ, T ],
for a small positive δ, in the spirit of Remark 4.3, as w ∈MK

`−1 we obtain that with high
probability,

βKw (t) ≥
[
βKw (τK`−1) ∨

(
βKu (τK`−1)− d(u, u′) + 1

α

)
+ (t− τK`−1)f(w, ṽk−1, k,−)

]
+

∨
[
βKu (τK`−1)− d(u, u′) + 1

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

≥
[
βKw (τK`−1) + (t− τK`−1)f(w, ṽk−1, k,−)

]
+

∨
[
βKu (τK`−1)− d(u, u′) + 1

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

.

As this is true for any u′ such that d(u′, w) = 1 and as the above bound is a decreasing
function of d(u, u′), by taking the supremum over such u′ we obtain

EJP 26 (2021), paper 123.
Page 23/37

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP693
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Stochastic individual-based models with power law mutation rate

βKw (t) ≥
[
βKw (τK`−1) + (t− τK`−1)f(w, ṽk−1, k,−)

]
+

∨
[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

.

Thus, with high probability,

βKw (t) ≥ max
u∈MK

`−1:

d(u,w)≤n+1

[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)f(u, ṽk−1, k,−)

]
+

,

which ends the induction for the lower bound.

Let us now proceed to the induction for the upper bound. We again take t in
[τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ] and we will show that for any n ∈ N there exists a
finite constant Cn,` such that with high probability,

βKw (t) ≤ max
u∈MK

`−1:

d(u,w)≤n

[(
βKu (τK`−1)− d(u,w)

α
+Cn,`εk

)
∨
(

1− n+ 1

α
+ (n+ 2)εk

)

+ (t− τK`−1)f(u, ṽk−1, k,+)

]
+

∨
(

1− n+ 1

α
+ (n+ 2)εk

)
.

Induction upper bound:

Throughout the induction for the upper bound, we will several times make use
of the fact that we can bound the total immigration to one trait (which is the sum
of the mutants coming from its neighbours) by the number of neighbours times the
largest incoming mutation. More precisely, if Iw is the number of incoming neighbours
of w, ∑

u∈V :
d(u,w)=1

KβKu (t) ≤ Iw max
u∈V :

d(u,w)=1

KβKu (t) = max
u∈V :

d(u,w)=1

K(log Iw/ logK)+βKu (t). (4.12)

Since the trait space is finite, for K large enough, we can assume that
maxw∈V log Iw/ logK ≤ εk.

• n = 0: We observe that for K large enough βKu (t) ≤ 1 + εk for every u ∈ MK
`−1 (see

Corollary A.7).

From (4.5), (4.6), and (4.7), we see that we can couple NK
w with a process ZK with

law BPIK
(
b(w, k,+), d(w, ṽk−1, k,+), 0, 1− 1

α + 2εk, β
K
w (τK`−1)

)
in such a way that

NK
w (t logK) ≤ ZK((t− τK`−1) logK).

Hence from Corollary A.4, even if we have to work in a time interval [τK`−1 + δ, T ], for
a small positive δ, in the spirit of Remark 4.3, as w ∈ MK

`−1 we obtain that with high
probability,

βKw (t) ≤
[
βKw (τK`−1)∨

(
1− 1

α
+ 2εk

)
+ (t− τK`−1)f(w, ṽk−1, k,+)

]
+

∨
(

1− 1

α
+ 2εk

)
.

• n→ n+ 1: For w, u′ ∈MK
`−1 such that d(u′, w) = 1, by the induction hypothesis we have

the existence of a finite constant Cn,` such that, with high probability,
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βKu′ (t) ≤ max
u∈MK

`−1:

d(u,u′)≤n

[(
βKu (τK`−1)− d(u, u′)

α
+ Cn,`εk

)
∨
(

1− n+ 1

α
+ (n+ 2)εk

)

+ (t− τK`−1)f(u, ṽk−1, k,+)

]
+

∨
(

1− n+ 1

α
+ (n+ 2)εk

)
.

From (4.5), (4.6), and (4.7), by looking at the maximal immigration coming from a
neighbouring u′ and adding another εk in the spirit of (4.12), we thus see that we can
couple NK

w with multiple processes ZK,u,u
′

and ZK with respective laws

BPIK

(
b(w, k,+), d(w, ṽk−1, k,+), f(u, ṽk−1, k,+),(
βKu (τK`−1)− d(u, u′) + 1

α
+ (Cn,` + 1)εk

)
∨
(

1− n+ 2

α
+ (n+ 3)εk

)
, βKw (τK`−1)

)
and

BPIK

(
b(w, k,+), d(w, ṽk−1, k,+), 0, 1− n+ 2

α
+ (n+ 3)εk, β

K
w (τK`−1)

)
in such a way that

NK
w (t logK) ≤ max

u′∈MK
`−1:

d(u′,w)=1

max
u∈MK

`−1:

d(u,u′)≤n

ZK,u,u
′
((t− τK`−1) logK) ∨ ZK((t− τK`−1) logK).

Hence from Corollary A.4, even if we have to work in a time interval [τK`−1 + δ, T ], for
a small positive δ, in the spirit of Remark 4.3, as w ∈ MK

`−1 we obtain that with high
probability,

β
K
w (t) ≤ max

u′∈MK`−1:

d(u′,w)=1

max
u∈MK`−1:

d(u,u′)≤n

{[
β
K
w (τ

K
`−1)∨

(
β
K
u (τ

K
`−1)−

d(u, u′) + 1

α
+ (Cn,` + 1)εk

)
∨
(

1−
n+ 2

α
+ (n+ 3)εk

)

(4.13)

+(t− τK`−1)f(w, ṽk−1, k,+)
]
+

∨
[(
β
K
u (τ

K
`−1)−

d(u, u′) + 1

α
+ (Cn,` + 1)εk

)
∨
(

1−
n+ 2

α
+ (n+ 3)εk

)
+ (t− τ`−1)f(u, ṽk−1, k,+)

]
+

(4.14)

∨
(

1−
n+ 2

α
+ (n+ 3)εk

)}
≤ max

u∈MK`−1:

d(u,w)≤n+1

{[
β
K
w (τ

K
`−1)∨

(
β
K
u (τ

K
`−1)−

d(u,w)

α
+ (Cn,` + 1)εk

)
∨
(

1−
n+ 2

α
+ (n+ 3)εk

)
(4.15)

+(t− τK`−1)f(w, ṽk−1, k,+)
]
+

∨
[(
β
K
u (τ

K
`−1)−

d(u,w)

α
+ (Cn,` + 1)εk

)
∨
(

1−
n+ 2

α
+ (n+ 3)εk

)
+ (t− τ`−1)f(u, ṽk−1, k,+)

]
+

(4.16)

∨
(

1−
n+ 2

α
+ (n+ 3)εk

)}
. (4.17)

In order to simplify the right hand side of the previous inequality, we will show that
for any ` ∈ N there exists a finite and positive constant C` such that for any (u,w) ∈ V 2,
with high probability

βKu (τK`−1)− d(u,w)

α
≤ βKw (τK`−1) + C`εk. (4.18)
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Combining (4.17) and (4.18) yields that with high probability,

βKw (t) ≤ max
u∈MK

`−1:

d(u,w)≤n+1

{[(
βKw (τK`−1) + (Cn,` + 1 + C`)εk

)

∨
(
1− n+ 2

α
+ (n+ 3)εk

)
+ (t− τK`−1)f(w, ṽk−1, k,+)

]
+

∨
[(

βKu (τK`−1)−
d(u,w)

α
+ (Cn,` + 1)εk

)
∨
(
1− n+ 2

α
+ (n+ 3)εk

)
+ (t− τ`−1)f(u, ṽk−1, k,+)

]
+

∨
(
1− n+ 2

α
+ (n+ 3)εk

)}

≤ max
u∈MK

`−1:

d(u,w)≤n+1

[(
βKu (τK`−1)−

d(u,w)

α
+ (Cn,` + 1 + C`)εk

)

∨
(
1− n+ 2

α
+ (n+ 3)εk

)
+ (t− τ`−1)f(u, ṽk−1, k,+)

]
+

∨
(
1− n+ 2

α
+ (n+ 3)εk

)
,

which ends the induction for the upper bound.
Let us now derive inequality (4.18). It is obtained by an induction on `. If ` = 1, by

(2.6) and the triangle inequality,

lim
K→∞

βKu (0)− d(u,w)

α
=

[
1− d(v0, u)

α

]
+

− d(u,w)

α

≤
[
1− d(v0, u)

α
− d(u,w)

α

]
+

≤
[
1− d(v0, w)

α

]
+

= lim
K→∞

βKw (0).

As the convergence is in probability, it means that for K large enough, there exists a
finite Cu,w such that with a probability larger than 1− εk,

βKu (0)− d(u,w)

α
≤ βKw (0) + Cu,wεk. (4.19)

As there are only finitely many traits, supu,w∈V Cu,w <∞. Moreover, as εk can be chosen
as small as we want and as we want to prove a convergence in probability, we may
focus on the event where inequality (4.19) is satisfied. We will do that later on without
mentioning it again for the sake of readability.

Now assume that (4.18) is true for `− 1 ∈ N. Let us first prove that it still holds for `.
From the previous step on the time interval [τK`−2 ∧ T ∧ θKk,m,C , τK`−1 ∧ T ∧ θKk,m,C ], we

know that if τK`−1 ≤ T ∧ θKk,m,C , for any w ∈ V and K large enough,

max
u∈MK

`−2

[
βKu (τK`−2)− d(u,w)

α
+ (τK`−1 − τK`−2)f(u, ṽk−2, k,−)

]
+

≤ βKw (τK`−1).

Now let us take u ∈ V . We also deduce from the previous step that for K large enough

βKu (τK`−1) ≤ max
u′∈MK

`−2

[
βKu′ (τ

K
`−2)− d(u′, u)

α
+ C`−1εk + (τK`−1 − τK`−2)f(u′, ṽk−2, k,+)

]
+

.

In particular there exists ũ ∈ V such that d(ũ, u) ≤ bαc and for K large enough

βKu (τK`−1) ≤
[
βKũ (τK`−2)− d(ũ, u)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,+)

]
+

.
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Thus, for K large enough,

βKu (τK`−1)−
d(u,w)

α
≤
[
βKũ (τK`−2)−

d(ũ, u)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,+)

]
+

− d(u,w)

α

≤
[
βKũ (τK`−2)−

d(ũ, u) + d(u,w)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,+)

]
+

≤
[
βKũ (τK`−2)−

d(ũ, w)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,+)

]
+

≤
[
βKũ (τK`−2)−

d(ũ, w)

α
+ C`−1εk + (τK`−1 − τK`−2)f(ũ, ṽk−2, k,−)

]
+

+ Cεk

≤ max
ũ∈MK

`−2

[
βKũ (τK`−2)−

d(ũ, w)

α
+ (τK`−1 − τK`−2)f(ũ, ṽk−2, k,−)

]
+

+ (C`−1 + C)εk

≤ βKw (τK`−1) + (C`−1 + C)εk,

where we used (4.8), (4.10), the bound τK`−1 − τK`−2 ≤ T , and

C := max
ũ∈MK

`−2

(
bũ + (m+ 6)

(∑
x∈V

cũ,x

))
T.

This entails (4.18).
To conclude the proof of (4.9), we just need to notice that for n > bαc, if εk is small

enough,

1− n+ 1

α
+ (n+ 2)εk < 0.

As τK` − τK`−1 ≤ T , Equation (4.9) tells us that, with an error of order εk which is
as small as we want, with high probability, the growth of traits w ∈ MK

`−1 follows, for
t ∈ [τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ]

βKw (t) ∼= max
u∈MK

`−1

[
βKu (τK`−1)− d(u,w)

α
+ (t− τK`−1)fu,vk−1

]
+

.

To avoid repetition, we will write ∼= in the sequel to indicate approximations with high
probability, with an error of order εk.

4.3 Value of τK` and construction of MK
`

In this section, we construct the sets MK
` and calculate the value of τK` −τK`−1, proving

part (ii) of Proposition 2.8.
Let us assume for the moment (it will be proven in Section 4.4) that the following

holds with high probability:

[τK`−1 ∧ T ∧ θKk,m,C , τK` ∧ T ∧ θKk,m,C ] = [τK`−1, τ
K
` ]. (4.20)

Our aim now is to find the duration τK` − τK`−1 and to construct the set MK
` knowing

the set MK
`−1.

To reach τK` , two events are possible. Either one living non resident trait reaches a
size of order K, or a new mutant appears.

Let us consider the first type of event. In fact, we have to be more precise on the time
when a new trait has a size which reaches order K, this is why we defined sKk as the
time when one trait has a size which reaches order K1−εk . Notice that we may choose
εk small enough to be sure that it corresponds to the trait whose exponent reaches 1 at
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time sk in the deterministic sequence (sj , j ∈ N) defined in Theorem 2.7. (if there exist
two such traits, condition (iv)(a) is fulfilled and T0 is set to sk). Notice that if fu,vk−1

< 0,
for any w ∈ V ,

t 7→ βKu (τK`−1) + (t− τK`−1)fu,vk−1
− d(u,w)

α
(4.21)

is decreasing and thus will not reach 1− εk if it is smaller than this value at time τK`−1.
Hence if we denote by u0 the element of MK

`−1 such that βKu0
(τK` ) = 1− εk, we get

1− εk = βKu0
(τK` ) ∼= max

u∈MK
`−1

fu,vk−1
>0

[
βKu (τK`−1) + (t− τK`−1)fu,vk−1

− d(u, u0)

α

]
.

Now assume by contradiction that there is u1 6= u0 ∈MK
`−1 such that:

1− εk = βKu0
(τK` ) ∼= βKu1

(τK`−1) + (τK` − τK`−1)fu1,vk−1
− d(u1, u0)

α
.

This implies
βKu1

(τK` ) ≥ βKu1
(τK`−1) + (τK` − τK`−1)fu1,vk−1

> 1,

as soon as εk < 1/α, which yields a contradiction. This implies that if there exists
u0 ∈MK

`−1 such that βKu0
(τK` ) = 1− εk, then

βKu0
(τK` ) ∼= βKu0

(τK`−1) + (τK` − τK`−1)fu0,vk−1

and with high probability, the value of τK` − τK`−1 satisfies,

τK` − τK`−1
∼= min

w∈MK
`−1:

fw,vk−1
>0

1− βKw (τK`−1)

fw,vk−1

. (4.22)

Let us now consider the second type of event, that is to say that there exist u0 /∈MK
`−1

and u1 ∈MK
`−1 such that d(u1, u0) = 1 and βKu1

(τK` ) = 1/α. Notice again that if fu,vk−1
< 0,

the function defined in (4.21) is decreasing and thus will not reach 1/α if it is smaller
than this value at time τK`−1.

By definition we have

1

α
= βKu1

(τK` ) ∼= max
u∈MK

`−1

[
βKu (τK`−1) + (τK` − τK`−1)fu,vk−1

− d(u, u1)

α

]
.

Denote by u2 ∈MK
`−1 the trait realizing the maximum in the previous equation, that is to

say
1

α
∼= βKu2

(τK`−1) + (τK` − τK`−1)fu2,vk−1
− d(u2, u1)

α
.

This equality can be rewritten as

βKu2
(τK`−1) + (τK` − τK`−1)fu2,vk−1

∼=
d(u2, u1) + 1

α
.

Let us now make a reductio ad absurdum to prove that d(u2, u1) + 1 = d(u2, u0). Let us
thus assume that

d(u2, u1) + 1 > d(u2, u0)⇔ d(u2, u1) ≥ d(u2, u0), (4.23)

and take u′1 such that
d(u2, u

′
1) + 1 = d(u2, u0).
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Let us first assume (we will prove it later) that u′1 ∈MK
`−1. In this case, using the proof

for the lower bound, we obtain that with high probability

βKu′1(τK` ) ≥ βKu2
(τK`−1) + (τK` − τK`−1)f(u2, ṽk−1, k,−)− d(u2, u

′
1)

α

≥ βKu2
(τK`−1) + (τK` − τK`−1)f(u2, ṽk−1, k,−)− d(u2, u1)− 1

α
∼=

2

α
.

As d(u′1, u0) = 1, this means that u0 becomes a living trait before the time τK` , which is in
contradiction with the definition of τK` .

Let us now assume that u′1 /∈ MK
l−1 and consider a sequence of vertices v0 =

u2, v1, ..., vd(u2,u′1) = u′1 such that d(u2, vi) = i and d(vi, u
′
1) = d(u2, u

′
1)− i. Let

i0 := max{0 ≤ i ≤ d(u2, u
′
1)− 1, vi ∈MK

`−1}.

Then

d(u2, vi0) ≤ d(u2, u
′
1)− 1 ≤ d(u2, u1)− 2,

and with high probability

βKvi0 (τK` ) ≥ βKu2
(τK`−1) + (τK` − τK`−1)f(u2, ṽk−1, k,−)− d(u2, vi0)

α

≥ βKu2
(τK`−1) + (τK` − τK`−1)f(u2, ṽk−1, k,−)− d(u2, u1)− 2

α
∼=

3

α
,

and thus vi0+1 becomes a living trait before the time τK` , which again is in contradiction
with the definition of τK` . We thus obtain a contradiction and deduce that (4.23) is not
satisfied. We conclude that

βKu2
(τK`−1) + (τK` − τK`−1)fu2,vk−1

∼=
d(u2, u1) + 1

α
=
d(u2, u0)

α
.

Hence, when τK` corresponds to the arrival of a new mutant,

τK` − τK`−1
∼= min

w∈MK
`−1

fw,v`−1
>0

d(w,V \MK
`−1)

α − βKw (τK`−1)

fw,vk−1

. (4.24)

Combining (4.22) and (4.24), we finally obtain:

τK` − τK`−1
∼= min

w∈MK
`−1:

fw,vk−1
>0

(
1 ∧ d(w,V \MK

`−1)

α

)
− βKw (τK`−1)

fw,vk−1

.

To obtain MK
` from MK

`−1, we suppress the traits w ∈ MK
`−1 such that βKw (τK` ) = 0

(if condition (iv)(c) is not satisfied, otherwise T0 is set to sk) and if τ` 6= sk, we add the
traits which are at distance 1 from the w ∈ V satisfying

w ∈ arg min
w∈MK

`−1:
fw,vk−1

>0

(
1 ∧ d(w,V \MK

`−1)

α

)
− βKw (τK`−1)

fw,vk−1

.
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4.4 Value of θKk,m,C and convergence of sKk to sk

In this section, we prove that sKk and θKk,m,C are equal up to an error ηk that goes to

zero as εk → 0 and conclude that sKk converges to sk when K →∞.
Recall the definition of θKk,m,C in (4.1). We thus have constructed, on the time interval

[(σKk−1 ∧ T ) logK, (sKk ∧ θKk,m,C ∧ T ) logK], the times (τK` , ` ∈ N) and the sets (MK
` , ` ∈ N)

of living traits between times τK` and τK`+1. We will now study the dynamics of the
process on the time interval [(σKk−1 ∧ T ) logK, (σKk ∧ θKk,m,C ∧ T ) logK] (σKk to be defined

later in order to satisfy Assumption 4.1). Recall that lKk is the trait w ∈ V such that
βKw (sKk ) = 1− εk and introduce

ηk := 2εk/

(
flKk ,vk−1

−

(
blKk +

(∑
x∈V

clKk ,x

)
(C +m)

)
εk

)
.

We will first prove that

lim
K→∞

P
(
sKk ≤ θKk,m,C ≤ sKk + ηk

∣∣∣sKk < T
)

= 1. (4.25)

The first step consists in showing that

lim
K→∞

P
(
θKk,m,C < sKk

∣∣∣sKk < T
)

= 0. (4.26)

By definition of sKk , we have

sup
w∈Vrvk−1

sup
σKk−1≤t≤s

K
k

βKw (t) ≤ 1− εk.

Moreover, applying Lemma A.6 to vk−1 we obtain that

lim
K→∞

P

(
∀t ∈ [σKk−1, s

K
k ], sup

w∈vk−1

∣∣∣NK
w (t logK)

K
− n̄w(vk−1)

∣∣∣ ≤ Cεk∣∣∣sKk < T

)
= 1.

As a consequence, (4.26) holds true. Notice that the value of C in the definition of θKk,m,C
in (4.1) is a consequence of the previous limit. The constant C is the one needed for
Lemma A.6 to hold, and thus depends on the parameters of the process.

Now assume by contradiction that

sKk + ηk ≤ θKk,m,C < T.

Then on the time interval [sKk , s
K
k + ηk], by definition of θKk,m,C , the lKk population has a

growth rate bounded from below by

flKk ,vk−1
−

(
blKk +

(∑
x∈V

clKk ,x

)
(C +m)

)
εk.

Hence by coupling, with high probability,

βKlKk
(sKk + ηk) ≥ 1− εk +

(
flKk ,vk−1

−

(
blKk +

(∑
x∈V

clKk ,x

)
(C +m)

)
εk

)
ηk = 1 + εk,

which leads to a contradiction, as the total population size cannot be of order larger than
K in the limit K →∞, see Corollary A.7.

This proves (4.25). In particular, this implies that sKk converges to sk in probability
when K goes to infinity, as soon as T > sk.
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4.5 Value of the process at time θKk,m,C logK

In this section, we prove that the stopping time θKk,m,C is triggered by a (formerly)
microscopic trait reaching order K, and not by the macroscopic traits deviating from
their equilibrium.

We are now interested in the value of the process at time θKk,m,C logK. First notice
that according to Proposition A.2 in [10] and (4.25),

lim
K→∞

P

(
∀t ∈ [σKk−1, (s

K
k + ηk) ∧ θKk,m,C ], w ∈ vk−1,

∣∣∣∣NK
w (t logK)

K
− n̄w(vk−1)

∣∣∣∣ < Cεk

)
= lim
K→∞

P

(
∀t ∈ [σKk−1, θ

K
k,m,C ], w ∈ vk−1,

∣∣∣∣NK
w (t logK)

K
− n̄w(vk−1)

∣∣∣∣ < Cεk

)
= 1. (4.27)

Notice that m has to be chosen small enough for this limit to hold, and thus depends
on the parameters of the Lotka-Volterra deterministic system associated to vk−1. To be
more precise, m has to be chosen small enough for the assumption (A.5) in Lemma A.6
to hold true with εk in place of ε. We choose such an m in the definition of θKk,m,C in (4.1).

Hence we obtain that with high probability,∑
w∈Vrvk−1

NK
w (θKk,m,C logK) ≥ mεkK.

If condition (iv)(a) of Theorem 2.7 is satisfied T0 is set at sk and the induction is
stopped. Otherwise there exists γ > 0 such that if εk is small enough βKw (sKk ) < 1 − γ
for every w ∈ V r (ṽKk−1 ∪ {lKk }). Thus again by coupling, as the growth rates of the
populations are limited and ηk may be as small as we want, with high probability,∑

w∈VrṽKk−1,w 6=l
K
k

NK
w (θKk,m,C logK) ≤ K1−γ/2. (4.28)

From the two last inequalities we deduce that with high probability,

NK
lKk

(θKk,m,C logK) ≥ mεkK/2. (4.29)

4.6 Construction of σKk and Assumption 4.1

In this section, knowing that we have non-vanishing population sizes at θKk,m,C , we

finally consider the Lotka-Volterra phase involving ṽk−1 and the trait lKk that has newly
reached order K, proving that the initial conditions for the next step, characterised in
the definition of σKk , are satisfied after a time of order 1. This will conclude the proof of
Theorem 2.7.

Let us now introduce the stopping time σKk , via:

σKk := inf{t ≥ θKk,m,C ,∀w ∈ vKk , |NK
w (t logK)/K − n̄w(vk)| ≤ εk}. (4.30)

The last step of the proof consists in showing that σKk indeed satisfies Assumption 4.1.
First σKk logK is a stopping time. Second, from (4.27), (4.28), (4.29) and an application
of Lemma A.6 there exists T (εk) <∞ such that

lim
K→∞

P
(∣∣NK

w (θKk,m,C logK + T (εk))/K − n̄w(vk)
∣∣ ≤ εk,∀w ∈ vk

)
= 1.

Moreover, during a time of order one, the order of population sizes does not vary more
than a constant times εk (result similar in spirit to Lemma B.9 in [8]). Adding that sKk
converges to sk in probability when K goes to infinity, as well as (4.25), we obtain that
Assumption 4.1 holds. It ends the proof of Theorem 2.7 and Proposition 2.8.
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A Couplings with branching processes and logistic processes with
immigration

The aim of this section is to collect various couplings of the populations with simpler
processes like branching processes and logistic processes with immigration, and to state
some properties of these simpler processes. These results have been derived in [8] (note
that we need to slightly generalise some of them), and we state them for the sake of
readability. For simplicity we keep the notations of [8].

A.1 Branching process

In this subsection, we recall Lemma A.1 of [8], which describes the dynamics of a
birth and death process on a logK time scale. For b, d, β ≥ 0, let BPK(b, d, β) denote the
law of a process (ZK(t), t ≥ 0) with initial state ZK(0) = bKβ − 1c, individual birth rate b
and individual death rate d.

Lemma A.1 (Lemma A.1 in [8]). Let (ZK(t), t ≥ 0) be a BPK(b, d, β) process such that
β > 0. The process (log(1+ZK(t logK))/ logK, t > 0) converges when K tends to infinity
in probability in L∞([0, T ]) for all T > 0 to the continuous deterministic function given by

β̄ : t 7→ β + (b− d)t ∨ 0.

In addition, if b < d, for all t > β/(d− b),

lim
K→∞

P
(
ZKt logK = 0

)
= 1.

A.2 Branching process with immigration

In this subsection, we recall Lemma B.4 and Theorem B.5 of [8], illustrated in Figure
B.1 therein, which describe the dynamics of birth and death processes with immigration
on a logK time scale. For b, d, β ≥ 0, a, c ∈ R, BPIK(b, d, a, c, β) denotes the law of
a process (ZK(t), t ≥ 0) with initial state ZK(0) = bKβ − 1c, individual birth rate b,
individual death rate d, and immigration rate Kceas at time s ≥ 0.

Lemma A.2 (Lemma B.4 in [8]). Assume that β < c. Then for all ε > 0 and all ā >
|b− d| ∨ |a|,

lim
K→∞

P
(
ZK(ε logK) ∈

[
Kc−āε,Kc+āε

])
= 1.

Lemma A.3 (Theorem B.5 in [8]). Let (ZK(t), t ≥ 0) be a BPIK(b, d, a, c, β) process with
c ≤ β and assume that β > 0. The process (log(1 + ZK(t logK))/ logK, t > 0) converges
when K tends to infinity in probability in L∞([0, T ]) for all T > 0 to the continuous
deterministic function β̄ given by

β̄ : t 7→ (β + (b− d)t) ∨ (c+ at) ∨ 0.

In addition, in the case where c 6= 0 or a 6= 0, for all compact intervals I ⊂ R+ which do
not intersect the support of β̄,

lim
K→∞

P
(
ZK(t logK) = 0,∀t ∈ I

)
= 1.

We will mostly use a corollary of those two lemmas, which is valid without the
assumption c ≤ β but on a time interval [δ, T ], for any δ > 0. The idea of the proof has
been explained in Remark 4.3.

Corollary A.4. Let (ZK(t), t ≥ 0) be a BPIK(b, d, a, c, β) process with β ≥ 0, and
either c > 0 or both c = 0 and a > 0. For any δ > 0 and T > 0, the process
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(log(1 + ZK(t logK))/ logK, t ∈ [δ, T ]) converges when K tends to infinity in probability
in L∞([δ, T ]) to the continuous deterministic function β̄ given by

β̄ : t 7→ ((β ∨ c) + (b− d)t) ∨ (c+ at) ∨ 0.

A.3 Logistic birth and death process with immigration

We recall that for a subset v ⊂ V of traits that can coexist at a strictly positive
equilibrium in the Lotka-Volterra system (2.3), n̄(v) ∈ Rv

+ denotes this equilibrium. The
next result states that if all traits in v have an initial population of order K and the
immigration of individuals with traits in v is small enough, the equilibrium n̄(v)K is
reached in a time of order 1 and the populations of individuals whose traits belong to v
will keep a size close to its equilibrium during a time of order larger than logK

This result is a generalisation of Lemma C.1 in [8] to the multidimensional case and
with (slightly) varying rates.

We thus consider a subset v ⊂ V of traits and denote by (bv(t), t ≥ 0) := ((bw(t), w ∈
v), t ≥ 0), (dv(t), t ≥ 0) := ((dw(t), w ∈ v), t ≥ 0), and (cv(t), t ≥ 0) := ((cw1,w2(t), (w1, w2) ∈
v2), t ≥ 0) its birth, natural death, and death by competition rates that we allow to vary
in time, as well as (gv(t), t ≥ 0) := ((gw(t), w ∈ v), t ≥ 0) a function with values in Rv

+. We
denote by LBDIK(bv,dv, cv,gv) the law of a logistic birth and death process with immi-
gration ZK := ((Zw(t)K , w ∈ v), t ≥ 0) where, at time t, an individual with a trait w ∈ v
has a birth rate bw(t), a death rate dw(t) +

∑
x∈v cw,x(t)ZKx (t)/K and an immigration rate

gw(t).
In order to state the next result, we introduce the following assumption:

Assumption A.5. There exist ε, η, T > 0 such that

sup
w1,w2∈v

{∣∣bw1
(t)− b̄w1

∣∣ , ∣∣dw1
(t)− d̄w1

∣∣ , |cw1,w2
(t)− c̄w1,w2

|
}
< ε

and gw(t) ≤ K1−η, for all t ≤ T logK.

Lemma A.6. Let v ⊂ V and assume that the mutation-free Lotka-Volterra system (2.3)
associated to v and with rates (b̄v, d̄v, c̄v) ∈ (R+

∗ )v × (R+
∗ )v × (R+

∗ )v
2

admits a unique
positive globally attractive stable equilibrium n̄(v). Assume that ZK follows the law
LBDIK(bv,dv, cv,gv).

(i) Suppose that Assumption A.5 holds for a triplet (ε, η, T ). Then there exist C, ε(1)
0 > 0

such that if ε ≤ ε(1)
0 and ‖ZK(0)/K − n̄(v)‖∞ ≤ ε, then

lim
K→∞

P
(
∀t ∈ [0, T logK], ‖ZK(t)/K − n̄(v)‖∞ ≤ Cε

)
= 1.

(ii) Suppose that Assumption A.5 holds for a triplet (ε, η, T ). Let ε1, ε2 > 0. Then there

exist T (ε1, ε2) <∞ and ε(2)
0 > 0 such that if ε < ε

(2)
0 ,

lim
K→∞

sup
ZKv (0)/K≥ε1 ∀v∈v

P
(
∀t ∈ [T (ε1, ε2), T logK], ‖ZK(t)/K − n̄(v)‖∞ ≤ ε2

)
= 1.

Proof. The case where the functions bv, dv, cv are constant is a direct generalisation of
Lemma C.1 in [8], whose proof follows arguments similar to the ones given in [7, 10] or
in the Proposition 4.2 in [9] to handle the addition of (negligible) immigration. We do
not provide it. Let us explain how we deal with varying rates for point (i). Let us choose
w0 ∈ v, and introduce for w1, w2 ∈ v:

b̃w1
=

{
b̄w1

+ ε if w1 6= w0

b̄w1 − ε if w1 = w0
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d̃w1
=

{
d̄w1
− ε if w1 6= w0

d̄w1 + ε if w1 = w0

c̃w1,w2
=

{
c̄w1,w2 − ε if w1 6= w0

c̄w1,w2 + ε if w1 = w0

Then we can couple a process ZK with the law LBDIK(bv,dv, cv,gv) with a process
Z̃K with the law LBDIK(b̃v, d̃v, c̃v,gv) such that for every t ≥ 0, Z̃Kw0

(t) ≤ ZKw0
(t) and

Z̃Kw (t) ≥ ZKw (t) for every w ∈ v \ w0. Moreover, as the equilibrium of a Lotka-Volterra
system is continuous with respect to its coefficient, there is a positive C̃ such that for ε
small enough, and if we denote by n̄(w0)(v) the equilibrium of the Lotka-Volterra system
with the coefficients b̃v, d̃v, c̃v we have just introduced, ‖n̄(w0)(v)− n̄(v)‖ ≤ C̃ε. Hence
applying the point (i) for the process Z̃K , we obtain upper bounds for coordinates w 6= w0

and a lower bound for the coordinate w0, for the process ZK . Doing the same and the
reverse bounds for the other elements of v gives the result for some C > C̃ that takes
into account the fluctuations around the varied equilibria.

Let us now explain how we get point (ii). First, we consider for every w0 ∈ v
the deterministic Lotka-Volterra process (z̃w0(t), t ≥ 0) with parameters (b̃v, d̃v, c̃v,gv)

introduced in the proof of point (i), and an initial state larger than ε1. We know that
there exists a time T (ε1, ε2, w0) such that if ε in Assumption A.5 is small enough this
process satisfies:

|z̃w0(t)− n̄(v)| ≤ ε2 ∧ ε(1)
0

3C
, ∀t ≥ T (ε1, ε2, w0),

where C and ε(1)
0 have been defined in point (i). From Chapter 11, Theorem 2.1 in [21],

we also know that

lim
K→∞

P

(
sup

t≤T (ε1,ε2,w0)

‖Z̃K(t)/K − z̃w0(t)‖ ≤ ε2 ∧ ε(1)
0

3C

)
= 1.

Applying point (i) we thus obtain

lim
K→∞

P
(
∀t ∈ [T (ε1, ε2, w0), T logK], ‖Z̃K(t)/K − n̄(v)‖∞ ≤ ε2

)
= 1.

As this holds for any w0 in the finite graph V this concludes the proof of point (ii).

We end this section with a result stating that the time needed for the total population
size of a logistic birth and death process (with or without mutations) to reach (and stay
smaller than or equal to) an order K is of order one for K large enough.

Corollary A.7. Let us consider a subset v ⊂ V of traits, (bv,dv, cv) be in (R+
∗ )v ×

(R+
∗ )v × (R+

∗ )v
2

and let ZK follow the law LBDIK(bv,dv, cv, 0), and ZK denote the total
population size of the process ZK . For every ε > 0 there exist T (ε), C <∞ such that

lim
K→∞

P

(
sup

T (ε)<t<eCK

log(1 + ZK(t))

logK
< 1 + ε

)
= 1.

Remark A.8. Notice that this result only treats mutation-free logistic birth and death
processes. However, mutation within v does not affect the total population size and hence
the result can be transferred to such cases. Considering v = V , Corollary A.7 therefore
implies the same asymptotic bound for the total population size of the process that we
consider in Theorem 2.7 and Proposition 2.8, and hence also for each subpopulation.
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Proof. The process ZK increases by 1 at a rate∑
w∈v

bwZ
K
w ≤ (sup

w∈v
bw)ZK =: BZK

and decreases by 1 at a rate

∑
w∈v

(
dw +

∑
u∈v

cw,u
K

ZKu

)
ZKw ≥

1

K
(inf
u∈v

cu,u)
∑
w∈v

(
ZKw
)2

≥ 1

K
(inf
u∈v

cu,u)
1

Card(v)

(
ZK
)2

=:
C
K

(
ZK
)2
.

Hence the process ZK can be coupled with a logistic birth and death process NK with
individual birth rate B and individual death rate CNK/K in such a way that for every
t ≥ 0, if ZK(0) = NK(0)

ZK(t) ≤ NK(t).

But from Chapter 11, Theorem 2.1 in [21], we know that on any finite time interval,
the rescaled process NK/K converges in probability to the solution to the logistic
equation κ̇ = κ(B − Cκ), κ(0) = κ0 if NK(0)/K converges in probability to κ0. The one
dimensional logistic equation has an explicit solution, and in particular, we know that its
equilibrium is B/C, that it comes down from infinity, and that it takes a time

1

B
log

(
κ̄

κ̄ − B/C

)
to reach κ̄ > B/C from an infinite initial condition. As a consequence, NK takes a time of
order one to become smaller than 2κ̄K, and as B/C is a globally hyperbolic equilibrium
for the function κ, classical large deviation results (see [19] for instance) entail that
NK/K will stay an exponential (in K) time in any compact interval of R∗+ including B/C.
This concludes the proof.
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