
HAL Id: hal-04075477
https://hal.inrae.fr/hal-04075477

Submitted on 20 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Soil moisture estimates at 1 km resolution making a
synergistic use of Sentinel data

Remi Madelon, Nemesio J Rodríguez-Fernández, Hassan Bazzi, Nicolas
Baghdadi, Clement Albergel, Wouter Dorigo, Mehrez Zribi

To cite this version:
Remi Madelon, Nemesio J Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel,
et al.. Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data. Hydrology
and Earth System Sciences, 2023, 27 (6), pp.1221-1242. �10.5194/hess-27-1221-2023�. �hal-04075477�

https://hal.inrae.fr/hal-04075477
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Hydrol. Earth Syst. Sci., 27, 1221–1242, 2023
https://doi.org/10.5194/hess-27-1221-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Soil moisture estimates at 1 km resolution
making a synergistic use of Sentinel data
Remi Madelon1, Nemesio J. Rodríguez-Fernández1, Hassan Bazzi2, Nicolas Baghdadi2, Clement Albergel3,
Wouter Dorigo4, and Mehrez Zribi1
1CESBIO (Université de Toulouse, CNES, CNRS, IRD, INRAE), 18 Av. Edouard Belin, bpi 2801, 31401 Toulouse, France
2TETIS, INRAE, Université de Montpellier, 34090 Montpellier, France
3European Space Agency Climate Office, ECSAT, Harwell Campus, Oxfordshire, Didcot OX11 0FD, United Kingdom
4Department of Geodesy and Geoinformation, TU Wien, 1040 Vienna, Austria

Correspondence: Nemesio J. Rodríguez-Fernández (nemesio.rodriguez@cesbio.cnes.fr)

Received: 28 June 2022 – Discussion started: 11 July 2022
Revised: 16 December 2022 – Accepted: 25 February 2023 – Published: 21 March 2023

Abstract. Very high-resolution (∼ 10–100 m) surface soil
moisture (SM) observations are important for applications in
agriculture, among other purposes. This is the original goal
of the S2MP (Sentinel-1/Sentinel-2-Derived Soil Moisture
Product) algorithm, which was designed to retrieve surface
SM at the agricultural plot scale by simultaneously using
Sentinel-1 (S1) backscatter coefficients and Sentinel-2 (S2)
NDVI (Normalized Difference Vegetation Index) as inputs
to a neural network trained with Water Cloud Model simu-
lations. However, for many applications, including hydrol-
ogy and climate impact assessment at regional level, large
maps with a high resolution (HR) of around 1 km are already
a significant improvement with respect to most of the pub-
licly available SM datasets, which have resolutions of about
25 km.

In this study, the S2MP algorithm was adapted to work
at 1 km resolution and extended from croplands to herba-
ceous vegetation types. A target resolution of 1 km also al-
lows the evaluation of the interest in using NDVI derived
from Sentinel-3 (S3) instead of S2. Two sets of SM maps
at 1 km resolution were produced with S2MP over six re-
gions of ∼ 104 km2 in Spain, Tunisia, North America, Aus-
tralia, and the southwest and southeast regions of France for
the whole year of 2019. The first set was derived from the
combination of S1 and S2 data (S1+S2 maps), while the
second one was derived from the combination of S1 and S3
(S1+S3 maps). S1+S2 and S1+S3 SM maps were com-
pared to each other, to those of the 1 km resolution Coper-
nicus Global Land Service (CGLS) SM and Soil Water In-

dex (SWI) datasets, and to those of the Soil Moisture Active
Passive (SMAP)+S1 product.

The S2MP S1+S2 and S1+S3 SM maps are in very
good agreement in terms of correlation (R ≥ 0.9), bias
(≤ 0.04 m3 m−3), and standard deviation of the difference
(SDD≤ 0.03 m3 m−3) over the six domains investigated in
this study. In a second step, the S1+S3 S2MP maps were
compared to the other HR maps. S1+S3 SM maps are well
correlated to the CGLS SM maps (R ∼ 0.7–0.8), but the cor-
relations with respect to the other HR maps (CGLS SWI
and SMAP+S1) drop significantly over many areas of the
six domains investigated in this study. The highest correla-
tions between the HR maps were found over croplands and
when the 1 km pixels have a very homogeneous land cover.
The bias among the different maps was found to be signifi-
cant over some areas of the six domains, reaching values of
±0.1 m3 m−3. The S1+S3 maps show a lower SDD with
respect to CGLS maps (≤ 0.06 m3 m−3) than with respect
to the SMAP+S1 maps (≤ 0.1 m3 m−3) for all the six do-
mains.

Finally, all the HR datasets (S1+S2, S1+S3, CGLS, and
SMAP+S1) were also compared to in situ measurements
from five networks across five countries, along with coarse-
resolution (CR) SM products from SMAP, SMOS, and the
European Space Agency Climate Change Initiative (CCI).
While all the CR and HR products show different bias and
SDD, the HR products show lower correlations than the
CR ones with respect to in situ measurements. The discrep-
ancies in between the different HR datasets, except for the
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more simple land cover conditions (homogeneous pixels with
croplands) and the lower performances with respect to in situ
measurement than coarse-resolution datasets, show the re-
maining challenges for large-scale HR SM mapping.

1 Introduction

Surface soil moisture (SM) plays a key role in the Earth
water cycle as it affects many hydrological processes such
as infiltration, runoff, evaporation, and precipitation (Koster
et al., 2004). SM measurements are used to constrain numer-
ical weather prediction (NWP) models via data assimilation
(De Rosnay et al., 2013; de Rosnay et al., 2014; Rodríguez-
Fernández et al., 2019) in addition to crop yield forecast-
ing, food security, and agriculture management (Guerif and
Duke, 2000). SM was identified as one of the 50 essential
climate variables (ECVs) by the Global Climate Observing
System in the context of the United Nations Framework Con-
vention on Climate Change (Plummer et al., 2017; GCOS,
2021). Building long time series of SM is crucial for climate
applications, and this is the goal of projects such as the Euro-
pean Space Agency’s Climate Change Initiative (ESA CCI)
for SM (Gruber et al., 2019).

Both active and passive microwave sensors can be used to
estimate SM at coarse resolutions (∼ 25–40 km), including
the active Advanced SCATterometer (ASCAT; Vreugdenhil
et al., 2016), the passive Advanced Microwave Scanning Ra-
diometer 2 (AMSR2; Kim et al., 2015; Imaoka et al., 2000),
and the two sensors that have been specifically designed to
measure SM at L band, namely the Soil Moisture and Ocean
Salinity (SMOS; Kerr et al., 2012) and Soil Moisture Ac-
tive Passive (SMAP; Entekhabi et al., 2010). However, de-
spite the actual availability of these SM products, they do not
match the requirements of a number of applications. Peng
et al. (2020) have discussed a roadmap and the requirements
for future SM products. An optimal spatial resolution for data
assimilation into NWP models and reanalysis would be 5–
10 km (global models are already running with resolutions
better than 10 km; see, for instance, Muñoz-Sabater et al.,
2021). The evaluation of climate models and the assessment
of climate change impacts at a regional level would also ben-
efit from a higher resolution than that of the current genera-
tion of coarse-resolution sensors. In addition, other applica-
tions in hydrology, agriculture, and risk assessment require
even higher resolutions of ∼ 1 km (Massari et al., 2021).

Downscaling the coarse-scale-resolution data by merg-
ing them with higher-resolution data is a possibility for the
achievement of high-resolution SM datasets. For example,
high-resolution SM estimates can be derived from visible/in-
frared (Merlin et al., 2012) or synthetic-aperture radar (SAR;
Tomer et al., 2016; Das et al., 2019) measurements. SAR ob-
servations alone have also been tested to estimate SM using
different frequencies and instruments such as RADARSAT,

ALOS-L, or TerraSAR-X. Radar signal is not only sensi-
tive to the dielectric constant linked to SM but also to sur-
face geometry (including roughness) and vegetation water
content and structure (Ulaby et al., 1986). Different inver-
sion algorithms have been proposed, considering principally
three techniques, i.e., change detection algorithms (Wagner
et al., 1999; Balenzano et al., 2010; Bauer-Marschallinger
et al., 2018), direct inversion of physical or empirical models
(Moran et al., 2000; Srivastava et al., 2009; Pierdicca et al.,
2010; Hajj et al., 2014; Bousbih et al., 2017; Şekertekin et al.,
2018), and machine learning methods (Paloscia et al., 2004;
Notarnicola et al., 2008; El Hajj et al., 2017).

With the successive launches of the C-band SARs on board
Sentinel-1A (S1A, 2014) and Sentinel-1B (S1B, 2016),
SM can be estimated at high spatial resolution and with a
revisit time of better than 6 d over Europe. Three opera-
tional high-resolution (HR) SM datasets at 1 km resolution
using Sentinel-1 (S1) exist, such as the S1 SM and Soil Wa-
ter Index (SWI) products from the Copernicus Global Land
Service (CGLS; Bauer-Marschallinger et al., 2018, 2019)
and the SMAP+S1 downscaled product (Das et al., 2020).
SM estimates at a very high resolution (10 m scale) at some
locations in Europe (and in Lebanon and Morocco) over
croplands are also distributed by the French continental sur-
faces data center (THEIA; https://www.theia-land.fr, last ac-
cess: November 2021). In contrast to the CGLS datasets,
the THEIA SM dataset is obtained using synergistic S1
and Sentinel-2 (S2) measurements as inputs to the Sentinel-
1/Sentinel-2-Derived Soil Moisture Product (S2MP) algo-
rithm (El Hajj et al., 2017). This dataset has been evalu-
ated against in situ measurements in comparison to SMAP,
SMOS, and ASCAT coarse-resolution (CR) datasets (El Hajj
et al., 2018) and with respect to the CGLS S1 SM dataset
(Bazzi et al., 2019), both in the south of France. The S2MP
SM estimates not only showed the lowest unbiased root mean
squared errors with respect to in situ measurements but also
a moderate correlation, lower than that obtained for SMAP
and ASCAT datasets (El Hajj et al., 2018). In this region, the
S2MP SM showed better performances with respect to in situ
measurements than the CGLS SM for the classical metrics
(Bazzi et al., 2019).

Taking into account the importance of having accurate HR
large-scale SM datasets, in this study the S2MP algorithm
was extended to provide SM estimates over both croplands
and herbaceous vegetation at 1 km resolution, which also al-
lowed the use of the Sentinel-3 (S3) NDVI (Normalized Dif-
ference Vegetation Index) instead of S2.

Two sets of SM maps at 1 km resolution were produced
with the S2MP algorithm over six domains of ∼ 104 km2

in Tunisia, North America, Spain, Australia, and the south-
west and southeast of France (Fig. 1a). One set is based
on the combination of S1 and S2 measurements (S1+S2
maps), while the other is based on the combination of S1
and S3 measurements (S1+S3 maps). The S2MP S1+S2
and S1+S3 maps were compared to those provided by the
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Figure 1. (a) Global locations of the six regions of study (© Google Maps 2022). (b) Copernicus land cover maps of the six regions of study
aggregated at 1 km spatial resolution. Only the dominant land cover type within a 1 km2 pixel is shown. For instance, a pixel characterized
as forests can contain 27 % of forests, 26 % of croplands, 24 % of herbaceous vegetation, and 23 % of shrublands or 90 % of forests and 10 %
of herbaceous vegetation. The in situ stations are shown as black dots. One black dot can correspond to several sensors, since some of them
have the same coordinates. (c) Proportion of croplands and herbaceous vegetation within each 1 km2 pixel for the six regions of study. The
proportion is expressed as a percentage ranging from 0 to 1. Pixels with no cropland or herbaceous vegetation at all are shown as white areas.

https://doi.org/10.5194/hess-27-1221-2023 Hydrol. Earth Syst. Sci., 27, 1221–1242, 2023



1224 R. Madelon et al.: Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data

SMAP+S1 product and those from the CGLS SM and SWI
datasets from January to December 2019. The comparison
was carried out on a per-pixel basis, and the results were
analyzed according to pixel homogeneity for areas covered
by croplands and herbaceous vegetation. In addition, the
HR time series were evaluated against in situ measurements
along with those of the coarser-resolution SM datasets from
SMAP, SMOS, and ESA CCI.

The paper is structured as follows. Section 2 presents the
different remotely sensed and ground-based data that are
used in this study. Section 3 describes the methodology used
to estimate SM over croplands and herbaceous regions using
S1+S3. Section 4 shows the S1+S3 S2MP maps and time
series. They are also compared to the S1+S2 maps in ad-
dition to other HR datasets, coarse-resolution datasets, and
in situ measurements. Section 5 discusses the interest of the
S2MP algorithm modifications and the remaining challenges
for large-scale HR SM mapping. Section 6 draws the conclu-
sions of the study.

2 Data

2.1 Soil moisture maps computation

2.1.1 Sentinel-1

The Sentinel-1 mission is the first satellite constellation mis-
sion of the Copernicus program and was conducted by ESA.
The mission is composed of a constellation of two satel-
lites sharing the same orbital plane. S1A was launched on
3 April 2014 and S1B on 25 April 2016. They were placed in
a near-polar, sun-synchronous orbit. The revisit frequency is
12 d over Europe (6 d using both satellites), with an Equator-
crossing time at 18:00 LT (local time) for the descending
overpass. S1A and S1B carry a C-band (wavelength ∼ 6 cm)
SAR imaging instrument on board, enabling the acquisition
of imagery regardless of the weather and the time of the day.

For the production of the S2MP SM maps, S1A and S1B
SAR images were collected over each region of study. S1 im-
ages are accessible from the Copernicus Open Access Hub.
The S1 images (10 m× 10 m) were acquired in the interfero-
metric wide (IW) swath imagining mode, with VV (vertical
transmit, vertical receive) and VH (vertical transmit, horizon-
tal receive) polarizations, and the S1 Toolbox (S1TBX) de-
veloped by the ESA was used to calibrate the images. This
calibration aims to convert digital number values from S1 im-
ages into backscattering coefficients (σ

◦

) in a linear unit and
orthorectifying the images using the Shuttle Radar Topogra-
phy Mission (SRTM) digital elevation model (DEM) at 30 m
spatial resolution. A database of S1 images, available from
January to December 2019, was created for each region of
study. The databases contain S1 images acquired both in as-
cending (afternoon) and descending (morning) modes.

2.1.2 Sentinel-2

The Sentinel-2A and 2B (S2A and S2B) satellites were
launched on 23 June 2015 and 7 March 2017 and were
placed in a near-polar, sun-synchronous orbit. The revisit fre-
quency is 10 d (5 d with two satellites), and the descending
orbit crossing time at Equator is 10:30. The spatial coverage
ranges from 56◦ S to 84◦ N. The satellites carry a multispec-
tral instrument with 13 bands on board, with four bands at
10 m, six bands at 20 m, and three bands at 60 m spatial reso-
lution. The orbital swath width is 290 km (Spoto et al., 2012).

For the production of the S2MP SM maps based on S1
and S2, optical images from S2A on dates close to S1 SAR
images (less than 2 weeks) were downloaded from the French
land data service center (THEIA) website (https://www.
theia-land.fr/, last access: November 2021). The S2A optical
images (10 m× 10 m) are corrected for atmospheric effects
and orthorectified.

2.1.3 Sentinel-3

The Sentinel-3A and 3B (S3A and S3B) satellites were
launched on 16 February 2016 and on 25 April 2018, re-
spectively. The S3 satellites’ orbit is a near-polar, sun-
synchronous orbit with an Equator-crossing time of 10:00 LT
for the descending overpass. They carry an optical instru-
ment payload on board (the Ocean and Land Colour Instru-
ment, OLCI) that samples 21 spectral bands ([0.4–1.02] µm)
with a swath width of 1270 km and a spatial resolution of
300 m. They also carry a dual-view scanning temperature ra-
diometer at 500 m spatial resolution, i.e., the Sea and Land
Surface Temperature Radiometer (SLSTR). The revisit fre-
quency of these instruments is 2 d when both satellites are
used together (Donlon et al., 2012).

In this study, the S3 10 d synthesis NDVI at 1 km spa-
tial resolution was used for the production of the S2MP
SM maps based on S1 and S3. These data are accessible
from the SY_2_V10 product (Henocq et al., 2018) and were
downloaded from the Copernicus Open Access Hub. The
data from this product rely upon the synergistic use of the
OLCI and SLSTR instruments. The product provides a 1 km
VEGETATION-like product, including 10 d synthesis sur-
face reflectances and NDVI. The NDVI values correspond to
a maximum NDVI value composite of all segments received
for 10 d.

2.2 Data used for evaluation

2.2.1 Copernicus Global Land Service

Two Copernicus Global Land Service (CGLS) datasets were
used to compare with the S2MP maps.

i. The CGLS V111 S1 Surface Soil Moisture product
(hereafter CoperSSM) is retrieved from the S1 radar
backscatter images over the European continent at 1 km
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resolution (Bauer-Marschallinger et al., 2019). The im-
ages are acquired at C-band SAR in VV polarization,
and the retrieval approach is based on a change de-
tection algorithm (Bauer-Marschallinger et al., 2018).
Changes observed in the C-band SAR backscatter co-
efficient are interpreted as changes in the SM values,
whereas other surface properties such as the geometry,
surface roughness, and vegetation cover are assumed to
be static in time for each pixel. The algorithm provides
local relative SM values in percentages ranging between
0 % and 100 %, except in the case of extremely dry
conditions, frozen soil, snow-covered soil, and flooding.
The data are sampled at 1 km resolution from 11◦W to
50◦ E and from 35 to 72◦ N.

ii. The CGLS V101 S1 Soil Water Index product (here-
after CoperSWI) is derived from a fusion of surface
SM observations from S1 C-band SAR and Metop AS-
CAT sensors (Bauer-Marschallinger et al., 2018). It uses
a two-layered water balance model that is adapted to
use a recursive formulation and does not account for
soil texture. A Surface State Flag (SSF) that indicates
the frozen, unfrozen, and/or melting state of the sur-
face, depending on the temperature, is used to identify
SM values under non-frozen conditions to be used for
the SWI calculation. SWI and quality flag values are
calculated based on a phenomenological formulation
that depends on the characteristic time length parame-
ter (hereafter T ). A large T value represents an increase
in reservoir depth or a decreased pseudo-diffusivity co-
efficient. This means that, for a fixed pseudo-diffusivity
constant, an increased T value represents a deeper soil
layer (Paulik et al., 2014). SWI estimations for eight dif-
ferent T values are provided within the product. Previ-
ous evaluations of SWI data by Paulik et al. (2014) and
Albergel et al. (2008) showed that the best agreement
with in situ measured surface SM is usually obtained
with T values in the range of 5–10; therefore, SWI data
with T = 5 were used in this study.

2.2.2 SMAP products

SMAP provides passive measurements of 1.4 GHz bright-
ness temperatures in vertical and horizontal polarizations at
a fixed incidence angle of 40◦, with a resolution of ∼ 45 km
(Entekhabi et al., 2014). SMAP ascending and descending
orbits cross the Equator at 18:00 and 06:00 LT, respectively,
and the maximum revisit period is 3 d. Several HR and
CR SM datasets from SMAP were used for the evaluation
of the S2MP maps.

i. The SMAP L3 V6 SM product (hereafter SMAPL3).
It is a daily gridded composite of the SMAP L2 V5
SM files (O’Neill et al., 2018, 2019b). Only SM esti-
mates derived from L1C brightness temperatures (Chan
et al., 2018) using the single-channel algorithm V-

polarization (Entekhabi et al., 2010) were considered.
SMAP L3 data are sampled at 36 km resolution.

ii. The SMAP Enhanced L3 V1 SM product (hereafter
SMAPL3E), which is obtained by oversampling the
L1C brightness temperatures from 36 to 9 km resolution
using an interpolation algorithm (O’Neill et al., 2019a).
Only SM estimates derived using the single-channel al-
gorithm V-polarization were considered.

iii. The SMAP+S1 L2 V1 SM product (hereafter
SMAPS1) provides SMs at 1 km resolution that are es-
timated using the SMAP enhanced L3 V004 half-orbit
at 9 km resolution and Copernicus S1A and S1B C-
band SAR data (Das et al., 2020). Brightness tempera-
tures from SMAP are disaggregated on the 1 km Equal-
Area Scalable Earth (EASE) Grid by using the S1 radar
backscatter data, and HR SM estimates are obtained us-
ing the SMAP algorithm. The closest data in time be-
tween descending and ascending orbits from SMAP are
used to spatially match up with the S1 scene.

2.2.3 SMOS

The SMOS mission (Kerr et al., 2010) carries a passive in-
terferometric radiometer operating at the L band (21 cm,
1.4 GHz), with a spatial resolution of 25–50, depending on
the position on the field of view (43 km on average). The fol-
lowing CR SM datasets from SMOS were used in this study:

i. The CATDS SMOS L3 V7 SM product (hereafter
SMOSL3), which is a multi-orbit SM product, pro-
vided by the Centre Aval de Traitement des Don-
nées (CATDS), with a grid resolution of 25 km (Al Bitar
et al., 2017). The SM retrieval process is based on the
algorithm used for the SMOS L2 product (Kerr et al.,
2012) but simultaneously using three orbits within a 1-
week period to better constrain the SM and optical depth
estimations.

ii. The ESA SMOS Near-Real Time (NRT) Neural Net-
work (NN) V2 SM product (hereafter SMOSNRT), pro-
vided on the icosahedral equal area grid (ISEA4H9),
with 15 km resolution (Rodríguez-Fernández et al.,
2017). It is designed to provide SM in less than 3.5 h af-
ter sensing. The algorithm uses a NN-trained sequence
using SMOS L2 SM data (Kerr et al., 2012). The in-
put data for the NN are SMOS brightness temperatures,
with incidence angles from 30 to 45◦ for horizontal
and vertical polarizations, and soil temperature in the
0–7 cm layer from the European Centre for Medium-
Range Weather Forecasts (ECMWF) models.

2.2.4 ESA CCI COMBINED product

In the COMBINED product of ESA SM CCI V5.2 (hereafter
CCISM; Dorigo et al., 2017; Gruber et al., 2019), L2 datasets
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Table 1. In situ measurements that were used in this study. The depths are given as two numbers, where the first one is the upper depth of
the sensor, and the second one is the lower depth of the sensor. Both numbers are equal when the sensor is placed horizontally. The fourth
column shows the number of sensors that provide SM measurements in 2019. These measurements were used to convert the relative indices
from CoperSSM and CoperSWI into SM estimates with volumetric units (m3 m−3; Sect. 3.2). The number in parenthesis corresponds to the
number of in situ locations where the evaluations of the remotely sensed data were significant (P value below 5 %; Sect. 3.3).

Measurements Location Depth (m) Sensors Reference

REMEDHUS Spain 0–0.05 19 (13) Gonzalez-Zamora et al. (2018)
SMOSMANIA Southwest of France 0.05–0.05 4 (3) Calvet et al. (2007)
SMOSMANIA Southeast of France 0.05–0.05 5 (0) Calvet et al. (2007)
OZNET Australia 0–0.05 11 (10) Smith et al. (2012); Young et al. (2008)
USCRN North America 0.05–0.05 2 (1) Bell et al. (2013)
ARM North America 0.05–0.05 24 (13) Cook (2016, 2018)
MERGUELLIL Tunisia 0–0.05 5 (2) Amri et al. (2011); Gorrab et al. (2015)

from different active and passive sensors are directly scaled
by matching their cumulative density functions (CDFs) to
that of the Global Land Data Assimilation System (GLDAS;
Rodell et al., 2004) Noah land surface model in order to re-
move relative biases and harmonize their dynamical ranges.
In the period of this study, ESA CCI COMBINED uses the
H SAF active sensor products from the Advanced SCAT-
terometer A and B (ASCAT; Wagner et al., 2013) and the pas-
sive sensor products from the Advanced Microwave Scan-
ning Radiometer 2 (AMSR2; Kim et al., 2015; Imaoka et al.,
2000), in addition to those from SMAP and SMOS. SM data
from the passive sensors are estimated using the land pa-
rameter retrieval model (LPRM) V6 (Van der Schalie et al.,
2016, 2017). The data are sampled at 25 km resolution.

2.2.5 Land cover

The Copernicus Global Land Service (CGLS) V3 Dynamic
Land Cover map product delivers a global land cover map at
100 m resolution, covering the period between 2015 to 2019
(Buchhorn et al., 2020). For each year, a land cover map
is provided with three different levels of classes, including
11 classes at level 1 (all types of forests are considered to be a
unique land cover class), 13 classes at level 2 (forests are split
in two land cover classes of open and closed forests), and up
to 22 classes at level 3 (all types of open and closed forests
are considered). In this study, only the 2019 land cover map
at level 1 was considered. Figure 1b shows the seven land
cover classes that are represented in the six regions of study.
In this figure, the land cover map was aggregated from 100 m
to 1 km resolution for evaluation purposes, meaning that only
the dominant land cover for each 1 km2 pixel is shown.

2.2.6 In situ measurements

The evaluation against in situ measurements of soil moisture
was performed using data from the REMEDHUS (Gonzalez-
Zamora et al., 2018), SMOSMANIA (Calvet et al., 2007),
OZNET (Smith et al., 2012; Young et al., 2008), USCRN
(Bell et al., 2013), ARM (Cook, 2016, 2018), and the MER-

GUELLIL networks (Amri et al., 2011; Gorrab et al., 2015)
that are located within the six regions of this study (Ta-
ble 1). All data, except those from the MERGUELLIL net-
work, were retrieved from the International Soil Moisture
Network (ISMN; Dorigo et al., 2011, 2021). Only sensors be-
tween 0 and 5 cm depth were considered. In total, 65 ISMN
and 5 MERGUELLIL sites were used for the scaling of
the CoperSSM and CoperSWI data (Sect. 3.2). Fewer sites
(40 from ISMN and 2 from MERGUELLIL) were used to
assess the remotely sensed data, following the criteria ex-
plained in Sect. 3.3. The different in situ stations can be lo-
cated using Fig. 1a and b.

3 Methods

3.1 Building S2MP maps using NDVI derived from
Sentinel-3

The S2MP algorithm (El Hajj et al., 2017) was originally
designed to estimate surface SM at the scale of agricul-
tural plots (10 m resolution) using synergistically data de-
rived from the S1 radar signal and the S2 optical images
as input to a neural network. The neural network was first
trained using a synthetic database gathering (i) SAR C-band
backscatter coefficients in the VV polarization, (ii) incidence
angles (from 20 to 45◦), and (iii) NDVI as input and SM ex-
amples as a target. This synthetic database was built using a
Water Cloud Model (Baghdadi et al., 2017) combined with
an Integral Equation Model (Baghdadi et al., 2006, 2011) that
was specially modified and optimized for this application.
Then, the S2MP algorithm was applied to a real database
gathering the SAR backscatter coefficient in VV polariza-
tion from S1, the incidence angle of the SAR acquisitions,
and the NDVI derived from optical images taken by S2 as
follows. First, the NDVI was computed at 10 m spatial res-
olution (native resolution of S2) using the atmospherically
and orthorectified S2 images. To overcome the cloud cover
issue present in optical images, a gap-filling procedure was
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performed using the linear interpolation to obtain two cloud-
free NDVI images per month (1st and 15th of each month).
To derive S2 NDVI data at the S1 acquisition dates, a lin-
ear interpolation was performed for each S2 pixel, using the
NDVI values corresponding to the closest S2 images ac-
quired before and after the S1 date. Second, the 10 m resolu-
tion S1 backscattering signal, incidence angle, and S2 NDVI
were averaged for each 100 m pixel from the CGLS land
cover map. Then, the SM estimation using the S2MP algo-
rithm was performed at 100 m spatial resolution over pixels
covered by croplands, using the CGLS land cover map de-
scribed above (see Sect. 2.2.1). There is no retrieval for other
types of land cover.

In contrast to the (El Hajj et al., 2017) approach described
above, in the current study, S1+S2 maps were also com-
puted for 100 m pixels covered by herbaceous vegetation.
In addition, the 100 m SM estimations were aggregated to
1 km. On the other hand, HR SM maps were also produced
using NDVI from the SY_2_V10 product at 1 km resolution
from S3 (see Sect. 2.1.3). Due to the spatial resolution of the
S3 NDVI, the S1 backscattering signal and incidence angle
were first aggregated from 10 to 100 m resolution and then
re-aggregated from 100 m to 1 km but only over croplands
and herbaceous vegetation. Then, the neural network was
only applied over the 1 km2 pixels that are partly or entirely
covered by croplands and/or herbaceous vegetation. The ob-
jective was to assess the impact of using a lower spatial res-
olution NDVI as input to the S2MP algorithm.

Hereafter, S2MPS1S2 and S2MPS1S3 will refer to the S2MP
SM datasets derived based on the synergistic use of S1+S2,
and S1+S3 measurements, respectively. S2MPS1S2 and
S2MPS1S3 were produced from January to December 2019.

For both S2MPS1S2 and S2MPS1S3, it is important to high-
light again that there is no SM estimate available over 1 km2

pixels not covered at all by croplands and herbaceous veg-
etation. However, as long as there is a fraction of croplands
and/or herbaceous vegetation (whatever the amount) within
the pixel, SM values are provided. The proportion of crop-
lands and herbaceous vegetation within each 1 km2 pixel for
the six regions of study is shown in Fig. 1c.

3.2 CoperSSM and CoperSWI rescaling

Relative SM indices from CoperSSM and CoperSWI were
scaled against in situ measurements for each region indepen-
dently. This process is needed to transform the indices into
SM estimates with volumetric units (m3 m−3). The follow-
ing scaling formula was applied:

SM∗n = SMn×

[
max

(
SMIS

n

)
−min

(
SMIS

n

)]
+min

(
SMIS

n

)
, (1)

where SMn and SM∗n are, respectively, the original and scaled
SM indices from CoperSSM. SMIS

n includes all the SM mea-
surements from all the in situ time series available for the cur-
rent region n in 2019 (Table 1). This concretely means 19 in

situ time series for the Spanish region, 4 in the southwest of
France, 5 in the southeast of France, 11 for the Australian
region, 26 in North America, and 5 in Tunisia.

The 2.5 % lowest and 2.5 % highest values are discarded
before applying the minimum and maximum functions in
order to remove the effect of possible outliers that can be
caused by instrumental noise (Brocca et al., 2011). The same
process was also undertaken to scale the SWI values from
CoperSWI. The Copernicus indices were also scaled using
SMOSL3 or SMAPL3 to obtain the maximum and minimum
references instead of in situ measurements. The final results
were quite comparable, regardless of the reference used, and
thus only the scaling against in situ measurements was used
for the rest of the study.

3.3 Dataset comparisons

Comparisons between datasets and evaluations against in situ
measurements were done from January to December 2019.
In a first step, the S2MPS1S2 and S2MPS1S3 maps were com-
pared on a per-pixel basis for each region in terms of a Pear-
son correlation (R), bias, and standard deviation of the differ-
ence (SDD; also referred to as the unbiased root mean square
of the difference by some authors). The metrics for which the
P value exceeded the threshold of 5 % (interval of confidence
of 95 %) were discarded.

In a second step, S2MPS1S3 values were compared to the
three HR datasets described in Sect. 2, namely CoperSSM,
CoperSWI, and SMAPS1. This analysis was also performed
by computing R, bias, and SDD on a per-pixel basis for each
region (all the HR datasets are sampled on the same 1 km reg-
ular grid). In addition, the metrics were analyzed as a func-
tion of croplands and herbaceous vegetation coverage over
1 km2 pixels. The metrics for which the P value exceeded
the threshold of 5 % were discarded.

In a third step, all the different CR and HR datasets were
evaluated against the in situ measurements available in the
six regions of study. To perform the analysis under opti-
mal conditions, only morning orbits from SMOS (ascending
overpasses) and SMAP (descending overpasses) within this
time period were considered. During the night and early in
the morning, the soil is in thermal balance, meaning that the
vegetation temperature is equal to the soil temperature. Dur-
ing the afternoon, the balance is lost, and the vegetation tem-
perature is closer to the air temperature, leading to satellite
estimates of lower quality. This is often reflected by lower
performances against in situ measurements for the afternoon
SM estimates compared to those of the morning (Leroux
et al., 2014). For each ground station, the closest time se-
ries from each remotely sensed dataset was compared to the
in situ measurements by computing R, bias, and SDD. Only
samples for which the difference in acquisition time with the
in situ measurements does not exceed 1 h were taken into ac-
count to compute those statistical metrics. Metrics for which
the corresponding P value exceeded the threshold value of
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5 % were discarded. This implies that only in situ locations
where all the comparisons between the remotely sensed and
in situ time series showing significant metrics were consid-
ered for the assessment (Table 1). This concretely means
13 in situ time series for the Spanish region, 3 in the south-
west of France, 0 in the southeast of France, 10 for the Aus-
tralian region, 15 in North America, and 2 in Tunisia.

Then, remotely sensed time series of anomalies in a 35 d
time window were also compared to those of the in situ mea-
surements in terms of R. They were derived as follows:

SMa
t = (SMt −µt )/σt

µt = 1/N ×
t2∑
n=t1

SMn

σt =

√√√√1/(N − 1)×
t2∑
n=t1

(SMn−µ)
2, (2)

where SMa
t and SMt are the SM and anomalies values at

time t , respectively. N is the number of observations from
t minus 17 d (t1) to t plus 17 d (t2).

Finally, the HR datasets (S2MPS1S2, S2MPS1S3, Cop-
erSSM, CoperSWI, and SMAPS1) were evaluated against in
situ measurements (R, bias, and SDD with P values below
5 %) after aggregation at 25 km resolution (same grid as that
of CCISM) in order to compare their performances to the
CR data at a comparable resolution.

4 Results

4.1 Sentinel-3 versus Sentinel-2 NDVI

S2 and S3 NDVI were compared in each region of study
at 1 km grid scale in terms of R2 as scatterplots in Fig. 2.
High R2 is observed in Australia (0.86) and Tunisia (0.79),
and moderate values are found in North America (0.68) and
Spain (0.64). No significant correlation is observed in the
southwest and southeast of France. The results indicate that,
in dry regions such as in Australia, Tunisia, and North Amer-
ica, a high correlation exists between S2 and S3 NDVI,
whereas a low correlation is present in temperate areas with
patchy land covers such as in the south of France. For all
the study regions, S3 NDVI saturates between 0.6 and 0.7,
whereas S2 NDVI reaches higher values between 0.8 and 0.9.
The difference could mainly be due to the mixture of surface
reflectances from different land cover classes within the 1 km
S3 NDVI.

Figure 3 shows the distribution of R2 between S2 and
S3 NDVI as a function of the months for each region. In gen-
eral, higher correlations are obtained in the summer season
(dry periods) than in winter and spring (humid periods). For
example, R2 between S2 and S3 NDVI is only high (0.72)
from January to June (summer and autumn seasons) in Aus-
tralia. In North America, from March to July, R2 is be-

tween 0.25 and 0.53, whereas no significant correlation be-
tween S2 and S3 NDVI is found for the other months. In the
southwest and southeast of France, no correlation is found for
most of the months, except in summer (June, July, and Au-
gust). On the one hand, the highest NDVI values are found in
winter and spring seasons due to the development of the veg-
etation cycles. On the other hand, summer seasons usually
show lower NDVI values that correspond to bare soil condi-
tions, except in the presence of irrigated summer crops. Thus,
S2 and S3 NDVI are highly correlated for low NDVI values
(usually in summer). However, the correlation decreases for
high NDVI values because of the peak of the vegetation de-
velopment (in spring).

4.2 S2MPS1S3 comparison to S2MPS1S2

Figure 4 shows R, bias and SDD between S2MPS1S2 and
S2MPS1S3 for the six study regions. A very good agreement
between the two datasets was found in all the regions with
R ≥ 0.9, bias ≤ 0.04 m3 m−3 (S2MPS1S3 minus S2MPS1S2),
and SDD≤ 0.03 m3 m−3 for most of the areas. However,
some differences in terms of bias can be seen between the
two datasets in the northwest of the Spanish region (Fig. 4c),
in the areas with significant forests cover in the region south-
west of France (Fig. 4i), and in narrow areas of the Tunisian
region (Fig. 4f).

The somewhat higher differences in the Spanish region
and in the region southwest of France are seen over pix-
els covered by forests, with a small fraction of croplands
and herbaceous vegetation (see the Spanish region in Fig. 1b
and c). The somewhat larger differences in some narrow ar-
eas of Tunisia are due to heterogeneous land cover around
several river basins with rolling topography, sparse forests,
and grasslands.

As discussed above, these small differences were ex-
pected due to the differences seen between S3 and S2 NDVI
(Sect. 4.1) and the different way of aggregating the
S1 backscatter coefficients (Sect. 3.1). However, taking
into account the overall very good agreement between
S2MPS1S2 and S2MPS1S3, for the sake of simplicity and clar-
ity, in Sect. 4.3 only S2MPS1S3 is compared to the other
HR datasets.

4.3 General comparison of S2MPS1S3 against the
HR SM datasets

Figures 5–7 present the comparison of S2MPS1S3 against
CoperSSM, CoperSWI, and SMAPS1 over the six study re-
gions in terms of bias, SDD, and R, respectively. Some diag-
onal structures can be seen in the maps comparing S2MPS1S3
to CoperSSM in Spain and in the southwest of France. These
artifacts, most pronounced in the correlation maps and also
present in the bias and SDD maps, come from the CoperSSM
data, as previously discussed by Bazzi et al. (2019). Indeed,
the artifacts are seen on the sub-swaths of the S1 product,
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Figure 2. Correlation between S2 and S3 NDVI at 1 km grid scale for the six study regions from January to December 2019.

Figure 3. Correlation between S2 and S3 NDVI at 1 km grid scale each month from January to December 2019 for the six study regions. For
months with no bars, it means that there is no correlation between S2 and S3 NDVI.
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Figure 4. Comparison of S2MPS1S3 with respect to S2MPS1S2 over the regions of study in terms of Pearson correlation (R), bias (S2MPS1S2
minus S2MPS1S3), and standard deviation of the difference (SDD) in m3 m−3. The analysis was performed from January to December 2019.

showing a big difference between the SM estimations in
the CoperSSM at the same SM estimation date. Bazzi et al.
(2019) showed that the difference in the SM estimation at
both sides of the sub-swath at a given date of the CoperSSM
map can reach 0.11 m3 m−3.

4.3.1 Comparison of the order of magnitude

According to Fig. 5, S2MPS1S3 shows a bias in the range
from −0.1 to 0.1 m3 m−3 with respect to the other HR prod-
ucts over most of the pixels within the six regions of study.
However, there are areas in the domains of Spain, Tunisia,
and southeast of France where S2MPS1S3 shows a dry bias
of an absolute value larger than 0.1 m3 m−3. This is also par-
ticularly the case in the southwest of France, with respect
to CoperSSM and CoperSWI, and in Australia and North
America, with respect to SMAPS1n. For these regions and
HR datasets, the bias is negative over the whole area. For all
the other combinations of regions and HR products, the bias
values are both positive and negative. In general, there is no
clear relationship between the sign of the bias and the domi-
nant land cover class. However, in the case of the comparison
between S2MPS1S3 and SMAPS1 in the region in the south-
west of France, the bias distribution is split in two (Fig. 5i).

A wet bias is observed in the western part of the region, cor-
responding to forests areas with low fractions of croplands
and herbaceous vegetation, while a dry bias is found in the
eastern part, corresponding to areas dominated by croplands
(Fig. 1b and c). In addition, the dry bias observed in the
eastern part of the Tunisian region corresponds to an area
of salted lakes, whose water and moisture contents can vary
significantly according to climate.

Figure 6 shows that the SDD values of S2MPS1S3,
with respect to CoperSSM and CoperSWI, are lower than
0.06 m3 m−3 over almost all of the pixels within the four re-
gions for which the Copernicus datasets are available. Higher
values close to 0.08–0.10 m3 m−3 between S2MPS1S3 and
CoperSSM are found in the southwestern part of the south-
west region of France. The SDD obtained between S2MPS1S3
and SMAPS1 are comparable to those obtained with re-
spect to the Copernicus datasets. However, values reach-
ing 0.08–0.12 m3 m−3 are more often found, in particular,
in the western part of the Spanish region and are sparse
in the southwest and southeast of France. In Australia and
North America (Fig. 6m and n), the SDD with respect to
SMAPS1 is quite similar to those found in Spain, Tunisia,
and France (Fig. 6c, f, i and l), where values can reach
∼ 0.08–0.12 m3 m−3 in the southeastern and western parts of
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Figure 5. Comparison of S2MPS1S3 with respect to CoperSSM (S2MPS1S3 minus CoperSSM), CoperSWI (S2MPS1S3 minus CoperSWI),
and SMAPS1 (S2MPS1S3 minus SMAPS1) over the regions of study in terms of bias (in m3 m−3). The analysis was performed from January
to December 2019.

the Australia and North America regions, respectively. There
is no clear and unique relationship with the dominant land
cover class. For instance, the SDD with respect to SMAPS1
in the southwest of France is higher over the forests than over
the cropland-dominated areas, while in the North America
region, the SDD was found to be lower over the forests (see
Fig. 1b and c).

4.3.2 Comparison of the temporal dynamics

Overall, S2MPS1S3 and CoperSSM show a high correlation
(above 0.7–0.8) over almost all the pixels within all the re-
gions of study (Fig. 7a, d, g, and j). In contrast, lower values
are found for the correlation between S2MPS1S3 and Cop-
erSWI (Fig. 7b, e, h, and k) and between S2MPS1S3 and
SMAPS1 (Fig. 7c, f, i, l, m, and n). R rarely exceed 0.7, and
values lower than 0.6 are observed in many large areas.

In the Spanish region, the highest R values are obtained
in the areas dominated by croplands. The lowest values are
found in the northwest over heterogeneous pixels dominated
by forests (Fig. 1b and c). Similar spatial features are ob-
served in the three maps comparing S2MPS1S3 to CoperSSM,
CoperSWI, and SMAPS1 (Fig. 7a–c). However, lower R val-

ues are found with respect to SMAPS1 and CoperSWI. In
addition, the comparison with CoperSWI shows R below 0.5
in a few spots in the south and in the center of the region.

In Tunisia (Fig. 7d–f), the correlation values obtained in
the north are quite good, with values of 0.8–0.9 with respect
to CoperSSM. The R values drop in the southeast and south-
west to values lower than 0.5. The decrease in the southwest
can be partly explained by the proximity of coasts, where
mixed land cover pixels include urban areas (Fig. 1b). The
correlation with respect to CoperSWI (Fig. 7e) is only higher
than 0.5 for the regions where the 1 km2 pixels are domi-
nated by croplands. The comparison between S2MPS1S3 and
SMAPS1 results in a large range of correlations. Only the
northernmost areas dominated by croplands show correla-
tions above 0.6 (Fig. 1b and c). R close to 0.4–0.5 are found
in the eastern and western parts of the region. Values lower
than 0.2 are observed in the center of the region over het-
erogeneous pixels around several river basins that were also
highlighted in Sect. 4.2 with Fig. 4f.

In the region southwest of France (Fig. 7g–i), the distribu-
tion of R is quite homogeneous over the whole area and does
not vary significantly, according to the pixels dominated by
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Figure 6. Comparison of S2MPS1S3 with respect to CoperSSM, CoperSWI, and SMAPS1 over the regions of study in terms of standard
deviation of the difference (SDD; in m3 m−3). The analysis was performed from January to December 2019.

croplands or by forests (Fig. 1b). The R values with respect
to CoperSSM are mainly above 0.8 over most of the pixels,
while the values drop to 0.5 with respect to CoperSWI. The
comparison between S2MPS1S3 and SMAPS1 shows R val-
ues closer to 0.6 in general, but really low correlation val-
ues (below 0.2) appear over several pixels. The same pat-
tern is observed in the region southeast of France (Fig. 7j–l),
but correlations are only significant over areas dominated by
croplands.
R values between S2MPS1S3 and SMAPS1 reach 0.7–0.8

in Australia and North America (Fig. 7m, n), with no clear
relationship to the land cover type.

4.3.3 Comparison over areas dominated by croplands
and herbaceous vegetation

To obtain further insight into the analysis over croplands and
herbaceous vegetation, S2MPS1S3 was exclusively compared
to CoperSSM, CoperSWI, and SMAPS1 over pixels where
one of these two land cover classes is dominant. For each re-
gion and land cover, a set of metrics (R, bias, and SDD) is
computed in two ways. One set is computed by only taking
into account the pixels covered by less than 75 % of crop-

lands or herbaceous vegetation. The other set is computed by
only taking into account pixels covered by at least 75 % of
croplands or herbaceous vegetation. The results are summed
up in Table 2.

Over pixels in Europe (Spain, Tunisia, and France),
where croplands represent less than 75 % of the area,
S2MPS1S3 is better correlated to CoperSSM than Coper-
SWI and SMAPS1. In general, high R values are found
in Spain (0.54–0.63), moderate values (0.28–0.63) are ob-
served in France, and low values are found in Tunisia (0.37–
0.38). In addition, R values obtained in Australia and North
America with respect to SMAPS1 are comparable to those
found in Spain. Absolute bias between S2MPS1S3 and the
three HR datasets in Spain (0.01 m3 m−3) are lower than or
similar to those found in the other regions. The strongest
absolute bias is observed in North America, with respect
to SMAPS1, with 0.07 m3 m−3. According to the SDD val-
ues, no particular trend is observed over the six regions of
study, and values range from 0.04 to 0.09 m3 m−3. For most
of the regions and comparisons, the correlation values signif-
icantly increase (+0.05–0.1) over pixels that contain at least
75 % of croplands. In overall, absolute bias and SDD val-
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Figure 7. Comparison of S2MPS1S3 with respect to CoperSSM, CoperSWI, and SMAPS1 over the regions of study in terms of Pearson
correlation (R). The analysis was performed from January to December 2019.

ues remain similar, but sometimes there is a slight decrease
(−0.01 m3 m−3).

Taking into account pixels where herbaceous vegetation
represent less than 75 % of the area, S2MPS1S3 is only bet-
ter correlated to CoperSSM in Spain and in the southwest of
France. In general, high R values are found in Spain (0.64–
0.67), moderate values (0.36–0.69) are observed in France,
and low values are found in Tunisia (0.32–0.36). In ad-
dition, R values obtained in Australia and North America
with respect to SMAPS1 are comparable to those found in
the southwest of France. Absolute bias between S2MPS1S3
and the three HR datasets in Tunisia (0.01–0.02 m3 m−3) are
lower than or similar to those found in the other regions.
The strongest absolute biases are observed in the southwest
of France, with 0.09 m3 m−3 for CoperSWI and SMAPS1,
respectively. The SDD is higher with respect to SMAPS1
and can reach 0.07, 0.08, and 0.10 m3 m−3 in Tunisia, Spain,
and in the southwest of France, respectively. In contrast with
croplands, the correlation values do not systematically in-
crease over pixels that contain at least 75 % of herbaceous
vegetation. There is no significant change concerning the
SDD, and overall, the absolute bias increases with respect
to almost all of the HR datasets (+0.01–0.04 m3 m−3).

It is noteworthy that the bias is significantly higher over
herbaceous vegetation than over croplands in Spain and in
the southwest of France, while the SDD is quite similar, re-
gardless of the region of study. In addition, higher R values
are found over herbaceous vegetation in Spain. In Tunisia,
the correlation and absolute bias values are among the lowest,
both over croplands and herbaceous vegetation. Low abso-
lute biases can be partly explained by the fact that the region
is really dry, with desert areas, implying a small SM dynamic
range with very low values regardless of the estimation algo-
rithm used.

4.4 Evaluation against in situ measurements

Table 3 presents the evaluation of the different CR and
HR SM products with respect to in situ measurements in
terms of bias, SDD, and R of the original time series, as well
as the Pearson correlation of the anomalies’ time series (Ra).
In addition, Fig. 8 shows examples of the time series of the
different HR and CR datasets at six in situ stations used in
this study (one for each region).

The highest absolute biases with respect to in situ
measurements are obtained for S2MPS1S2 and S2MPS1S3,
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Table 2. Comparison of S2MPS1S3 with CoperSSM, CoperSWI, and SMAPS1, in terms of R, bias, and SDD, over 1 km2 pixels, where
croplands or herbaceous vegetation are the dominant land cover classes, respectively. The metrics are also derived according to the degree of
coverage of the land cover. One set of metrics is computed by considering only pixels covered by less than 75 % of croplands or herbaceous
vegetation. Another set of metrics is computed by considering only pixels covered by at least 75 % of croplands or herbaceous vegetation.
The analysis was performed from January to December 2019.

Croplands Herbaceous vegetation

Regions Products < 75 % ≥ 75 % < 75 % ≥ 75 %

R Bias SDD R Bias SDD R Bias SDD R Bias SDD

CoperSSM 0.63 0.01 0.06 0.72 0.0 0.06 0.67 0.06 0.06 0.69 0.07 0.06
Spain CoperSWI 0.61 0.01 0.06 0.68 0.01 0.06 0.65 0.04 0.06 0.70 0.06 0.06

SMAPS1 0.54 −0.01 0.07 0.65 −0.01 0.06 0.64 0.06 0.08 0.71 0.09 0.08

CoperSSM 0.37 −0.02 0.06 0.55 −0.01 0.05 0.32 −0.01 0.06 0.31 −0.01 0.06
Tunisia CoperSWI 0.37 0 0.05 0.45 −0.01 0.05 0.36 0.01 0.05 0.34 0.01 0.05

SMAPS1 0.38 −0.03 0.07 0.51 −0.03 0.06 0.32 −0.02 0.07 0.27 −0.01 0.07

Southwest CoperSSM 0.56 0.03 0.06 0.71 0.03 0.06 0.69 0.07 0.06 0.62 0.09 0.06
of France CoperSWI 0.48 0.06 0.06 0.59 0.05 0.06 0.55 0.09 0.06 0.58 0.09 0.06

SMAPS1 0.28 0.01 0.09 0.48 −0.01 0.07 0.36 0.09 0.10 0.34 0.11 0.10

Southeast CoperSSM 0.63 −0.04 0.04 0.75 −0.05 0.03 0.44 0.02 0.05 0.72 0.06 0.02
of France CoperSWI 0.47 −0.03 0.04 0.56 −0.03 0.04 0.48 0.06 0.05 – – –

SMAPS1 0.45 0.02 0.07 0.45 0.04 0.08 0.49 0.04 0.05 – – –

CoperSSM – – – – – – – – – – – –
Australia CoperSWI – – – – – – – – – – – –

SMAPS1 0.56 0.05 0.06 0.59 0.05 0.06 0.55 0.05 0.06 0.60 0.06 0.05

CoperSSM – – – – – – – – – – – –
North America CoperSWI – – – – – – – – – – – –

SMAPS1 0.68 0.07 0.06 0.71 0.08 0.06 0.58 0.06 0.06 0.53 0.09 0.06

with −0.06 m3 m−3, closely followed by CoperSWI, with
0.05 m3 m−3. SMOSNRT, SMOSL3, CCISM, and SMAPS1
show the lowest absolute biases, with 0.03 m3 m−3.

The highest SDDs with respect to in situ measurements
are obtained for CoperSSM (0.08 m3 m−3) and SMOSL3
(0.07 m3 m−3). The other datasets show comparable SDDs,
with 0.05 or 0.06 m3 m−3.

In general, higher correlation values are obtained for the
CR data (0.67–0.77) than for the HR data (0.53–0.74).
The lowest correlations are found for the Sentinel-only
HR datasets, with 0.53 for CoperSSM, 0.56 for S2MPS1S3,
and 0.59 for S2MPS1S2. Concerning the HR data obtained
from merging approaches, SMAPS1 still shows a value lower
than the CR datasets, with 0.64, but CoperSWI shows the
third-best value, with 0.74, following SMAPL3E (0.77) and
SMAPL3 (0.76).

Regarding the correlation of the anomalies time series,
SMAPL3E and SMAPL3 obtain the highest Ra with respect
to in situ measurements, with 0.59 and 0.58. CoperSSM,
S2MPS1S2, SMAPS1, and S2MPS1S3 show the lowest Ra,
with 0.18, 0.36, 0.35, and 0.37, respectively.

The CR time series have a temporal revisit roughly 5 times
higher than those from S2MPS1S2, S2MPS1S3, CoperSSM,
and SMAPS1 (Fig. 8). In order to understand if the low tem-

poral revisit of the HR data affects their performances against
in situ measurements, one observation out of five was re-
moved from the CR time series, and the metrics were re-
computed (not shown). However, no significant differences
in terms of R, bias, and SDD were found.

The performances of the two Sentinel-only HR datasets
averaged at 25 km resolution (S2MP∗S1S2, S2MP ∗S1S3, and
CoperSSM∗) with respect to in situ measurements are
comparable to the performances obtained for the origi-
nal 1 km datasets (S2MPS1S2, S2MPS1S3, CoperSSM, and
CoperSWI∗). In contrast, for the SMAPS1∗ dataset, which
is a downscaled product, the correlation increases from 0.64
at 1 km resolution (SMAPS1) to 0.79 at 25 km resolution,
which is the highest correlation found among all the datasets.
In addition, the SDD and bias slightly decrease. Ra also in-
creases from 0.35 at 1 km resolution to 0.44 at 25 km resolu-
tion, but it does not reach the values of Ra obtained for the
SMAP-only products (SMAPL3 and SMAPL3E with 0.58–
0.59).

5 Discussion

S2MP, S2MPS1S3, CoperSSM, CoperSWI, and SMAPS1
are all HR datasets that were produced with different ap-
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Figure 8. Examples of SM time series from the different HR and CR datasets at six in situ stations (one for each region).

proaches. Two products were obtained by merging S1 data
with ASCAT (CoperSWI) and SMAP (SMAPS1), respec-
tively. S2MP and CoperSSM are based on Sentinel only. The
last one is computed from local temporal variations in the
S1 backscatter coefficients time series, following the method
of Wagner (1998). In contrast, S2MP provides SM estimates
derived from a NN that uses a database gathering backscat-
ter coefficients and HR NDVI from Sentinel as inputs. The
NN was initially trained on a synthetic database contain-
ing backscatter coefficients and surface characteristics such
as SM and vegetation status (approximated by NDVI) that
were predicted from electromagnetic modeling.

Initially, the S2MP algorithm by El Hajj et al. (2017) was
only providing SM estimates over croplands at 10 m reso-
lution, using NDVI derived from S2 optical images. In the
framework of this study, the algorithm has been extended to
provide SM estimates at 1 km resolution, also over herba-
ceous vegetation areas, and S2 was replaced by S3. However,

despite the different ways of aggregating the S1 radar sig-
nal and the differences between S3 and S2 NDVI (Sect. 4.1
with Figs. 3 and 2), S2MPS1S2 and S2MPS1S3 are in very
good agreement over the six study regions (Sect. 4.2 with
Fig. 4). Thus, these results imply that it is possible to re-
place S2 with S3 in the S2MP approach without losing skill.
In addition, although the higher temporal revisit of S3 com-
pared to S2 does not allow the S2MP algorithm to provide
SM estimates more frequently because the effective revisit is
that of S1 (see Fig. 8), the production of the SM daily maps
using S3 instead of S2 is easier and faster. S2 and S3 NDVI
are derived from optical measurements remotely sensed from
space that are highly dependent on the cloud cover situation.
Both S2 or S3 NDVI can be unreliable during long rainy
or cloudy periods (> 15 d) over specific regions. However,
the higher temporal revisit of S3 allows the instruments on
board S3 to retrieve more optical images without cloud con-
ditions than those on board S2. This results in a better es-
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Table 3. Evaluation of the HR and CR SM time series against in situ
measurements in terms of the Pearson correlation (R; Ra), bias (re-
motely sensed minus ground-based SM in m3 m−3), and standard
deviation of the difference (SDD in m3 m−3). The metrics were
computed by taking into account the six regions of study, and only
the median values are shown here. The asterisk∗ indicates the HR
datasets averaged at 25 km resolution. The analysis was performed
from January to December 2019.

Products R Ra Bias SDD

Sentinel-only high-resolution data

S2MPS1S2 0.59 0.36 −0.06 0.05
S2MPS1S3 0.56 0.37 −0.06 0.06
CoperSSM 0.53 0.18 0.04 0.08

Merged high-resolution data

CoperSWI 0.74 0.46 0.05 0.05
SMAPS1 0.64 0.35 −0.03 0.06

Coarse-resolution data

SMAPL3 0.76 0.58 −0.04 0.05
SMAPL3E 0.77 0.59 −0.04 0.05
SMOSL3 0.67 0.47 −0.03 0.07
SMOSNRT 0.68 0.46 −0.03 0.05
CCISM 0.71 0.50 0.03 0.05

High-resolution data aggregated to coarse resolution

S2MP∗S1S2 0.58 0.38 −0.06 0.06
S2MP∗S1S3 0.56 0.38 −0.05 0.06
CoperSSM∗ 0.53 0.20 0.05 0.07
CoperSWI∗ 0.73 0.47 0.05 0.05
SMAPS1∗ 0.79 0.44 −0.02 0.04

timation of the vegetation cycle through the NDVI compu-
tation. Finally, fewer processing steps are required thanks
to the availability of NDVI estimates already provided in
the 1 km VEGETATION-like product from Copernicus (see
Sect. 2.1.3).

According to Bazzi et al. (2019), the S2MP algorithm
tends to provide unreliable SM estimates when the NDVI
used exceeds 0.7. NDVI above this value corresponds to
well-developed vegetation, and even if it is more common to
have NDVI lower than 0.7 with S3 than with S2 (Fig. 2) due
to averaging effects, using S3 NDVI does not solve the prob-
lem. Indeed, in the particular cases of well-developed vege-
tation, the problem does not arise from the S2 of S3 NDVI
itself but from the C-band SAR signal, which fails to pene-
trate the vegetation cover.

Regarding the comparisons between the HR datasets in
Sect. 4.3, S2MPS1S3 shows a temporal dynamic closer to
those of CoperSSM, CoperSWI, and SMAPS1 over semi-
dry areas such as in Spain, North America, and Australia.
However, the correlation drops significantly over very dry
zones (Tunisia). Over semi-humid areas (France), the tem-

poral dynamic between S2MPS1S3 and CoperSSM is in bet-
ter agreement than with respect to CoperSWI and SMAPS1.
The order of magnitude (bias and SDD) between S2MPS1S3
and the other HR datasets is quite similar, regardless of the
study region, the land cover, or the climate zone (rather dry
or humid). In addition, it is noteworthy to highlight that dif-
ferences in terms of bias and SDD are not systematically
reduced over homogeneous pixels covered by croplands or
herbaceous vegetation. This means that inherent biases ex-
ist between the algorithms, and they might persist over other
land cover classes such as over forests (if the S2MP approach
is extended to forests).

At the moment, by construction, the S2MP algorithm starts
being out of its application domain when considering pix-
els dominated by forest cover. This is also the case for the
change detection approach used to produce CoperSSM. In-
deed, the SM indices computation does not currently account
for vegetation dynamics, which can lead to biases over ar-
eas covered by seasonal and dense vegetation. In addition,
for most applications, the CoperSSM indices and those from
CoperSWI should be transformed into SM time series, and
this will be problematic without reference SM values under
forests to scale them. Therefore, an extension of the S2MP
algorithm to forest areas would definitely be interesting to
provide HR SM mapping over large regions inside and out-
side of Europe.

In this study, most of the SM measurements used from the
ground stations were representative of croplands and herba-
ceous regions. Hence, the relative performances of the HR
datasets (S2MP, CoperSSM, CoperSWI, and SMAPS1) were
not assessed over dense vegetation areas.

In addition, slightly better results of S2MPS1S3, with re-
spect to in situ measurements, compared to those of Cop-
erSSM were found, except for the bias (Table 4).

SM estimates using the S2MP algorithm were already
evaluated against in situ measurements, along with other
HR and CR datasets, by El Hajj et al. (2018) and by Bazzi
et al. (2019). In El Hajj et al. (2018), the authors found that
S2MPS1S2 shows a lower correlation with respect to in situ
measurements than SMAPL3 and SMAPL3E but higher than
SMOSNRT, SMOSL3, and SMAPS1. In contrast, in the cur-
rent study, the S2MPS1S2 shows a lower correlation with in
situ measurements than all the other HR and CR products.
However, in El Hajj et al. (2018), SM estimates from the
S2MP algorithm were only derived over croplands, while
in our study, the SM estimation was performed both over
croplands and herbaceous vegetation. Moreover, their anal-
ysis was only carried out in the south of France during a
different time period (from January 2016 to June 2017). In
Bazzi et al. (2019), the authors found that S2MPS1S2 is better
correlated to in situ measurements than CoperSSM. Accord-
ing to the results of our study (Table 4), higher correlations
are also obtained for S2MPS1S2. In addition, it is interesting
to note that S2MPS1S2 and S2MPS1S3 show similar perfor-
mances with respect to in situ measurements.
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Table 4. Evaluation of the HR and CR SM time series against in
situ measurements in terms of Pearson correlation (R; Ra), bias
(remotely sensed minus ground-based SM in (m3 m−3) and stan-
dard deviation of the difference (SDD in m3 m−3). The metrics
were computed by taking into account the six regions of study, and
only the median values are shown here. The asterisk∗ indicates the
HR datasets averaged at 25 km resolution. The analysis was per-
formed from January to December 2019.

Products R Ra Bias SDD

Sentinel-only high-resolution data

S2MPS1S2 0.59 0.36 −0.06 0.05
S2MPS1S3 0.56 0.37 −0.06 0.06
CoperSSM 0.53 0.18 0.04 0.08

Merged high-resolution data

CoperSWI 0.74 0.46 0.05 0.05
SMAPS1 0.64 0.35 −0.03 0.06

Coarse-resolution data

SMAPL3 0.81 0.55 −0.05 0.05
SMAPL3E 0.81 0.52 −0.05 0.05
SMOSL3 0.69 0.49 −0.03 0.06
SMOSNRT 0.76 0.45 −0.02 0.05
CCISM 0.73 0.48 0.03 0.05

High-resolution data aggregated to coarse resolution

S2MP∗S1S2 0.58 0.38 −0.06 0.06
S2MP∗S1S3 0.56 0.38 −0.05 0.06
CoperSSM∗ 0.53 0.20 0.05 0.07
CoperSWI∗ 0.73 0.47 0.05 0.05
SMAPS1∗ 0.79 0.44 −0.02 0.04

Taking into account the evaluations of all the HR and
CR products (Table 4), HR-merged datasets (SMAPS1 and
CoperSWI) provide better estimations or temporal agreement
with respect to in situ measurements than the HR Sentinel-
only ones (S2MPS1S2, S2MPS1S3, and CoperSSM). However,
they still show performances similar to or lower than the
CR datasets (Table 4). This can be partly explained by the
fact that the HR datasets provide SM estimates using C-band
measurements, while the CR datasets used in this study are
computed using L-band measurements. Indeed, SMOS and
SMAP were specifically designed to measure surface SM,
which was not the case for the Sentinel satellites. Regarding
the higher performances of the CR datasets over the HR ones,
with respect to in situ measurements, Bauer-Marschallinger
et al. (2019) also demonstrated that 25 km resolution SM es-
timates from ASCAT were better correlated to in situ mea-
surements within the Italian Umbria region than those of the
1 km resolution CoperSSM. The results of our study are also
in perfect agreement with the findings by Ojha et al. (2021),
who showed, over several regions in France and Spain, that
two merged products, SMAPS1 and SMAP+DISPATCH

(Merlin et al., 2012), were better correlated to in situ mea-
surements than CoperSSM. Finally, it is noteworthy that the
performances of SMAPS1 aggregated from 1 to 25 km reso-
lution (CR) increase to values similar to those of SMAPL3.
This implies that the gain in resolution brought by merging
data of different resolutions comes at the expense of intro-
ducing uncertainties in the resulting HR dataset.

Obviously, this study was limited to comparisons over
six regions of 104 km2 within a 1-year time period, so the
results cannot be straightforwardly extended to a global
scale. However, the results of the study show that the use
of S3 NDVI as input to the S2MP algorithm leads to SM es-
timates comparable to those obtained with S2 NDVI. How-
ever, HR SM estimates do not necessary lead to better per-
formances than CR SM estimates, with respect to in situ
measurements. In particular, retrieval algorithms only based
on Sentinel measurements (S2MP and CoperSSM) need im-
provements before reaching performances comparable to
those used with the HR-merged or CR datasets. However,
the S2MP datasets still have two advantages over CoperSSM.
They currently show better performances against in situ mea-
surements and are able to provide SM estimates outside of
Europe. Hence, it would be interesting to extend the S2MP
algorithm to all the types of land cover and to provide SM es-
timates over the entire globe. The objective would be to pro-
duce the first Sentinel-only SM dataset available at a global
scale and to perform a deeper comparisons against SMAPS1
over large areas. However, the estimation of SM using the
S2MP algorithm outside of Europe would remain challeng-
ing due to the inhomogeneous spatial and temporal coverage
of S1 (Bauer-Marschallinger et al., 2019).

6 Conclusions

The goal of this study was to adapt the S2MP approach, orig-
inally designed to retrieve SM at 10 m resolution over agri-
cultural fields, to a 1 km resolution, which allows the replace-
ment of S2 by S3, and to significantly improve the NDVI
temporal sampling. In addition, the approach was extended
to herbaceous land cover areas and tested in six regions over
four continents to assess its performances beyond previous
evaluations in southern France.

A very good agreement was found between the S1+S3
and the S1+S2 S2MP maps for the V regions (R ≥ 0.9, bias
≤ 0.04 m3 m−3, and SDD≤ 0.03 m3 m−3), meaning that it is
possible to replace S2 by S3 NDVI.

The S2MP maps were then compared to those of the
1 km surface SM product provided by CGLS (CoperSSM),
which is also a Sentinel-only-based dataset. In contrast to
S2MP, CoperSSM provides local indices of SM variations.
For many applications, they have to be scaled against a ref-
erence to transform the variations to actual SM in volumet-
ric units (m3 m−3) before being used. Then, S2MP was also
compared to two HR-merged datasets, that is (i) the SWI

https://doi.org/10.5194/hess-27-1221-2023 Hydrol. Earth Syst. Sci., 27, 1221–1242, 2023



1238 R. Madelon et al.: Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data

dataset from CGLS, combining S1 and ASCAT measure-
ments (CoperSWI), and (ii) the SMAP+S1 dataset. As for
the surface SM dataset, the SWI data had to be scaled into
absolute SM values. CGLS products only provide estimates
over the European continent and the Mediterranean basin.

Overall, the S2MP dataset is better correlated to the 1 km
surface SM product provided by CGLS over the four re-
gions of study in Europe (R ∼ 0.7–0.8). Over almost all of
the pixels within the six regions, the SDD between S2MP
and the other HR datasets is lower than 0.06 m3 m−3. In ad-
dition, the bias differs significantly inside the same region
and can be strongly dry or wet (±0.1 m3 m−3). The correla-
tions between S2MP and the other HR datasets improve over
croplands when the 1 km pixels become homogeneous, but a
similar behavior was not clearly found for the other metrics
(SDD and bias) or over pixels where the dominant land cover
class is herbaceous vegetation.

The S2MP datasets were also evaluated with respect to in
situ measurements, along with the three other HR datasets,
and with coarser-resolution datasets from SMOS, SMAP, and
ESA CCI. The coarse-resolution (CR) products show higher
correlations (0.68≤ R ≤ 0.77) than the HR datasets (0.54≤
R ≤ 0.74), and the HR-merged datasets showed higher cor-
relations than the HR Sentinel-only ones. S2MPS1S2 showed
the highest bias with respect to in situ measurements, with
−0.07 m3 m−3. Finally, the SDD differs according to the
dataset in addition to the spatial resolution and range from
0.05 (with S2MPS1S2, for example) to 0.08 m3 m−3 (Coper-
SWI).

In general, these results show that the HR datasets only
based on Sentinel (S2MP and CoperSSM) are not as com-
petitive as the other HR-merged and CR datasets with re-
spect to in situ measurements in terms of correlation and
bias, but S2MP still presents several advantages. In contrast
to the HR data from Copernicus, the S2MP data do not de-
pend on auxiliary data to be scaled into volumetric units and
can provide SM estimates outside of Europe. S2MPS1S2 also
shows lower SDD, with respect to in situ measurements, than
the Copernicus and the SMAP+S1 datasets. It would be in-
teresting to extend the S2MP to all the types of land cover
and to provide SM maps at the globe scale. S2MPS1S2 would
be the first global SM dataset at 1 km resolution only that
is based on Sentinel measurements. It would also allow the
performing of deeper comparisons against SMAP+S1 over
large areas, and S2MPS1S2 could be used to assess the cli-
mate impact at a regional level in the future. However, a
remaining challenge is to provide HR SM data with com-
parable spatiotemporal coverage and retrieval quality across
different land cover types than those of the state-of-the-art
coarse-resolution products, such as the SMOS, SMAP, and
ESA CCI products.
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