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Association Between Early Change in Arterial Carbon Dioxide 
Tension and Outcomes in Neonates Treated by Extracorporeal 

Membrane Oxygenation

Nicolas Joram,*† JeaN-christophe rozé,*‡ Joseph e. toNNa,§ peter rycus,§ erta Beqiri,¶ stefaNo pezzato,∥  
aNdrea moscatelli,∥ chiara roBBa,¶ JeaN-michel liet,* pierre BourgoiN,* marek czosNyka,¶  

pierre-louis léger,†# Jérôme ramBaud,†# peter smielewski,¶ aNd alexis cheNouard,***        

The primary objective was to investigate the association 
between partial pressure of carbon dioxide (PaCO2)  change 
after extracorporeal membrane oxygenation (ECMO) initiation 
and neurologic outcome in neonates treated for respiratory fail-
ure. A retrospective analysis of the Extracorporeal Life Support 
Organization (ELSO) database including newborns supported 
by ECMO for respiratory indication during 2015–2020. The 
closest Pre-ECMO (Pre-ECMO PaCO2) and at 24 hours after 
ECMO initiation (H24 PaCO2) PaCO2 values allowed to cal-
culate the relative change in PaCO2 (Rel Δ PaCO2 = [H24 
PaCO2 – Pre-ECMO PaCO2]/Pre-ECMO PaCO2). The primary 
outcome was the onset of any acute neurologic event (ANE), 

defined as cerebral bleeding, ischemic stroke, clinical or elec-
trical seizure, or brain death during ECMO. We included 3,583 
newborns (median age 1 day [interquartile range {IQR}, 1–3], 
median weight 3.2 kg [IQR, 2.8–3.6]) from 198 ELSO centers. 
The median Rel Δ PaCO2 value was −29.9% [IQR, −46.2 to 
−8.5]. Six hundred nine (17%) of them had ANE (405 cere-
bral bleedings, 111 ischemic strokes, 225 seizures, and 6 brain 
deaths). Patients with a decrease of PaCO2 > 50% were more 
likely to develop ANE than others (odds ratio [OR] 1.78, 95% 
confidence interval [CI], 1.31–2.42, p < 0.001). This was still 
observed after adjustment for all clinically relevant confound-
ing factors (adjusted OR 1.94, 95% CI, 1.29–2.92, p = 0.001). 
A significant decrease in PaCO2 after ECMO start is associated 
with ANE among neonates requiring ECMO for respiratory fail-
ure. Cautious PaCO2 decrease should be considered after start 
of ECMO therapy. ASAIO Journal 2023; 69;411–416

Key Words: extracorporeal membrane oxygenation, partial 
pressure of carbon dioxide, acute neurologic event, neonate, 
respiratory failure

Patients requiring extracorporeal membrane oxygenation 
(ECMO) present a high risk of developing neurologic compli-
cations which lead to a significant morbidity and mortality, 
and among children, neonates represent the most vulnerable 
population.1–6 The period surrounding start of ECMO is crucial 
as the brain is exposed to dramatic changes in cerebral oxy-
genation and hemodynamics. Several studies have consistently 
shown that most of the neurologic complications occur early 
during ECMO run.7–10 The cerebral vasculature responds to car-
bon dioxide (CO2) changes by a physiologic mechanism called 
CO2 reactivity. A rise in partial pressure of CO2 (PaCO2) leads 
to cerebral vasodilation, whereas a decrease causes a vaso-
constriction.11–14 During ECMO support, the device can take 
up most of the native lung gas exchange, and PaCO2 is tightly 
regulated by adjusting the fresh gas flow to the oxygen blender. 
Previous studies in adults have demonstrated an independent 
association between the magnitude of the decrease of PaCO2 
after ECMO initiation and neurologic outcome or mortality.15–17 
In one pediatric study including patients supported by ECMO 
(regardless of indications), the magnitude of PaCO2 change at 
ECMO initiation was independently associated with mortality.18 
However, this issue has never been fully scrutinized in neonatal 
population.

In this context, the main objective of this study was to inves-
tigate the association between changes in PaCO2 after ECMO 
initiation and the occurrence of neurologic complications in 
neonates treated for refractory respiratory failure.
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Methods

Study Design and Patients

We conducted a retrospective study including newborns 
(≤ 28 days) supported by ECMO for respiratory indication 
and reported to the Extracorporeal Life Support Organization 
(ELSO) between January 2015 and January 2020. The cur-
rent study was performed according to the Strengthening the 
Reporting of Observational Studies in Epidemiology guidelines 
(http://www.strobe-statement.org/) and was approved by the 
Research Ethics Board of the University of Nantes, France, and 
the ELSO scientific oversight committee. All ECMO modes were 
included: venovenous (VV), venoarterial (VA), or venovenoar-
terial (VVA). In case of multiple ECMO runs, only the first one 
was considered in the analysis. In case of missing data regard-
ing pre-ECMO or post-ECMO PaCO2 values or regarding at least 
one variable defining acute neurologic event (ANE) as detailed 
below, the patient was excluded from the analyses. Furthermore, 
patients with pre-ECMO PaCO2 > 200 mm Hg, considered as 
outliers, were excluded.

The ELSO provided deidentified ECMO center number, demo-
graphic, and pre-ECMO medical condition data including pri-
mary diagnosis codes according to the International Classification 
of Diseases (ICD), 9th Edition and ICD, 10th Edition. The pres-
ence of a congenital diaphragmatic hernia (CDH) was in addition 
independently reported. All diagnoses referring to a congenital 
heart disease were secondarily collapsed into a single item. The 
onset of a cardiac arrest, vital parameters, arterial blood gases 
(ABGs) values and ventilator settings before ECMO were also 
reported. Extracorporeal life support (ECLS) mode, site of can-
nulation, and blood pump flow at 4 and 24 hours were avail-
able. Post-ECMO ventilator settings, ABG values, and main ECLS 
complications according to ELSO definition were also reported.

PaCO2 Values Data

The Pre-ECMO PaCO2 value refers to the ABG closest to 
ECMO start but within 6 hours before, and the H24 PaCO2 
is the PaCO2 value closest to 24 hours, not less than 6 hours 
and not more than 30 hours after ECMO initiation. The main 
variable of interest, considered as the exposure, was change 
in PaCO2 expressed with absolute and relative values (Abs Δ 
PaCO2 and Rel Δ PaCO2 respectively) calculated as follows:

Abs Δ PaCO2 = H24 PaCO2 – Pre-ECMO PaCO2 (mm Hg)
Rel Δ PaCO2 = (H24 PaCO2 – Pre-ECMO PaCO2)/Pre-ECMO 

PaCO2 (%)

Outcomes

The primary outcome was the occurrence of any ANE dur-
ing ECMO support. Patients presenting cerebral bleeding or 
ischemic stroke or clinical or electrical seizure or brain death 
were considered ANE+.15,19 Cerebral bleeding was defined 
as the onset of an intraventricular cerebral hemorrhage or 
intra- or extraparenchymal cerebral hemorrhage diagnosed by 
ultrasounds, computed tomography, or magnetic resonance 
imaging. The secondary outcome was 28 day mortality.

Statistical Analysis

Baseline characteristics of the patients were reported as 
median (interquartile range [IQR]) or mean (standard deviation) 

for quantitative variables and and n (%) for qualitative vari-
ables, respectively. Abs Δ PaCO2 and Rel Δ PaCO2 were trans-
formed into categorical variables. For descriptive analysis, Abs 
Δ PaCO2 and Rel Δ PaCO2 were first expressed with a large 
panel of bins of 20 mm Hg and 20%, respectively. The extreme 
bins were secondarily grouped to obtain representative group 
sizes. The comparison of the characteristics of ANE− and ANE+ 
patients was performed using the χ2 test for nominal variables 
and the Mann–Whitney U test for continuous variables.

First, for our primary analysis, multivariable logistic regres-
sion was performed to assess the association between Rel Δ 
PaCO2 and ANE using generalized estimating equation (GEE) 
model taking into account the identification of the ECMO 
center to reduce the bias because of local practices. Variables 
representing an event that potentially occurred after H24 of 
ECMO were not considered. The following clinically relevant 
variables were included in the model: the volume of ECMO of 
the centers (represented by the number of patients from each 
center in the overall study database), characteristics of the new-
borns (sex, prematurity [gestational age < 37 weeks], Apgar 
score at 5 minutes of life, age and weight at cannulation, CDH, 
meconium aspiration syndrome [MAS], and congenital heart 
disease), pre-ECMO medical condition (cardiac arrest before 
ECMO start, ventilation type, mean blood pressure, oxygen-
ation index, bicarbonates, ECMO mode), post-ECLS variables 
(ventilation type after 24 hours of ECMO, pump flow 4 and 24 
hours after ECMO start), and Rel Δ PaCO2. All variables were 
assessed for multicollinearity using tolerance statistics (values 
of variance inflation factor > 2 indicative of multicollinearity), 
and in such cases, only one member of a correlated set was 
retained for the final model. Results were summarized using 
odds ratios (ORs) and 95% confidence intervals (CIs). The 
goodness of fit for GEE was assessed by the C-statistic.

Second, we performed several sensitivity analyses using GEE. 
We investigated the association between Rel Δ PaCO2 and ANE 
according to Pre-ECMO after dividing the cohort into quar-
tiles. We also assessed the association between Abs Δ PaCO2 
(instead of Rel Δ PaCO2) and ANE and between Rel Δ PaCO2 
and the composite outcome “ANE or death by any cause” to 
account for competing risk which is death. Subgroups analyses 
focusing on patients treated for CDH and for MAS respectively 
and supported by VA or VVA and VV ECMO respectively were 
also performed. For all these analyses, the same variables were 
included in the GEE models as for the primary one.

Third, we investigated the crude and adjusted association 
between Rel Δ PaCO2 and 28 day mortality performing sur-
vival analysis by Cox regression model of time-to-death. The 
same variables as in the primary analysis were included in 
the model. The proportional-hazards assumption was assessed 
using Schoenfeld residuals-based test.

Missing values were not imputed. In all analyses, p value of 
less than 0.05 was considered as significant. Statistical analysis 
was performed using SPSS 19 software (IBM Corp., Chicago, IL).

Results

Study Population

Four thousand seventy-two newborns from 198 centers sup-
ported by ECMO for respiratory indication were reported to 
the ELSO during the study period, and 3,583 of them were 
included in the analysis (Figure 1). The most frequently reported 
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primary diagnoses were CDH (n = 1,247; 34.8%), MAS (n = 
740; 20.7%), pulmonary hypertension (n = 472; 13.2%), and 
infectious diseases (n = 172; 4.8%). A congenital heart dis-
ease was reported as primary diagnosis in 45 (1.3%) patients. 
Baseline characteristics of the whole population are described 
in Supplementary Table 1 (Supplemental Digital Content 1, 
http://links.lww.com/ASAIO/A883).

Outcomes

The median duration of ECMO among the whole population 
was 6.6 days (IQR, 4.2–11.8). As shown in Figure 1, 609 (17%) 
newborns met at least one criterion defining ANE, mostly rep-
resented by CNS hemorrhage (n = 405, 11.3% of the new-
borns). Baseline characteristics according to neurologic status 
are presented in Supplementary Table 1 (Supplemental Digital 
Content 1, http://links.lww.com/ASAIO/A883). The overall 28 
day mortality in the whole population was 20.8% and was 
higher among ANE+ as compared with ANE− patients (45.3 
vs. 15.7%, p < 0.001).

Distribution of PaCO2 Variations

The mean H24 PaCO2 value was significantly lower as com-
pared with pre-ECMO PaCO2 value (43.3 ± 10 vs. 65.5 ± 25.1, 
p < 0.001), and the median absolute and relative changes of 
PaCO2 were −18 mm Hg (−35 to −4) and −29.9% (−46.2 to 
−8.5), respectively. Supplementary Figure 1 (Supplemental 
Digital Content 1, http://links.lww.com/ASAIO/A884) shows 
the distribution of Abs Δ PaCO2 and Rel Δ PaCO2 values, and 
the characteristics of the patients according to Rel Δ PaCO2 
group are presented in Supplementary Table 2 (Supplemental 
Digital Content 1, http://links.lww.com/ASAIO/A883).

Relative PaCO2 Variations and Neurologic Outcome

The relative change of PaCO2 was significantly lower (more 
negative) among ANE+ patients compared with others (median 

values [IQR] −33.6% [−50.6 to −12.3] vs. −17.5% [−34 to 
−3.8], p = 0.001). Supplementary Table 3 (Supplemental 
Digital Content 1, http://links.lww.com/ASAIO/A883) shows 
the unadjusted risk of ANE according to the relative change of 
PaCO2. Considering Rel Δ PaCO2 values between −10% and 
+10% as the reference, a decrease of PaCO2 > 50% was signifi-
cantly associated with ANE (OR 1.78, 95% CI, 1.31–2.42, p < 
0.001). No variables were omitted for collinearity. After adjust-
ment for all clinically relevant variables, a decrease of PaCO2 > 
50% remained significantly associated with ANE (adjusted OR 
[aOR] 1.94, 95% CI, 1.29–2.92, p = 0.001). Supplementary 
Table 4 (Supplemental Digital Content 1, http://links.lww.com/
ASAIO/A883) shows the same trends whatever the baseline 
value of PaCO2, even all classes of Rel Δ PaCO2 could not be 
analyzed for each quartile of Pre-ECMO PaCO2. As presented 
in Supplementary Table 5 (Supplemental Digital Content 1, 
http://links.lww.com/ASAIO/A883), similar results were found 
considering absolute values of PaCO2 variations instead of rel-
atives ones as a decrease of PaCO2 > 50 mm Hg was also sig-
nificantly associated with ANE (aOR 1.56, 95% CI, 1.11–2.17, 
p = 0.009). As shown in Supplementary Table 6 (Supplemental 
Digital Content 1, http://links.lww.com/ASAIO/A883), all bins 
of Rel Δ PaCO2 representing a decrease or an increase of PaCO2 
were independently associated with an increased risk of ANE 
or death. Finally, Figure 2 illustrates the association between 
a decrease of PaCO2 > 50% and ANE within the subgroups of 
patients supported by VA or VVA ECMO and VV ECMO respec-
tively and those treated for CDH and MAS respectively.

PaCO2 Change and Mortality

In univariate analysis, Rel Δ PaCO2 was associated with 
increased 28 day mortality after ECMO start for all bins as 
compared with the reference (−10% to 10%). The crude haz-
ard ratios for the risk of 28 day mortality were 2.14 (95% CI, 
1.63–2.81, p < 0.001) for a decrease of PaCO2 > 50%, 1.52 
(95% CI, 1.16–1.99, p = 0.002) between 30% and 50%, 1.52 

Figure 1. Flowchart of the study population. Pre-ECMO partial pressure of carbon dioxide (PaCO2): closest to and before ECMO start val-
ues, within 6 hours before ECMO start. H24 PaCO2: closest to 24 hours after ECMO start values, not less than 6 hours and not more than 30 
hours after ECMO start. *At hospital discharge. CNS, central nervous system; ECMO, extracorporeal membrane oxygenation.
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(95% CI, 1.15–2, p = 0.003) between 10% and 30%, and 1.82 
(95% CI, 1.34–2.47, p < 0.001) an increase of PaCO2 > 10%.

As shown in Supplementary Figure 2 (Supplemental Digital 
Content 1, http://links.lww.com/ASAIO/A884), the time-to-
death multivariate survival analysis according to relative 
change in PaCO2 demonstrated increased 28 day mortality for 
all bins of Rel Δ PaCO2 representing a decrease or an increase 
of PaCO2 as compared to a low PaCO2 change.

Discussion

The presented 5 year analysis of the worldwide ELSO data-
base includes 3,583 newborns requiring ECMO for respiratory 
failure in 198 centers. We reported an independent association 
between a severe decrease (more than 50%) of PaCO2 after 
ECMO start and the occurrence of ANE during ECMO sup-
port. Second, we found an association between the relative 
PaCO2 change and 28 day mortality. As Δ PaCO2 is partially 
controllable (contrary to other variables included in our analy-
ses), these results appear of major interest. Indeed, they suggest 
that PaCO2 should be closely monitored and that the magni-
tude of PaCO2 decreases after ECMO start should be limited, 
in particular for preterms and patients who require ECMO after 
cardiac arrest.

These results confirm previous studies among adults sup-
ported by ECMO for respiratory indication and in the context of 
hemodynamic failure.15–17 Only one pediatric study had inves-
tigated this issue before.18 In this single-center study including 
201 children supported by VA or VV ECMO for all indications, 
Bembea et al.18 demonstrated that the magnitude of PaCO2 
decrease (≥ 25 mm Hg) was independently associated with 
mortality. However, this study did not investigate the impact of 
PaCO2 change on neurologic outcome. In our study, the impact 
of the relative Δ PaCO2 on the risk of ANE was only statistically 

significant when the magnitude was ≥ 50% (and also was ≥ 
50 mm Hg) which may appear extreme. However, this situation 
is not uncommon as, in our population, 717 (20%) newborns 
were exposed to such variations. In the previously cited adult 
study from Cavayas et al.,15 including 11,972 patients under 
VV ECMO for respiratory failure, the median relative change 
in PaCO2 was −31%, very close to our results, and a relative 
PaCO2 decrease ≥ 50% was also independently associated 
with an increased risk of ANE. In the publication from Diehl et 
al.16 including adult patients supported by VA ECMO for hemo-
dynamic failure, the mean pre-ECMO PaCO2 was 45.5 mm Hg, 
very different from our results (median value 60 mm Hg) and 
from the study by Cavayas et al.15 (median value 59 mm Hg). 
They also found an association between PaCO2 change and 
poor outcome from a decrease of more than 7.5 mm Hg in 
PaCO2, suggesting that even small PaCO2 decrease can be 
harmful in the absence of severe hypercapnia before ECMO.

In other critical conditions, mild hypercapnia has been pro-
posed as a potential treatment target to improve outcomes.20 
It is well established that decrease in PaCO2 causes dose-
dependent vasoconstriction leading to the risk of cerebral isch-
emia.14,21 Furthermore, it is known from animal models that 
hypercapnia attenuates hypoxic-ischemic brain injury in the 
immature rat and protects the porcine brain from reoxygen-
ation injury by attenuation of free radical action.22,23

Otherwise, cerebral autoregulation (CA) impairment is fre-
quently observed under ECMO and may take part in the genesis 
of neurologic complications.10,24,25 The direct consequence of 
the nonpulsatile blood flow provided by ECMO has been sug-
gested by experimental studies as a potential underlying mech-
anism.26–29 The impact of PaCO2 value and PaCO2 variations 
on CA in this context remains unclear, but some experimen-
tal studies have suggested a protective effect of hypercapnia 
regarding CA.11,30 In a recent study including 30 children sup-
ported by ECMO for all indications, we have shown that the 
level of PaCO2 was positively correlated with the upper limit of 
CA, supporting that hypothesis of a protective effect of hyper-
capnia on CA, in case of high blood pressure and nonpulsatile 
flow.31 However, this study did not investigate the relationship 
between PaCO2 changes and CA. Nevertheless, as children 
supported by ECMO are frequently exposed to dramatic blood 
pressure increase and PaCO2 variations at the same time after its 
onset, this result appears clinically relevant.8,18,32 This may be a 
plausible explanation for the independent association between 
PaCO2 decrease after ECMO start and the risk of cerebral bleed-
ing found in adult studies.15,17 Even though this association was 
not significant in our study, we observed the same trend.

Otherwise, it has been demonstrated that hypocapnia 
increases neuronal excitability, resulting in increased oxygen 
consumption and uncoupling of metabolism to cerebral blood 
flow and may be directly neurotoxic.33,34 In a pediatric study 
including 484 patients supported by ECMO for all indications, 
hypocapnia defined by a PaCO2 < 30 Torr was encountered in 
20.2% of children within the first 48 hours of ECMO, and these 
patients had more neurologic events.35

Unlike in adult studies, we found an increased risk of 28 day 
mortality in case of PaCO2 increase (> 10%) which appears 
discordant with the potential protective effect of hypercar-
bia previously mentioned and remains difficult to interpret. 
As compared with patients with a minimal PaCO2 change, 
those presenting an increase of PaCO2 > 10% presented no 

Figure 2. Subgroup analysis of the association of a partial pres-
sure of carbon dioxide (PaCO2) drop > 50% with the risk of ANE. 
Comparison was made with Rel ΔPaCO2 between −10% and 10%. 
Multivariate analysis was performed using generalized estimating 
equation model taking into account the identification of the ECMO 
center. Results are expressed as aOR (95% CI). p value < 0.05 was 
considered as significant (in bold). ANE, acute neurologic event; 
aOR, adjusted odds ratio; CI, confidence interval; ECMO, extra 
corporeal membrane oxygenation; CDH, congenital diaphragmatic 
hernia; MAS, meconium aspiration syndrome; VA, venoarterial; VV, 
venovenous; VVA, venovenoarterial; Rel ΔPaCO2, relative change in 
PaCO2 = (H24 PaCO2 –Pre-ECMO PaCO2)/Pre-ECMO PaCO2.
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differences regarding baseline characteristics. One could 
imagine that an increase of PaCO2 could be the consequence 
of technical difficulties, but the lack of difference with regard 
with ECMO flow 4 and 24 hours after ECMO initiation was not 
in favor of this hypothesis.

Limitations

Our study presents some important limitations. First, the 
number of data collected by the ELSO registry remains lim-
ited, and residual confounders could not be included in the 
analysis. In particular, the first provided H24 PaCO2 included 
values between 6 and 30 hours after ECMO start which is 
probably not strictly representative of acute change of PaCO2 
at the time of ECMO initiation. An earlier PaCO2 value as used 
by Bembea et al.18 or repeated values during this initial period 
would be of major interest to study more specifically the rela-
tionship between PaCO2 changes and neurologic outcome. 
Furthermore, the onset of any ANE before ECMO initiation 
was not reported in the database, and some pathologic triggers 
potentially affecting neurologic outcome may have occurred 
within the first 24 hours of ECMO and were not taken into 
account in the analysis.

Second, in our analyses, PaCO2 changes were treated using 
categorical variables which can be discussed. This method-
ological choice was based on the opposite physiologic effects 
of the decrease and the increase in PaCO2 on cerebral vascu-
lature, making expecting a U-shape relationship between the 
change in PaCO2 and neurologic outcome. As presented in 
Supplementary Table 3 (Supplemental Digital Content, http://
links.lww.com/ASAIO/A883), our results have shown a trend 
for an increased risk of ANE in case of increase in PaCO2 (> 
10%) that may confirm this hypothesis.

Third, when interpreting our results, it must be noted that 
the effect of the CO2 decrease on outcomes is inevitably con-
founded by the baseline PaCO2 which in itself is representa-
tive of the severity of the illness. In this context, information 
regarding the sweep gas flow but also minute ventilation in the 
mechanical ventilator may be of major interest for the inter-
pretation of the impact of the settings made by the clinicians 
on changes of PaCO2 and on outcomes. Even if our statistical 
analysis aimed to reduce this bias taking into account many 
variables representative of the severity of the illness, this point 
remains questionable, and only randomized study compar-
ing different strategies for controlling PaCO2 after ECMO start 
would allow to fully answer the question.

Fourth, as the timing of the onset of neurologic compli-
cations from the ECMO initiation was unknown, we could 
not perform any time-dependent analysis of the association 
between PaCO2 changes and the risk of ANE which represents 
a limitation for the interpretation of the results.

Last, the analysis of mortality was limited by the lack of 
available data representing illness severity such as pre-ECMO 
renal or liver failure, or some measure of risk of mortality.

Conclusions

Among newborns requiring ECMO for respiratory fail-
ure, this study has demonstrated an independent association 
between a significant decrease of PaCO2 after ECMO start and 
the risk of developing ANE during ECMO run. Even though 

no causal effect can be extrapolated from these results, they 
suggest a need of very close monitoring and cautious settings 
of the fresh gas flow to limit the magnitude of PaCO2 decrease 
during this critical period. Further studies are needed to estab-
lish the optimal rate of change of PaCO2 after ECMO initiation.
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