
HAL Id: hal-04080558
https://hal.inrae.fr/hal-04080558v1

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

H9N2 avian influenza virus dispersal along Bangladeshi
poultry trading networks

Lorcan F A Carnegie, M Hasan, R Mahmud, M A Hoque, N Debnath, M H
Uddin, N S Lewis, I Brown, S Essen, Md Giasuddin, et al.

To cite this version:
Lorcan F A Carnegie, M Hasan, R Mahmud, M A Hoque, N Debnath, et al.. H9N2 avian influenza
virus dispersal along Bangladeshi poultry trading networks. Virus Evolution, 2023, 9 (1), pp.10.
�10.1093/ve/vead014�. �hal-04080558�

https://hal.inrae.fr/hal-04080558v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


H9N2 avian influenza virus dispersal along Bangladeshi 
poultry trading networks

L. Carnegie,1,*,‡ M. Hasan,2 R. Mahmud,3 M.A. Hoque,3 N. Debnath,3 M.H. Uddin,3 N.S. Lewis,4 I. Brown,4 S. Essen,4 Md. Giasuddin,2

D.U. Pfeiffer,1,5 M.A. Samad,2 P. Biswas,6 J. Raghwani,1 G. Fournié,1,7,8,† and S.C. Hill1,*,†

1Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Hertfordshire AL9 7TA, UK, 2Animal Health 
Research Division, Bangladesh Livestock Research Institute (BLRI), Dhaka 1341, Bangladesh, 3Department of Medicine & Surgery, Faculty of Veterinary Medicine, 
Chattogram Veterinary and Animal Sciences University (CVASU), Zakir Hossain Road, Khulshi, Chattogram 4202, Bangladesh, 4Department of Virology, Animal 
and Plant Health Agency (APHA), Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK, 5Department of Infectious Diseases and Public Health, City 
University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, PR China, 6Department of Microbiology and Veterinary Public Health, Chattogram 
Veterinary and Animal Sciences University (CVASU), Zakir Hossain Road, Khulshi, Chattogram 4202, Bangladesh, 7Université de Lyon, INRAE, VetAgro Sup, UMR 
EPIA, Campus vétérinaire de VetAgro Sup, 1 avenue Bourgelat, Marcy, l’Etoile 69280, France and 8Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, 
Centre INRAE Clermont-Auvergne-Rhône-Alpes, Saint Genes Champanelle 63122, France
†Contributed equally.
‡https://orcid.org/0000-0001-5810-7271
*Corresponding authors: E-mail: lcarnegie20@rvc.ac.uk; sahill@rvc.ac.uk

Abstract 

Avian influenza virus subtype H9N2 is endemic in Bangladesh’s poultry population. The subtype affects poultry production and poses 
a potential zoonotic risk. Insufficient understanding of how the poultry trading network shapes the dissemination of avian influenza 
viruses has hindered the design of targeted interventions to reduce their spread. Here, we use phylodynamic analyses of haemagglutinin 
sequences to investigate the spatial spread and dispersal patterns of H9N2 viruses in Bangladesh’s poultry population, focusing on its 
two largest cities (Dhaka and Chattogram) and their poultry production and distribution networks. Our analyses suggest that H9N2 
subtype avian influenza virus lineage movement occurs relatively less frequently between Bangladesh’s two largest cities than within 
each city. H9N2 viruses detected in single markets are often more closely related to viruses from other markets in the same city 
than to each other, consistent with close epidemiological connectivity between markets. Our analyses also suggest that H9N2 viruses 
may spread more frequently between chickens of the three most commonly sold types (sunali—a cross-bred of Fayoumi hen and 
Rhode Island Red cock, deshi—local indigenous, and exotic broiler) in Dhaka than in Chattogram. Overall, this study improves our 
understanding of how Bangladesh’s poultry trading system impacts avian influenza virus spread and should contribute to the design 
of tailored surveillance that accommodates local heterogeneity in virus dispersal patterns.
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Introduction
The endemic circulation of avian influenza viruses (AIVs) in 
Bangladesh’s poultry populations poses a threat to animal and 
human health (Marinova-Petkova et al. 2016; Turner et al. 
2017). Low pathogenic AIV (LPAIV) subtype H9N2 was first 
detected in Bangladesh in 2006 (Shanmuganatham et al. 2014; 
Marinova-Petkova et al. 2016; Rimi et al. 2019) and is known to 
cause reduced egg-laying and hatching (Kariithi et al. 2020; Ripa 
et al. 2021). Viruses from this subtype are now common within 
Bangladesh at live bird markets (LBMs) where most consumers 
purchase poultry and are often detected at relatively lower preva-
lence in poultry farms or backyard rearing sites (Gerloff et al. 2016; 
Turner et al. 2017; Kim et al. 2018; Parvin et al. 2020; Gupta et al. 
2021; Moyen et al. 2021). Close and frequent contact between 
birds and humans in these locations increases the risk of zoonotic 
spillover (El-Shesheny et al. 2020; Parvin et al. 2020; Bi, Li, and Shi 
2022). Reducing virus spread is therefore particularly important 

for minimising pandemic emergence risk and protecting avian 
health (El-Shesheny et al. 2020; Parvin et al. 2020; Bi, Li, and Shi 
2022).

Live poultry trading is known to contribute to AIV spread 
(Wu and Perrings 2018; Yang et al. 2020). Previous studies have 
identified broad associations between growth in poultry trade 
volumes and the likelihood of establishment and persistence of 

several infectious diseases (Wu and Perrings 2018). However, we 

often lack a more detailed understanding of the complexity of 

bird production and distribution networks and how these net-

works may influence AIV maintenance and spread (Gerloff et al. 
2016; Parvin et al. 2020; Moyen et al. 2021). In many countries 
where AIVs are endemic in poultry, knowledge of viral prevalence 

is too limited to adequately explore how trading practices might 

impact circulation from infection data alone (Chattopadhyay et al. 
2018; Parvin et al. 2020; Gupta et al. 2021; Moyen et al. 2021; Ripa 
et al. 2021). Even when surveillance is routinely conducted, LPAIV 
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H9N2 can easily be missed because it rarely causes severe disease 
(Parvin et al. 2020).

Phylodynamics can reveal in-depth information about virus 
dynamics from virus genome sequences, including how an out-
break changes size over time, how a virus lineage spreads spatially, 
and what factors may influence viral dispersal patterns (Lu, Leigh 
Brown, and Lycett 2017; Yang et al. 2019; Kwon et al. 2020). For 
example, phylodynamic studies have demonstrated that live poul-
try trade networks shape AIV movement over large spatial scales 
in movement in China (H5N1, H7N9, and H5N6) (Yang et al. 2020) 
and that restricting duck transport and culling can suppress 
highly pathogenic AIV (HPAIV) H5N1 movement between regions 
in France (Chakraborty et al. 2022). Phylodynamic approaches, 
however, have rarely been applied to studying AIV in a disease-
endemic poultry production system at high resolution (Yang et al. 
2020). Within Bangladesh, specifically, the few published studies 
on the molecular epidemiology of AIVs have either relied on small 
numbers of samples (e.g. (Gerloff et al. 2016; Ripa et al. 2021)) or 
have not incorporated information on the precise sampling loca-
tion or type of chicken (e.g. Marinova-Petkova et al. 2016; Parvin 
et al. 2019, 2020). Hence, they do not permit full exploration of 
how the virus dispersal patterns vary between different compo-
nents of the poultry system (Marinova-Petkova et al. 2016; Parvin 
et al. 2019, 2020).

Within Bangladesh’s poultry production and distribution net-
work, mobile poultry traders (‘middlemen’) collect and transport 
poultry from farms in rural and peri-urban areas to LBM vendors 
within urban areas. Here, poultry is either sold directly to end-
users or may be traded further between market vendors before 
sale (Moyen et al. 2018, 2021; Moyen 2019; Høg et al. 2021). 
The most commonly sold poultry types are broiler (exotic, indus-
trial chicken breeds), sunali (chicken crossbreed of Rhode Island 
Red cocks and Fayoumi hens), deshi (indigenous chicken breeds), 
and ducks (Moyen et al. 2018; Gupta et al. 2021). Broilers and 
sunalis are raised on commercial farms, whereas deshis and ducks 
are raised in a traditional scavenging system (‘backyard’) (Moyen 
et al. 2018). Recent studies show that poultry trading practices 
vary substantially across the network (Moyen et al. 2018, 2021; 
Moyen 2019). The two largest cities in Bangladesh, Dhaka and 
Chattogram, contain numerous LBMs where AIV infections have 
been consistently reported and receive poultry from largely non-
overlapping regions of Bangladesh (henceforth, ‘production areas’) 
(Moyen et al. 2018). Trade practices differ greatly between these 
cities, with more frequent inter-market trading of birds in Dhaka 
than in Chattogram (Kim et al. 2018; Moyen et al. 2018). Broiler 
chickens are typically sold in LBMs close to the farm, whereas 
ducks and deshi chickens are generally moved over longer dis-
tances by more intermediaries (Moyen et al. 2018; Moyen 2019). 
Typical distance travelled from farm to market, level of intra-
market trade, and the number of middlemen varies between LBMs 
(Kim et al. 2018; Moyen et al. 2018).

This study investigates the spatial spread and dispersal pat-
terns of H9N2 viruses among poultry marketed in Dhaka and 
Chattogram cities and their respective supply networks. Unlike 
previous studies in Bangladesh, we curated and analysed high-
resolution data on the location of sampling and type of chicken, 
enabling the first phylogenetic insights into how the complex-
ities of poultry trading practices influence AIV dispersal there 
(Marinova-Petkova et al. 2016; Parvin et al. 2019, 2020). We use 
phylodynamic analyses of the rapidly evolving haemagglutinin 
(HA) gene segment to examine the dispersal of H9N2 virus lineages 
between cities and stages of the production chain. We explore 
the hypothesis that H9N2 virus genetic diversity is randomly dis-
tributed across LBMs. Furthermore, we query how often H9N2 

lineages spread between chicken types or locations and whether 
observed patterns of dispersal are driven by the overlap between 
chicken type production areas. Finally, to investigate if AIVs with 
different subtypes in Bangladesh may have similar dispersal pat-
terns to those of H9N2 in the country, we perform similar molec-
ular clock phylogenetic analyses on Bangladeshi HPAIV H5NX 
sequences.

Materials and methods
Bangladeshi AIV sequences
Our study focuses on a dataset of AIV H9 HA segment sequences 
sampled between 2003 and 2019. The dataset includes eighty-
two newly generated H9N2 HA sequences and H9 HA sequences 
for which only the HA segment was generated, but that are 
assumed henceforth to be from H9N2-infected birds (justifica-
tion of this assumption is provided in Results and Discussion) 
(study sources in Table 1, accessions provided in Table S1). 
The dataset also includes 216 previously published sequences 
from both the Global Initiative on Sharing Avian Influenza Data 
(GISAID)  (Shu and McCauley 2017) EpiFlu database (www.gisaid.
org) (n = 211, Table S2) and from Ripa et al. (2021) (n = 5). Newly 
generated sequences were sampled through observational stud-
ies and routine surveillance in Dhaka and Chattogram from 2016 
to 2018 (details in Table 1), one of which has been previously 
described (Kim et al. 2018). 

Whilst we focus on HA here, sequences from other seg-
ments were generated for a subset of our H9N2 samples. NA 
gene sequences from Ripa et al. (2021) were combined with NA 
sequences from GISAID (Shu and McCauley 2017) EpiFlu database 
(H9N2; n = 200) corresponding to those viruses for which HA was 
available (Table S2) and used for a subset of analyses.

Associated information on species, location (either market- or 
farm-level), and sampling date was available for all newly gener-
ated sequences (Table 1). The type of chicken (either broiler, deshi, 
or sunali) was also available for seventy newly reported H9N2 
virus genome sequences generated through a cross-sectional 
study of Dhaka and Chattogram’s LBMs during February–March 
2016 (henceforth, the ‘cross-sectional H9N2 dataset’) (Kim et al. 
2018) (Table 1). For sequences accessed from public databases, 
we extracted available corresponding location metadata from 
the Influenza Research Database (Squires et al. 2012) animal 
surveillance database (www.fludb.org) (Table S3). We also obtained 
unpublished LBM characteristics for 184 of the publicly available 
sequences in the H9N2 HA dataset from Professor Richard Webby 
(St. Jude Research Center of Excellence for Influenza Research and 
Surveillance) (Accession numbers in Table S4).

In addition to the H9N2 data described above, H5NX sequences 
were generated via next-generation sequencing through two of 
the three surveillance studies in Table 1. HA sequences (n = 29) 
and available corresponding NA gene segment sequences (n = 15) 
(Table 1) were combined into datasets with previously published 
H5NX sequences from GISAID EpiFlu (HA, n = 175; NA, n = 172) 
(Table S2) and Ripa et al. (2021).

Sequence alignments and clade selection
We aligned sequences using MAFFT (Katoh et al. 2002) v7.453. 
We removed sequences from the alignment that either were 
duplicated, short (<70 per cent of the total sequence length), or 
indicative of containing sequencing or assembly errors.

We used an alignment of all H9NX sequences available on 
GISAID and our newly generated sequences to estimated pre-
liminary phylogenies with Fasttree v2.1.11 (Price, Dehal, and 
Arkin 2010). All but seven HA H9 sequences from Bangladesh, 
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Table 1. Study source of newly reported AIV HA (H9, n = 82; H5, n = 29) and NA (H5, n = 15) segment sequences.

Dataset and study design Sequencing method Available metadata Sequences per subtype

Cross-sectional dataset: cross-sectional 
survey into AIV prevalence in live bird 
markets in Dhaka and Chattogram, 
during which sixty birds and fifty envi-
ronmental sites were sampled at each 
of forty live bird markets in February 
to March 2016 [8]. Twenty-six of these 
markets were in Dhaka district and 
fourteen were in Chattogram district. 
Study previously described [8], but 
genomes not yet reported.

RNA was extracted using the 
MagMAX RNA Isolation Kit 
(QIAGEN, Hilden, Germany) 
and RT-PCR conducted using 
the AgPath-ID One-Step 
RT-PCR kit (ThermoFisher 
Scientific, Waltham, MA, 
USA) [8]. PCR amplicons 
spanning the HA segment 
were generated from positive 
samples using four primers 
for HA1 and six for HA2 (HA1: 
F308, R308, F754,R754; HA2: 
F723,R723,F531,R531,F299,R299) 
and were sequenced using 
Sanger sequencing (www.
dnaseq.co.uk).

Host (species: chicken 
type (sunali, deshi, 
broiler)), market loca-
tion, and sampling 
date.

H9; 70 HA 
sequences(accession 
numbers: Table S1)

Longitudinal dataset: A longitudinal 
study into AIV prevalence in live bird 
markets in Dhaka and Chattogram, 
during which sixty live birds and any 
observed dead birds were sampled 
monthly in two markets (one in Dhaka 
and one in Chattogram). The study ran 
from July 2017 and July 2018.

RNA was extracted using 
QIAamp Viral RNA Mini Kit 
(Qiagen) [27] then reverse 
transcribed and amplified 
using RT-PCR. Positive sam-
ples underwent whole genome 
sequencing (WGS) at APHA 
using an Illumina NextSeq 
500/550. Consensus sequences 
were assembled using Velvet 
[28] v-1.2.10 and SPAdes [29], 
following the pipeline https://
github.com/ellisrichardj/
FluSeqID.

Host species, market 
location, and sampling 
date.

H9N2; 11 HA sequences 
(accession numbers: 
Table S1). H5NX; 24 HA 
sequences (accession 
numbers: Table S1), 10 
NA sequences (accession 
numbers: Table S1)

Market surveillance dataset: A mar-
ket surveillance study performed by 
the Bangladesh Livestock Research 
Institute (BLRI). Samples were col-
lected during eight sampling events 
between November 2016 and February 
2018 across thirteen live bird markets 
(eight in Dhaka district and five in the 
Gazipur district).

H9N2; 1 HA sequence 
(accession numbers: 
Table S1). H5NX; 5 HA 
sequences (accession 
numbers: Table S1), 5 
NA sequences (accession 
numbers: Table S1)

including all sequences generated in this study, fell within a mono-
phyletic clade containing H9N2 virus sequences sampled from 
poultry in India and Bangladesh (n = 333). We retained sequences 
from that monophyletic clade where exact sampling dates and at 
least district-level location data were known, resulting in 298 HA 
sequences in the H9N2 virus alignment (Bangladesh: n = 284; 
India: n = 14). We confirmed the presence of an appropriate tem-
poral signal for both subtypes using TempEst (Rambaut et al. 2016) 
v1.5.3 (Figures S1 and S2). Finally, for the respective available NA 
sequence dataset (H9N2, n = 205; H5N1, n = 191), we repeated all 
alignment and temporal signal checks as detailed above.

Molecular clock phylogenies
We investigated the introduction date of H9N2 to sampled loca-
tions using the Bayesian phylogenetic package BEAST (Drummond 
and Rambaut 2007; Suchard et al. 2018) v1.10.4. First, we 
compared four possible models: pairwise combinations of two 
molecular clock models (uncorrelated lognormal relaxed clock 
(Drummond et al. 2006) and strict clock (Marco and Ferreira 
2008)) and two coalescent models (constant size (Kingman 1982;

Griffiths and Tavaré 1994) and Bayesian skygrid (Gill et al. 2013)), 
all using an SRD06 substitution model (Shapiro, Rambaut, and 
Drummond 2006). We executed multiple Markov Chain Monte 
Carlo (MCMC) chains comprising 100 million steps and sampling 
every 10,000 steps. As identified using path-sampling (Lartillot 
and Philippe 2006) and stepping-stone-sampling analyses (Fan 
et al. 2011; Xie et al. 2011), the best model used the uncorre-
lated relaxed clock (Drummond et al. 2006) and a Bayesian skygrid 
coalescent prior (Gill et al. 2013). The posterior tree distribu-
tions for H9N2 and H5NX HA alignments were each obtained 
from two parallel MCMC chains with 250 million steps, sam-
pling every 25,000 steps. We assessed the convergence of each 
run using Tracer (Rambaut et al. 2018) v1.7.1 (http://tree.bio.ed.
ac.uk/software/tracer/) and confirmed the presence of appropri-
ate parameter convergence by visually inspecting and then log 
combining multiple parallel runs. We summarised the informa-
tion on maximum clade credibility (MCC) trees using TreeAn-
notator (Drummond and Rambaut 2007) v1.10.4, with the first 
10 per cent discarded as burn-in. We repeated all BEAST analy-
ses for the NA sequence alignments using similar methods and
parameters.
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We used a generalised linear model (GLM) extension of the 
skygrid coalescent model (Gill et al. 2016; Dellicour et al. 2020) 
(henceforth, ‘skygrid-GLM’) to determine whether the effective 
population size (Ne) of the H9N2 HA lineage was associated with 
the tonnage of chicken or duck meat production in Bangladesh. 
Data were available yearly for each predictor from FAOSTAT (Food 
and Agriculture Organization of the United Nations, 2020) statis-
tical database. To provide correspondence with the estimation of 
virus effective population size at two-month intervals, we used 
the ‘zoo’ package (Zeileis and Grothendieck 2005) in R (RStudio 
Team 2020) v4.1.2 to estimate values for each predictor every two 
months between 2000 and 2020 using linear interpolation. We 
then conducted the same analysis for the H5 HA dataset.

AIV transmission dynamics in live bird markets
We investigated whether individual H9N2 virus clades tend to be 
either randomly distributed across LBMs in a city or associated 
with specific markets. First, we identified genetically diverse ‘clus-
ters’ (henceforth known as ‘clades’) in the HA H9N2 MCC tree 
using Clusterpicker (Ragonnet-Cronin et al. 2013) v1.2.3. These 
clades (n = 32) were identified according to a clade support thresh-
old (0.7 posterior probability), which is consistent with values 
chosen in previous AIV phylogenetic clustering analyses (Gerloff 
et al. 2013; Lee et al. 2018) and a maximum sequence identity 
threshold (4.5 per cent genetic distance) that provided a consistent 
aggregation of closely related sequences (i.e. with most sequences 
into a specific well-supported clade). Next, to quantify lineage 
diversity within and between markets, we used the adjusted Rand 
index (Rand 1971) by means of the ‘phyclust’ package (Chen 2011) 
in R (RStudio Team 2020) v4.1.2 to determine the similarity of clus-
tering by market and clade in the cross-sectional H9N2 dataset. 
To determine if there was a significant difference in the observed 
clustering pattern to that expected based on random viral move-
ment, we compared the estimated median adjusted Rand index 
with a median adjusted Rand index calculated by permuting the 
market location 10,000 times while controlling for the city. We 
further generated binary adjacency networks in R (RStudio Team 
2020) v4.1.2, in which the edges linked market nodes if they shared 
a genetically defined clade. To further test whether AIV clades are 
randomly distributed across markets, we determined the density 
of the observed network using the ‘sna’ package (Butts 2008) in R 
(RStudio Team 2020) v4.1.2 and subsequently compared it to the 
density value from permuting (n = 10,000) market location with 
respect to city. This density metric is the ratio of observed edges 
to the number of possible edges for the given network.

H9N2 dispersal between different chicken types
To determine whether H9N2 virus genetic diversity is struc-
tured according to Bangladesh’s three main chicken types (broiler, 
sunali, and deshi) and two main cities (Dhaka and Chattogram), 
we used Bayesian Tip-association Significance Testing (BaTS) 
(Parker, Rambaut, and Pybus 2008) v1.0. We removed tips in each 
tree in the HA H9N2 posterior tree distribution when tip informa-
tion on either chicken type and sampling city was unavailable, 
using the R (RStudio Team 2020) v4.1.2 library, ‘ape’ (Paradis and 
Schliep 2019) package. This generated a distribution of downsam-
pled posterior trees each containing seventy tips, corresponding 
to those sequences in the cross-sectional dataset (Table 1). The 
first BaTS analyses we performed assessed if sequences tended to 
cluster based on the sampling city (Dhaka and Chattogram). The 
second set of BaTS analyses determined if sequences tended to 
cluster by chicken type (broiler, sunali, and deshi); these analy-
ses were conducted separately for each city because significant 

clustering of sequences by the city was observed in the first BaTS 
analysis. For each BaTS analysis, we computed median empirical 
values for each BaTS statistic (association index, AI; the parsimony 
score, PS) (Parker, Rambaut, and Pybus 2008) using 1,000 subsam-
pled post-burn-in posterior trees from the respective phylogeny. 
We calculated P values by permuting the market location within 
each city 1,000 times to determine if empirical estimates signifi-
cantly differed from the null expectation (based on random viral 
movement).

We also used a GLM extension of a phylogeographic discrete 
trait analysis (DTA) in BEAST v1.10.4 (Drummond and Rambaut 
2007; Faria et al. 2013; Suchard et al. 2018) to determine whether 
covariates of the trading network predicted the H9N2 viral lin-
eage movement. We used the six pairwise combinations of chicken 
types (sunali, deshi, and broiler) sold in Dhaka and Chattogram as 
the six discrete traits. The GLM predictors included (i) the num-
ber of sequences associated with each of the six categories as a 
proxy for sampling effort (both origin and destination), (ii) the 
weekly estimated sales at LBMs for all six categories (both ori-
gin and destination) as detailed in Moyen (2019) and Moyen et al. 
(2021), (iii) a binary chicken type similarity index of the six discrete 
traits (i.e. same chicken type = 1 and different chicken type = 0), 
(iv) an equivalent city similarity index, and (v) the extent of overlap 
between production areas from which birds are sourced (1, Pianka 
index) between each discrete trait. These production areas are 
the set of Upazilas (sub-district) where farms supplying markets 
within a city are located, which were previously computed from 
reconstructed transaction networks based on traders’ interviews 
as described in Moyen et al. (2021). Descriptions for all GLM pre-
dictors included are summarised in greater detail in Table S5. 
We completed four separate MCMC analyses of 100 million steps 
sampling every 10,000 steps using the HA H9N2 empirical tree dis-
tribution downsampled to tips from the cross-sectional dataset 
(i.e. those tips with all appropriate metadata). The first model, 
termed model A, used all covariates except the chicken type and 
city similarity matrices. Models B and C were the same as model A 
but excluded the number of sequences or the weekly sales num-
ber, respectively. Model D used all five predictors. Model D was 
ran to check whether results obtained regarding the importance 
of production catchment area from models A–C were sensitive to 
the inclusion of chicken type and city similarity matrices, as these 
are somewhat correlated with production area matrices (Moyen 
et al. 2021). For each run, the presence of appropriate parame-
ter convergence was confirmed visually in Tracer (Rambaut et al. 
2018) v1.7.1 and multiple parallel runs for each MCMC analysis 
compared.

Results
Dynamics of avian influenza virus in Bangladesh
All but seven H9N2 sequences from Bangladesh (of which six 
were sampled from ducks) fell within a H9NX monophyletic clade 
containing virus sequences sampled from poultry in India and 
Bangladesh, and this clade (n = 298 sequences with appropri-
ate metadata) was therefore selected for further analysis. All 
sequences in this clade that had a respective NA sequence were 
identified as being H9N2 subtype, thus strongly indicating that any 
HA-only sequences (i.e. cross-sectional dataset) were also H9N2 
(Price, Dehal, and Arkin 2010). The most recent common ances-
tor of all Bangladeshi HA sequences in this major H9N2 clade 
was estimated around October 2005 (December 2004–July 2006: 
95 per cent highest posterior distribution (HPD)) (Fig. 1A), concur-
rent with the countries’ first reported H9N2 cases in early 2006 
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Figure 1. The estimated time-scaled MCC phylogenies of (A) HA H9N2 and (B) NA H9N2. Tips are coloured by the sampling location as indicated on the 
map and shaped by host type. Numbered labels (1–7) in the HA tree (left) designate clades of intermixing of Dhaka- and Chattogram-sampled 
sequences.

(Marinova-Petkova et al. 2016). The 95 per cent HPD interval of root 
dates for the Bangladeshi sequences in the NA MCC tree (Novem-
ber 2003–November 2005) (Fig. 1B) overlaps with the respective 
distribution in the HA MCC trees (Fig. 1A).

Bayesian skygrid reconstructions from the HA segment (Figures 
S3A and B) indicate that the effective population size of H9N2 may 
have increased in Bangladesh since it was first detected, but nei-
ther chicken meat nor duck meat production was found to be a 
significant predictor of the effective population size (Figures S3C 
and D).

Several clades in the HA H9N2 tree contain sequences from 
only Dhaka or from only Chattogram, suggesting that LPAIV 
transmission might occur preferentially between birds sold in 
each city (Fig. 1A). However, there are seven instances where 
sequence(s) from one of the cities fall within a clade where 
the basal sequence(s) to the clade were sampled in the other 
city (Fig. 1A). This is consistent with recurrent sharing of virus lin-
eages between Dhaka and Chattogram or their introduction from 
the same source. The NA phylogeny contains very few sequences 
sampled in Chattogram (H9N2; Chattogram n = 4), making it dif-
ficult to assess whether H9N2 virus NA lineages are similarly 
structured between the two cities (Fig. 1B).

Only around 3 per cent of H9N2 HA sequences (8/298) were 
recorded as being sampled from farms. Farms have been sam-
pled less intensively than LBMs in Bangladesh, in part because 

lower AIV prevalence and greater distance from urban research 
laboratories makes surveillance more challenging than at LBMs 
(Kim et al. 2018; Parvin et al. 2020; Moyen et al. 2021; Ripa et al. 
2021). The farm-sampled HA sequences fall throughout the phy-
logeny (Fig. 1A), sometimes within clades containing sequences 
from both farms and markets sampled within similar time periods 
(Fig. S4). Farm-sampled genomes are too rare here to make robust 
conclusions regarding the direction of viral dispersal between 
farms and markets.

To begin to explore whether AIVs of different subtypes may 
show similar patterns to those of H9N2, we attempted similar 
analyses on HPAIV H5NX. The 95 per cent HPD interval of root 
dates for the H5 Bangladeshi sequences in both the HA and NA 
MCC trees overlap (Fig. S5). H5 HA sequences are proportionally 
less well sampled in Chattogram than in Dhaka (Chattogram, 
n = 6; Dhaka, n = 185) (Figures S5A and S6). However, the six 
H5 sequences sampled in the Chattogram fall into three differ-
ent clades (Fig. S5A). Only 2 per cent of H5NX HA sequences 
were sampled from farms, but again these fell throughout the 
respective trees (Fig. S5A). Neither chicken nor duck meat pro-
duction was a significant predictor of the effective population 
size of H5NX (Fig. S3). Whilst these results are extremely lim-
ited, there is therefore no clear indication from currently avail-
able data that H5 HPAIV exhibits strongly different patterns
to H9N2.
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Figure 2. Binary adjacency network of Dhaka and Chattogram markets in the cross-sectional H9N2 dataset. Nodes represent markets, each containing 
a unique market ID number in white text. Nodes are linked if samples from those markets occur in the same genetically defined cluster. Nodes are 
coloured by city, with purple nodes indicating markets in Chattogram and grey nodes indicating markets in Dhaka.

Distribution of virus clades across LBMs
We investigated whether individual H9N2 HA clades tended to 
be randomly distributed across LBMs in a city or associated 
with specific markets. We quantified the diversity of viruses 
within and between markets in a city by employing the adjusted 
Rand index to measure the similarity of clustering by mar-
ket and virus clade for the cross-sectional H9N2 dataset. We 
found no significant difference (P = 0.993) between the median 
adjusted Rand index calculated from the empirical and permuted 
data (Table S6). Therefore, differences in viral genetic diversity 
between and within markets were not significantly different. The 
binary adjacency network analysison the same cross-sectional 
H9N2 dataset found no significant difference (P = 0.881) between 
the median network density estimated from the permuted data 
and the median network density calculated from the empiri-
cal data (Table S7 and Fig. 2). Therefore, we found no sig-
nificant difference in the sharing of clades between markets
in a city. 

Phylogenetic clustering by city and chicken types
To identify possible subnational differences in AIV dynamics 
between different major cities, we investigated whether HA H9N2 
virus sequences sampled from Dhaka and Chattogram phyloge-
netically clustered by city and chicken type (deshi, sunali, and 
broiler) with BaTs (Parker, Rambaut, and Pybus 2008) v 1.0 (Fig. S7). 
The analyses demonstrate significant clustering of sequences by 
city based on AI and PS statistics (P < 0.001) (Table S8). The AI statis-
tic suggested sequences clustered significantly by chicken types 
in Chattogram (P = 0.036) but not in Dhaka (P = 0.278) (Table S9). 
In contrast to the respective AI statistic, the PS statistic did not 
significantly support clustering by chicken type in Chattogram 
(P = 0.071) (Table S9). This discrepancy could reflect the lower sta-
tistical power of the PS compared to the AI test (Parker, Rambaut, 
and Pybus 2008).

A GLM extension of discrete trait phylogeography was used 
to determine whether different features of the trading network 
predicted HA H9N2 virus dispersal between six pairwise com-
binations of chicken type (sunali, deshi, and broiler) and city 
(Dhaka and Chattogram). The results are summarised in Fig. 3 and 
Table S10. Our initial analyses (model A; Fig. 3A and Table S10A) 
involving all covariates bar the chicken type and city similarity 
matrices showed very strong support (Bayes factor (BF) = 27.8; fol-
lowing Stefan et al. 2019) for greater virus dispersal as the overlap 
in production areas from which chickens are sourced before being 
sold increased. This finding was consistent to subsequent analy-
ses that excluded covariates for the number of sequences (model 
B; Fig. 3B and Table S10B) or the weekly sales number (model C; Fig. 
3C and Table S10C) (BF > 70 and >50, respectively). However, when 
the city and chicken type similarity matrices were also included 
as predictors (model D; Fig. 3D and Table S10D), the association 
of greater production overlap with greater virus dispersal was no 
longer observed (production area matrices; BF < 1). Instead, the 
higher diffusion was strongly associated (city similarity index BF 
> 1,000; following Stefan et al. 2019) with the chicken presence in 
the same city. Thus, whether the bird was sampled in the same city 
is likely the primary predictor of virus dispersal of all covariates 
considered here (Moyen et al. 2018, 2021).

Discussion
Controlling AIV transmission in Bangladesh is complicated by our 
lack of understanding of whether virus spread disproportionately 
occurs within specific components of the poultry system (e.g., 
with farms, markets, or different chicken types as more important 
sources of infection). Here, we undertook a phylodynamic investi-
gation to understand H9N2 viral spread in Bangladesh’s poultry 
system, focusing on Dhaka and Chattogram markets and their 
respective production areas. For H9N2 analyses, we first identified 



L. Carnegie et al.  7

Figure 3. Predictors of HA H9N2 dispersal among the six pairwise combinations of three main chicken types sold in Bangladesh (sunali, deshi, and 
broiler) and the two largest cities (Dhaka and Chattogram) in four separate DTA-GLM analyses (A–D). Inclusion probability is an estimate of the 
posterior expectation for the indicator variable associated with each predictor E(𝛿). It suggests the likelihood that the predictor has a meaningful 
impact on viral diffusion. Bayes Factor (BF) support values for predictors (when >3 BF) are indicated by black text annotations. Coefficient (𝛽|𝛿 = 1) 
represents the contribution of each predictor on a log scale conditional when the predictor is included in the model, with the 95 per cent highest 
posterior density interval of the log GLM coefficients (𝛽) represented by horizontal lines from the mean. Grey boxes indicate that the predictor was not 
included in the specific DTA-GLM analyses.

a monophyletic HA H9NX clade containing sequences sampled 
from poultry in Bangladesh and India, for which all available 
respective NA segment sequence were H9N2. Our analyses of this 
clade show that most H9N2 dispersal likely occurs between birds 
within the same major city, but that virus lineages are shared 
between Dhaka and Chattogram. H9N2 viruses from different lin-
eages appear to be randomly distributed across a city’s markets. 
We found regional differences in H9N2 virus spread suggesting 
more frequent viral transmission between chickens of different 
types in Dhaka compared to in Chattogram.

Our analyses suggest that H9N2 subtype lineage movement 
occurs less frequently between Bangladesh’s two largest cities 
than within each city. Whilst present, virus genetic structuring 
by city appears less strong than previously hypothesised based on 
low levels of overlap in the geographic regions from which markets 
in Dhaka and Chattogram source birds (Moyen 2019). It is per-
haps most likely that small overlaps in production areas allow for 
shared H9N2 lineage introductions to both cities identified here, 
given the frequent movement of birds from farm to markets and 
the relatively high prevalence of infection among traded chick-
ens. However, more extensive and reliable data on mobile poultry 
traders’ movements are required to robustly rule out possible 
alternative explanations (Moyen 2019; Høg et al. 2021; Moyen et al. 
2021; Ripa et al. 2021), as all current estimates for chicken type 
production areas are based on reporting data that may be sub-
ject to memory recall errors (Høg et al. 2019; Moyen 2019; Moyen 
et al. 2021). Alternative or complementary explanations include 
rapid, direct viral movement between Dhaka and Chattogram (per-
haps associated with direct poultry trading between individuals 
in each city) and slower indirect virus spread across unsampled 

intermediate locations (Høg et al. 2019; Moyen 2019; Moyen et al. 
2021). Although the lack of wild bird sequences in our datasets 
prevents any robust conclusions of the contribution of wild birds 
to H9N2 mobility here, if wild birds played an important role in 
such viral movements, we may expect Bangladeshi sequences to 
be more frequently intermixed with samples from locations linked 
to the country via wild migration routes (e.g. China and Mongolia) 
(Tian et al. 2015; Lycett, Duchatel, and Digard 2019).

H9N2 viruses detected within one market are often inter-
spersed phylogenetically with those from other markets, and 
genetically different viruses from this subtype appear randomly 
distributed across markets. This may indicate strong epidemio-
logical connections between these markets, leading to frequent 
virus spread between them or from shared sources, as suggested 
by the highly connected trading network captured by Moyen et al. 
(2018). Our observations suggest that viral genetic diversity within 
a given LBM might not be hugely dissimilar to viral genetic diver-
sity across all markets in a city, meaning surveillance of only a few 
markets within a city may be sufficient to capture viral diversity. 
This pattern could be generated in several ways, including fre-
quent introduction of viral clades to LBMs (as suggested by Moyen 
et al. 2021) followed by limited intra-market persistence. How-
ever, we could not test this or other hypotheses regarding lineage 
introduction and persistence here because many markets in our 
dataset were represented by only one sequence.

Our analyses indicate that the H9N2 viruses generally clus-
ter more frequently by chicken type in Chattogram than in 
Dhaka, suggesting that it may be necessary to consider subna-
tional variation in production and trading processes when eval-
uating AIV dispersal. This finding could be consistent with several
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non-exclusive scenarios. In the first scenario, farms in different 
geographic regions might harbour geographically distinct viruses, 
which are then imported regularly to LBMs (Ripa et al. 2021). 
In that case, more significant overlap in the production areas 
from which different bird types are typically sourced could lead 
to greater mixing of viruses between those bird types. Weak evi-
dence that H9N2 dispersal between different bird types in each 
city is associated with their degree of production area overlap 
somewhat supports this hypothesis. However, this finding is not 
robust to the inclusion of additional predictors. In the second 
scenario, our finding may result from differences in the trading 
practices between cities. Specifically, in Chattogram, middlemen 
typically sell poultry directly to stallholders (retailers or whole-
saler), whereas in Dhaka, inter-market transactions are relatively 
more common (Moyen 2019; Moyen et al. 2021). As middlemen 
rarely supply more than one chicken type, there is less opportu-
nity for direct viral transmission between chicken types during 
middlemen-facilitated transport to Chattogram’s LBMs. In con-
trast, LBMs often sell multiple chicken types, so higher rates of 
market-to-market trading in Dhaka may increase opportunities 
for AIV dispersal between different bird types (Moyen 2019; Moyen 
et al. 2021).

Patterns of AIV dispersal identified here via H9N2 analyses may 
be different for non-H9N2 subtypes. For instance, HPAIV lineages 
may be relatively more detectable by poultry traders as host infec-
tions would often be more symptomatic (Parvin et al. 2018; Ripa 
et al. 2021). This could result in contrasting management practices 
for birds infected with LPAI and HPAI viruses and subsequently 
differing viral dispersal patterns (Rimi et al. 2019). Although our 
limited analyses of H5NX Bangladeshi sequences did suggest that 
similar patterns of intermixing of viral lineages between cities 
to those observed for H9N2 may exist, we could not repeat all 
analyses for H5 as for H9 due to a lack of available sequences 
and chicken type level metadata for the former subtype. Equally, 
while our H9N2 analyses focus mainly on sequences obtained 
from chickens, which are the hosts that H9N2 is more commonly 
found in and are the poultry type that accounts for more than 
97 per cent of poultry moving through Dhaka and Chattogram’s 
market stalls (Moyen, 2021), HPAIV lineages such as H5N1 are rel-
atively more frequently detected in ducks (Kim et al. 2018; Kwon 
et al. 2020). Differences in trading patterns between chickens and 
ducks may, therefore, result in possible divergent virus transmis-
sion dynamics between such AIV lineages (Moyen et al. 2018, 2021; 
Moyen 2019).

Our study has several limitations. First, virus genomic surveil-
lance in Bangladesh is likely biased relative to infection distribu-
tion. Few sequences are available before 2013 in Dhaka or before 
2016 in Chattogram, and change in genomic surveillance over time 
may therefore bias our results. There is a lack of AIV sequences 
from farms. Whilst this may be partly a true reflection of higher 
AIV prevalence at LBMs than at farms (Gupta et al. 2021; Ripa et al. 
2021), this may also reflect surveillance bias towards LBMs, which 
are often in easier-to-reach locations than farms and where AIV is 
easier to detect. Finally, genomic sampling of H9N2 in Bangladesh 
is heavily biased towards Dhaka, and to a lesser extent, Chat-
togram, and therefore possible important sources and sinks of 
infection outside of these regions may be missed. Although H9 
and H5 subtypes have been repeatedly detected in LBMs in both 
Dhaka and Chattogram (Sayeed et al. 2017; Biswas et al. 2018; Kim 
et al. 2018; Rimi et al. 2019; Hassan et al. 2020), the relatively 
lower number of Chattogram sequences may somewhat reflect 
both the higher number of live birds traded in Dhaka than in Chat-
togram (Moyen et al. 2021) as well as the greater quantity of mixed 

bird-type markets in Dhaka than Chattogram, which are generally 
associated with higher prevalence of infection (Kim et al. 2018). 
Biased sampling over space and time is less problematic for our 
analyses based on the cross-sectional dataset than those based on 
all publicly available data, as the cross-sectional dataset was gen-
erated through the same observational study conducted in both 
Chattogram and Dhaka. Our results show that subnational varia-
tion in production and trading processes may affect AIV dispersal 
between chicken types in Dhaka and Chattogram, and hence our 
results should be considered geographically specific and should 
not be extrapolated to other regions with production differences.

Second, for some analyses, we were limited to using only sev-
enty sequences associated with known chicken types (Kim et al. 
2018). This likely limited statistical power of our analyses of both 
market viral movement analyses and of city and chicken type 
clustering, relative to our analyses that did not use chicken type. 
Likewise, as these seventy sequences were generated in a single 
cross-sectional study (Kim et al. 2018) spanning only two months, 
we could not describe and explore seasonal variations in H9N2 
infection patterns in such analyses. The dataset used for this anal-
ysis also contained only HA H9 sequences, meaning that we could 
not determine whether other segments or AIV subtypes may be 
similarly shaped by poultry trading practices in Bangladesh.

Improving insight into how viruses spread at a range of spa-
tial scales could help guide improvements in AIV control. Our 
study shows the importance of recording accurate information on 
chicken type and highlights the need for greater surveillance on 
farms to understand viral epidemiology in Bangladesh. Our results 
suggest that nationally uniform interventions to reduce AIV preva-
lence may be unlikely to provide optimal effectiveness. Instead, 
actions should be tailored to the specific local structural charac-
teristics of the poultry trading network and AIV dispersal patterns 
but could be made more efficient through targeted surveillance 
of a small number of key sites (Moyen et al. 2021). Any recom-
mendations to improve AIV control in Bangladesh should adopt 
a multi-sector One Health approach to ensure proper considera-
tion of health, social, and economic impacts (Chattopadhyay et al. 
2018; Mackenzie and Jeggo 2019).
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Table S1. Supplementary Data are available as separate files.
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