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Abstract

Human urine concentrates 88% of the nitrogen and 50% of the phosphorus excreted by humans, making
it a potential alternative crop fertilizer. However, knowledge gaps remain on the fate of nitrogen in
situations favouring NH3 volatilization and on the availability of P from urine in soils. This study aimed

at identifying the fate of nitrogen and phosphorus supplied by human urine from source separation
toilets in a calcareous soil. To this end, a spinach crop was fertilized with 2 different doses of human
urine (170 kgN ha—1 + 8.5 kgP ha—1 and 510 kgN ha—1 +25.5 kgP ha—1) and compared with a synthetic
fertilizer treatment (170 kgN ha—1 + 8.5 kgP ha—1) and an unfertilized control. The experiment was
conducted in 4 soil tanks (50-cm depth) in greenhouse conditions, according to a randomized block
scheme. We monitored soil mineral nitrogen over time and simulated nitrogen volatilization using
Hydrus-1D and Visual Minteq software. We also monitored soil phosphorus pools, carbon, nitrogen and
phosphorus (CNP) in microbial biomass, soil pH and electrical conductivity. Only an excessive input of
urine affected soil pH (decreasing it by 0.2 units) and soil conductivity (increasing it by 183%). The
phosphorus supplied was either taken up by the crop or remained mostly in the available P pool, as
demonstrated by a net increase of the resin and bicarbonate extractable P. Ammonium seemed to be
nitrified within about 10 days after application. However, both Visual Minteq and Hydrus models
estimated that more than 50% of the nitrogen supplied was lost by ammonia volatilization. Overall, our
results indicate that direct application of urine to a calcareous soil provides available nutrients for plant
growth, but that heavy losses of volatilized nitrogen are to be expected. Our results also question
whether long-term application could affect soil pH and salinity.

Graphical Abstract:



NH,

NH,* No3 %

12%

58 %

BMN

PO = w0eE

CALCAREOQUS SOIL
pH=8.7

——— Nitrogen fluxes

——» Phosphorus fluxes

Keywords (separated by '-') Source separation - Fertilization - Hydrus - Ammonia volatilization

Footnote Information

Responsible Editor: Kitae Baeke Nitrogen from urine was bioavailable for plants and microbes, but half
of the N applied could be lost by volatilization in a calcareous soil.» Phosphorus from urine was either
taken up by plants or remained mostly in available pools in a calcareous soil.e Only excessive doses of
urine application affected soil pH and conductivity in the short term.The online version contains
supplementary material available at https://doi.org/10.1007/s11356-023-26895-5.
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Abstract

Human urine concentrates 88% of the nitrogen and 50% of the phosphorus excreted by humans, making it a potential alternative
crop fertilizer. However, knowledge gaps remain on the fate of nitrogen in situations favouring NH; volatilization and on the
availability of P from urine in soils. This study aimed at identifying the fate of nitrogen and phosphorus supplied by human urine
from source separation toilets in a calcareous soil. To this end, a spinach crop was fertilized with 2 different doses of human urine
(170 kgN ha~'+8.5 kgP ha~! and 510 kgN ha~!+25.5 kgP ha™!) and compared with a synthetic fertilizer treatment (170 kgN
ha™'+8.5 kgP ha™!) and an unfertilized control. The experiment was conducted in 4 soil tanks (50-cm depth) in greenhouse condi-
tions, according to a randomized block scheme. We monitored soil mineral nitrogen over time and simulated nitrogen volatiliza-
tion using Hydrus-1D and Visual Minteq software. We also monitored soil phosphorus pools, carbon, nitrogen and phosphorus
(CNP) in microbial biomass, soil pH and electrical conductivity. Only an excessive input of urine affected soil pH (decreasing it
by 0.2 units) and soil conductivity (increasing it by 183%). The phosphorus supplied was either taken up by the crop or remained
mostly in the available P pool, as demonstrated by a net increase of the resin and bicarbonate extractable P. Ammonium seemed
to be nitrified within about 10 days after application. However, both Visual Minteq and Hydrus models estimated that more than
50% of the nitrogen supplied was lost by ammonia volatilization. Overall, our results indicate that direct application of urine to a
calcareous soil provides available nutrients for plant growth, but that heavy losses of volatilized nitrogen are to be expected. Our
results also question whether long-term application could affect soil pH and salinity.

Keywords Source separation - Fertilization - Hydrus - Ammonia volatilization

Responsible Editor: Kitae Baek Introduction

Highlights . A . . The global nitrogen (N) cycle has been massively altered for
o Nitrogen from urine was bioavailable for plants and microbes, decades. by th thesis of tive N f t heri
but half of the N applied could be lost by volatilization in a ccades, y € syn es?s ol reactive rom a' mospheric
calcareous soil. N, for fertilizer production and by the conversion of reac-
o Phosphorus from urine was either taken up by plants or tive N into N,O or N, during wastewater treatment (Gruber
remained mostly in available pools in a calcareous soil. and Galloway 2008; Steffen et al. 2015). In these two oppo-

e Only excessive doses of urine application affected soil pH and

conductivity in the short term. site processes greenhouse gases are emitted and fossil fuel

energy is used, while nitrogen pollution is caused as a side

P4l Manon Rumeau effect (Kampschreur et al. 2009). The phosphorus (P) cycle
MLR094 @student.bham.ac.uk has also been heavily disrupted, with the additional issue

| Bco&SolsUniv Montpellier, CIRAD, INRAE, Institut Agro, that ph.osphate rock, fro.m which P fertilizers are sourced, is
IRD, Montpellier, France becoming scarce (Desmidt et al. 2015). Wastewater treatment

2 Present Address: School of Geography, Earth only removes a Part'of the P, 'WhICh is however little recy-
and Environmental Sciences, University of Birmingham, cled, and the rest is discharged into surface waters. Therefore,
Birmingham, UK re-looping N and P fluxes appears to be a promising solu-

3 INRAE, UMR GEAU, Univ Montpellier, Montpellier, France tion to reduce wastewater pollution and synthetic fertilizer
4 LISAH, Univ Montpellier, INRAE, Institut Agro, IRD, dependency. Human urln(? is of particular interest because it
Montpellier, France concentrates 88% of the nitrogen and 50% of the phosphorus
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excreted by humans (Martin et al. 2022). If recycled, it could
account for more than 13% of the global agricultural fertilizer
demand (Wald 2022). In addition, urine represents less than
1% of the volume of wastewater but 79% of the nitrogen and
47% of the phosphorus treated by sewage treatment plants
(Larsen et al. 2013). Hence, diverting it would reduce by
more than half the nutrient pollution from wastewater (Wald
2022). Urine can be considered sterile in most cases and does
not present risks of disease transmission if not contaminated
with faeces. This is possible in source separation systems
(toilets with separated outlets or urinals) (Lienert and Larsen
2010) which allow the safe collection of urine.

Each human produces 1 to 1.5L of urine per day (Karak
and Bhattacharyya 2011). Urine is composed of 95% water,
and the remaining 5% consists of amino compounds (such
as urea or creatinine), organic anions and inorganic salts
(Maggi and Daly 2006). After urea hydrolysis, nitrogen is
mainly in ammonium form and phosphorus is either dis-
solved in solution or precipitated as struvite (magnesium
ammonium phosphate) (Udert et al. 2006). The fertilizing
ability of animal urine has been known for a long time (Di
and Cameron 2007; Fanjaniaina et al. 2022), while that of
human urine has been proven in recent years (Akpan-Idiok
et al. 2012; Martin et al. 2022; Pradhan et al. 2009). How-
ever, the fate and dynamics of nitrogen and phosphorus from
human urine are highly uncertain as soil biotic and abiotic
processes involving N and P could be affected by the other
compounds and nutrients present in urine. For instance, hip-
puric acid in urine can inhibit denitrification (Kool et al.
2006), and the formation of ammonium bicarbonate can
inhibit nitrification (Clough et al. 2003; Somers et al. 2019).

Calcareous soils are common agricultural land in France.
These soils are prone to ammonia (NH;) volatilization because
of their alkaline pH. Therefore, urine application on such soils
is likely to result in high NH; losses by volatilization. However,
published volatilization rates range from 0 to 63% of the ammo-
nium supplied (Mills et al. 1974; Powlson and Dawson 2022).
Phosphorus availability is also an important issue in alkaline
soils and could be improved by fertilization with urine: firstly
because urine is a source of P, and secondly because the appli-
cation of ammonium can decrease soil pH by enhancing acidi-
fying processes such as ammonia volatilization, nitrification
and subsequent nitrate leaching (Bolan et al. 1991; Raza et al.
2021). Hence, a decrease in soil pH could increase the availabil-
ity of P from urine (i.e. dissolved as phosphate or precipitated
as struvite) which largely depends on pH (Frossard et al. 2000;
Helfenstein et al. 2020; Meyer et al. 2018).

Aside from the effect on P availability, soil acidification is
an important process to monitor as it can generate negative
feedbacks on soil fertility through a reduction of the cation
exchange capacity (Barak et al. 1997) and an increase in soil
CO, emissions from the dissolution of carbonate in calcare-
ous soils (Raza et al. 2021).

@ Springer

Moreover, urine is a multi-component solution: as well as
N and P, it contains K*, S, Ca**, Mg?*, Na™, CI~ and other
micronutrients. Thus, it could represent a complete fertiliz-
ing solution even though the bioavailability of urine micro-
nutrients has not been well documented (Olivia et al. 2015).
Yet, the high concentrations in Na*, CI~ and SO42_ could
also cause soluble salt accumulation in soils (Boh and Sau-
erborn 2014; Mnkeni et al. 2008; Shingiro et al. 2019).

The objectives of this study were to determine the fates of
N and P from urine fertilization on a calcareous soil and the
effect on soil pH and salinity. The main hypotheses were: (1)
N supplied with urine is readily bioavailable, but a signifi-
cant amount of N is lost by volatilization potentially causing
a decrease in soil pH; (2) urine application and associated
decrease in soil pH increase phosphorus availability in soils;
(3) urine increases soil salinity because of its soluble salt
concentration. To address these hypotheses, we conducted
a fertilization trial on a spinach crop (Spinacia oleracea
L.) where we compared the effect of two different doses
of source separated human urine with that of a synthetic
fertilizer with equivalent N and P concentrations and an
unfertilized control.

Materials and methods
Site and experiment description

The experiment was carried out in a greenhouse of the UMR
G-EAU in Montpellier between May 30" 2020 and July 5"
2020. Meteorological variables were measured by a weather
station located at the experimental site. Air temperature and
relative humidity in the greenhouse were measured by a tem-
perature and relative humidity probe (model CS215, CAMP-
BELL SCIENTIFIC), and global radiation was measured by
a pyranometer (model SP1110, CAMPBELL SCIENTIFIC)
(Table 1).

The experiment was conducted in 4 soil tanks (soil sur-
face equal to 0.935 m? and 50-cm soil depth) (Fig. 1). Each
tank was filled with approximatively 0.53 tonnes of air-dried
loamy clay soil (24% clay, 25.6% silt, 19.5% very fine sand,
16.4% fine sand, 14.4% coarse sand) with 45% of carbonate
and a pH of 8.7. A spinach crop (Spinacia oleracea L.) was

Table 1 Climatic parameters inside the greenhouse from June 17" to
July 2™, 2020

Air tempera-  Air relative Global radiation

ture (°C) humidity (%) (kW m™2)
Mean 24.3 63.7 0.203
Minimum 9.5 23.7 0
Maximum 36.0 99.7 1.041
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Fig. 1 Scheme of the experi- 85cm

mental design (representation of

one tank, from above (left) and i W ® = Sprinklers $ t } t
from the side (right)) with crops ®
and sensor positions. For each O ® e ®
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® Tensiometer at 15 cm I
@ Spinach plant v 10cm

[ Treatment applied

sown directly in the tanks on May 30" with a plant den-
sity of 17 plant m~2 and the growing cycle lasted 37 days.
On July 5", the above-ground biomass was collected and
dried for biomass and nutrient content analysis. Spinach was
chosen because of its relatively high N requirements (170
kgN ha~! under optimal growth conditions) (Frerichs et al.
2022) and short growing cycle. Irrigation was conducted
with sprinklers located above the tanks and controlled with
tensiometers placed at 15-cm depth in the soil to maintain
soil moisture around field capacity. Approximately 200 mm
of water was supplied over the duration of the experiment.
Each tank was divided into 4 quarters using vertical alu-
minium sheets driven 30 cm into the soil (below maximum
root depth to avoid transfers of nutrients between quarters).
The experimental treatments were assigned according to a
randomized block scheme in which the experimental unit
was a quarter of a tank and the tank was the block. We com-
pared two different doses of human urine with a synthetic
fertilizer and a water control. The four treatments applied
were: Ul =Urine dose x 1 (170 kgN ha'+8.5 kgP ha™!
supplied), U3 =Urine dose x3 (510 kgN ha™' +25.5 kgP
ha™! supplied), F = Synthetic fertilizer dose x 1 (170 kgN
ha~!'+8.5 kgP ha~! supplied) and W = Water. Treatments U1
and F represent the recommended doses of N for the spin-
ach crop, while treatment U3 represents 3 times this dose
and exacerbates the effects of urine as well as approximates

} Fertilization

[ |

Drain valve > +

the recommended dose of phosphorus. Nitrogen and phos-
phorus in the F treatment were added as ammonium nitrate
(NH,4NO;) and potassium phosphate (KH,PO,) respectively.
Potassium was not limiting in soils (8 mg kg™! at TO, data
not shown) so we assumed that the slight difference in potas-
sium concentration between the urine and the synthetic fer-
tilizer would not affect plant growth.

The treatments were fractionated into 6 applications, and each
one was diluted by 11.8 for U1 and F and by 3.8 for U3 (Fig. 2).

The urine used in this experiment was collected by the start-
up EcoSec (Montpellier, France, https://ecosec.fr/), which manu-
factures and sells source separating toilets. These toilets allow
the selective collection of urine and faeces thanks to a gravity
system, but do not prevent cross contamination with faeces. Prior
to the experiment, the urine was stored for a year in an opaque
and airtight container in order to sanitize the effluent accord-
ing to World Health Organization (WHO) recommendations
(Schonning and Stenstrom 2004). The urine’s chemical com-
position is summarized in Table 2. As expected, P was only in
inorganic form and nitrogen was mostly present in ammonium
form. However, ammonium concentration in urine decreased
by 0.58 gN L~! between the beginning (T0) and the end of the
experiment (TF) due to ammonia volatilization during container
openings; this was considered in the N budget. Organic carbon
concentration was very low (57 mgC L™") despite potential cross
contamination with faeces. Furthermore, the high concentration

mpling

[ | |l

|
T=0d
Sowing

T=10d T=16d

T=20d

»
T=38d
Harvest

T=23d T=28d T=30d

Fig.2 Timeline of the fertilization treatments. The scale is in day (d) from sowing (day 0) to harvest (day 38). Each fertilization and soil sam-
pling are represented by a blue and an orange arrow respectively. Double dose of fertilization was supplied on day 30

@ Springer

Journal : Large 11356 Article No : 26895 Pages : 15

MS Code : 26895

Dispatch : 16-4-2023 |

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185


https://ecosec.fr/

186
187
188
189
190
191
192

193

194
195
196

197

198

199

200
201

Environmental Science and Pollution Research

Table 2 Chemical composition at TO (start of the experiment) of the undiluted urine used in this experiment after 1 year of storage in an air-tight

opaque tank

Parameters measured Values Method

Electrical conductivity at 25 °C (mS cm™) 40.5 NF EN 27,888

pH water 9 NF EN ISO 10523

N-NH,* (mg L% 4341 Filtered at 0.45 um, ISO 7150-1
N-NO;~ (mg L) 10.7 Filtered at 0.45 um, ISO 7890-1-2-1986
Ptotal (mg L") 206 Filtered at 0.45 um, ICP-AES
Porganic (mg L) Not detected

K* (mgL™h) 1107.8 Filtered at 0.45 um, ICP-AES
Mg?* (mg L™ 0.758 Filtered at 0.45 um, [CP-AES
Ca** (mg L") 3.49 Filtered at 0.45 um, ICP-AES

Na* (mg L™ 1245.6 Filtered at 0.45 um, ICP-AES
S04* (mg L™ 1228.81 ISO 11885

CI™ (mg L™ 3574.85 Water extraction 1/5, NF EN 9297
DBOS5 (mg L™!): 5-day biochemical oxygen demand 3670 NF EN 1899-1

ST-DCO (mg L™!): chemical oxygen demand 6790 NF T90-101

Labile carbon (mgC L™ 11.9 Filtered at 0.45 um, POXC

Total dissolved carbon/inorganic carbon/organic carbon (mgC L™Y)  2400/2343/57 Filtered at 0.45 um, TOC-TN analyser
Cu (mg LY 0.264 Filtered at 0.45 um, ICP-AES

Fe (mg L") 0.126

Mn (mg LY <0.008

Zn (mg LY 0.198

Bo (mg L) 0.556

Al (mg L™ 0.056

SAR (sodium absorption ratio) 157.6

- Solution Ul 45.8

- Solution U3 80.8

Abbreviations:ICP-AES inductively coupled plasma atomic emission spectroscopy, POXC permanganate-oxidizable carbon, TOC-TN total

organic carbon/total nitrogen

of Na* (1289 mg L™!) and CI~ (3574 mg LY along with the
conductivity (40.6 mS cm™!) showed that the urine had high
salinity (Table 2). Additionally, the sodium absorption ratio
(SAR, indicating the potential sodium hazard for irrigation or
fertirrigation) of pure urine, solution U1 and solution U3 was
calculated with the following formula, and SAR values are
detailed in Table 2:

Na*
%(Ca2+ + Mg2+)

SAR =

ey

where concentrations of cations (Na*, Ca?*, Mg?*) are
expressed in meq L™,

Parameter monitoring and measurement
Soil sampling
Bulk soil samples at 0—10-cm depth composed of 2 sub-

samples were taken in every quarter of a tank at the begin-
ning of the experiment before sowing (TO0), right after every

@ Springer

fertilization (T1 to T6) and at the end of the experiment
(TF). For every sample, the gravimetric water content was
measured by drying the soil at 105 °C for 48 h. Mineral
nitrogen (NO;~ and NH, ") was measured in all the samples,
whereas pH, conductivity, organic and inorganic P concen-
tration and microbial biomass were quantified only in the
TO and TF samples.

Soil bulk density

In each tank, 3 undisturbed soil cores of 5-cm depth were
taken. Soil cores were then oven dried at 105 °C, and the
bulk density was calculated for each core by dividing the
dry mass of soil by the volume of the core.

Mineral nitrogen measurement

Soils were extracted with 1 M KCI (soil to extractant ratio
of 1:3) on the day of sampling. The extracts were filtered
at 0.45 pm and frozen until analysis. Then, samples were
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analysed by continuous flow colorimetry (Skalar SA 3000
analyser). This method measures nitrite and nitrate species
together and ammonium separately.

pH

pH measurement was carried out according to the ISO stand-
ard using a pH probe (AFNOR, 2005). Soils were sieved,
air dried and extracted with a soil to water ratio of 1:5, and
measurements were performed after 1 h of agitation.

Electrical conductivity

Soils were sieved, air dried and extracted with a soil to water
ratio of 1:5. Then, the solution was agitated for 30 min, cen-
trifuged and filtered. Electrical conductivity was then meas-
ured on the aqueous extract with a conductometer probe.

Organic and inorganic P pool

To quantify soil phosphorus pools, we performed a Hedley
sequential fractionation as modified by Tiessen and Moir
(1993). This method operationally identifies organic and
inorganic P pools. Soil samples were sequentially extracted
with 4 different reagents in the following order: anionic
exchange resin membranes (BDH #55,164, 6 cm X4 cm,
named P resin pool), 0.5 M sodium bicarbonate (NaHCO;,
Pi and Po bicarbonate pools), 0.5 M NaOH (Pi and Po NaOH
pools) and 1 M HCI (P HCI pool). To quantify organic P,
aliquots of bicarbonate and NaOH extracts were mineralized
by acid digestion, and the organic P concentration was cal-
culated as the difference between inorganic P in the digested
extract (corresponding to the total P in the extract) and inor-
ganic P in the non-digested extract. Inorganic phosphorus
concentration in each extract was measured by the mala-
chite green colorimetric method (Ohno and Zibilske 1991).
The P resin and the Pi and Po bicarbonate are commonly
considered the available P pool (Tiessen and Moir 1993).
The exchange times of sequentially extracted P pools with
the soil solution increase with the strength of the extractant
(Helfenstein et al. 2020). Hence, the P pools extracted with
the stronger extractants (i.e. 0.5 M NaOH and 1 M HCl) are
most likely less available.

CN P in microbial biomass

The fumigation extraction method was applied to determine
C, N and P in microbial biomass (AFNOR, 1997). For each
soil sample, 4 subsamples were weighed, and 2 were fumi-
gated with chloroform overnight. Blanks without soil were
included. Then, two fumigated/non-fumigated subsamples

underwent potassium sulphate (K,SO,, 0.025 M) extrac-
tion for C and N quantification. The two other fumigated/
non-fumigated subsamples underwent sodium bicarbonate
(NaHCO; 0.5 M) extraction for P quantification. C and N
were determined in the filtered extracts using a TOC-TN
analyser (VCPH Shimadzu+ TN module). Phosphorus in
the fumigated/non-fumigated extracts was measured with
the malachite green method. Microbial C, N and P (MBC,
MBN and MBP) were calculated as the difference in C, N
and P concentration between the fumigated and the non-
fumigated samples and divided by a conversion factor of
0.45 for C and N.

Soil micronutrient concentrations

Soil concentration of K*, Na*, PO,2~, SO,>~~, Mg**, Ca>*
were measured at TO and TF by the laboratory Aurea Agro-
Sciences (https://www.aurea.eu/) following the method
ISO 11885 for the determination of selected elements by
inductively coupled plasma optical emission spectrometry
(ICP-OES).

Crop nutrient uptake

The above-ground biomass was dried at 60 °C for 48 h,
weighed and ground. Carbon and nitrogen concentrations were
determined by a CHN elemental analyser (Thermo Fisher Sci-
entific Flash 2000). P, K, Ca, Mg, Na, Cu, Fe, Mn, Zn, Bo and
Al concentrations were measured using ICP-AES spectros-
copy. Nutrient uptake was calculated as the product of tissue
concentration and dry biomass and expressed in kg ha™".

Nitrogen fertilizer use efficiency was calculated in all fer-
tilized treatments as the difference between the amount of N
taken up by the crops in the fertilized treatments (NupFT)
and N taken up by the crops in the control treatment (NupW)
divided by the total amount of N supplied by each treatment
(NsupFT).

NupFT — NupW

NUE(%) = NsupFT

x 100 )
Phosphorus fertilizer use efficiency (PUE) was calculated
in the same way as NUE.

Modelling of ammonia volatilization

Two models were used to estimate ammonia volatilization in
our experiment: Hydrus 1D (PC progress, version 4.17) and
Visual Minteq (version 3.1). Each model was able to give
an estimation of the ammonia volatilized using a different
approach. Visual Minteq is an equilibrium speciation model
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and simulated the concentration of ammonia in the soil solu-
tion by calculating chemical equilibria using the pH, the
ionic strength and the concentrations of different chemical
species. Hydrus 1D, on the other hand, is a reactive transport
model and simulated ammonia volatilization by a first-order
reaction process in function of the continuous concentration
of ammonium in soils (calibrated with the observed meas-
urements). A comparison of the parameters used for the two
models is detailed in Table 5S, Supplementary Data. Finally,
the rates of ammonia volatilization simulated by the two dif-
ferent models were compared.

Hydrus 1D model

Model description Hydrus 1D (Siminek et al. 2008) is a
free software able to simulate water flow and solute transport
in one dimension. All the following reactions and processes
were considered in the simulation: ammonia volatilization,
nitrification, denitrification, NO;~ leaching, N mineraliza-
tion and NH,* and NO5~ root uptake.

Input parameters A homogeneous soil profile of 0-10-cm
depth was considered.

Water flow parameters Soil water dynamics were modelled
according to the Van Genuchten model (van Genuchten
1980), and the hydraulic parameters were derived from
the soil texture (sandy loam). An atmospheric bound-
ary condition (BC) with the surface layer was set for the
upper BC, and free drainage was set for the lower BC. The
reference evapotranspiration (ETo) was calculated using
the Heargreaves formula using temperature and relative
humidity data. Crop evapotranspiration was calculated as
ETP=Kc*ETo (with Kc estimated from the spinach growing
stages) accordingly to the FAO 56 (Allan and Smith 1998).
Root water uptake was modelled with Feddes parameters
(Feddes et al. 1978) using the lettuce parameters embedded
in the software. Finally, the average soil moisture measured
at TO was used to set the initial water content.

Solute transport parameters Ammonium and nitrate were
the 2 solutes modelled in Hydrus 1D; their molecular dif-
fusion coefficients in water were 1.52 and 1.64 cm? day™!
respectively (Li et al. 2015). The Henry’s law constant for
NH,* was 2.95x 107* (Li et al. 2015), and the adsorption
coefficient for NH,* (Kd) was set at 3.5 L mg_1 (Hanson
et al. 2006). The nitrification and denitrification rates were
assumed to be 0.2 day~! and 0.04 day~! respectively (Castal-
delli et al. 2018; Li et al. 2015). N mineralization was assumed
to follow a zero-order reaction process and was calibrated
with N content from the control treatment. The rate was set at
1.5%107° g cm™ day~!, falling in the same range as the one
used by Tao et al. (2021) for agricultural soils. The boundary
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condition at the top was set as “stagnant for volatile solutes”
on a 1-cm layer to allow gaseous diffusion of solutes (Jury
et al. 1983). A “zero concentration gradient” was used at the
bottom of the soil profile to allow N leaching fluxes. Root sol-
ute uptake was set as passive for both solutes with the highest
soil concentrations as the maximum uptake allowed. Addi-
tionally, initial soil concentrations in NO;™ and NH4Jr were set
using the average concentration measured per treatment at TO.

Determination of the volatilization rate The volatilization rate
was calibrated against soil ammonium and nitrate concentrations
with the inverse solution model using the U3 treatment configu-
ration. U3 was chosen because early simulations showed a better
fitting between simulated and measured NH,* soil content for
this treatment. The inverse solution analysis returned a rate of
1.4 day™! for ammonia volatilization. This value fits the upper
range of rates found in the literature (Castaldelli et al. 2018), and
we considered that it represented well the optimal conditions for
ammonia volatilization in this experiment (i.e. high soil pH and
high temperature). This rate was then used to model the nitrogen
dynamics in the other treatments.

Model evaluation Simulated ammonium and nitrate soil
concentrations in the three fertilized treatments (F, U1 and
U3) were compared to measurements to validate the model.
The discrepancy between simulated and observed data was
evaluated by calculating the coefficient of correlation (%)
and the root mean square error (RMSE).

RMSE (kgN.ha™') = (3)

where Si (kg ha™!) and Oi (kg ha™!) are respectively simu-
lated and observed nitrogen concentration and n the number
of measurements (n=8). The observed nitrogen concentra-
tion represents the mean value per treatment (n=4).

Visual Minteq model

Visual Minteq is a free software modelling chemical equilib-
ria (Gustafsson 2011). In our study, it was used to calculate
the theoretical amount of NH; produced in solution after urine
application. The input parameters were: soil pH, ionic strength
and soil solution concentration of major ions, i.e. NH4+, NO;7,
K*, Na*, PO,*", SO,2~, Mg?", Ca** after each application.
Except for NH,* and NO;~, the other concentrations were
measured only at the beginning and the end of the experiment.
Therefore, they were considered equal to their concentration
at TO until mid-experiment and then equal to their concentra-
tion at TF until the end. Regarding phosphorus, the amount of
P contained in urine was added to the PO,*>~ concentrations.
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The other inputs of major ions added with urine additions were
considered negligible for this specific model application. The
model outputs give all chemical species in solution likely to
precipitate at thermodynamic equilibrium and the distribution
of each element among its different species. The percentage of
NH; after each urine application calculated by the model was
multiplied by the initial NH,* concentration to estimate the
total amount of NH, produced in kg ha™" for each treatment. To
compare Visual Minteq and Hydrus 1D outputs, we assumed
that all the NH; produced in solution was volatilized.

N and P budget
Nitrogen

A nitrogen budget approach was used to compare the main
nitrogen fluxes in our experiment and give an estimation of
the unaccounted losses (i.e. denitrification and leaching). The
N budget was calculated for the 0-10-cm depth soil layer
using the N applied by fertilization (Fertiy), the measured soil
concentration of NH,* and NO;™ at TO and TF to calculate
ANsoil, the measured crop N uptake between 0 and 10 cm
(Nupt), the measured microbial N pool (AMBN) and the meas-
ured soil bulk density to convert values from mgN kg™! to
kgN ha~!. Ammonia volatilization (Vol) was fitted according
to the Hydrus model outputs. Nitrogen mineralization (Min)
was calculated as the only input of N in the water treatment.
The nitrogen budget error was then calculated (as described
below) for each treatment; it can be interpreted as a measure
of the unaccounted losses and of the experimental error. We
assumed that a budget error below 10% of N supplied means

that unaccounted losses were minimal.
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Nitrogen budget error (6N)(kg.ha_l) = Fertiy — ANsoil — AMBN

— Nupt — Vol + Min “4)
where
ANsoil = (NH} + NO3 )T, — (NH} + NO3) T, (5)
AMBN = MBNT} — MBNT, )
Nupt = N, 40 X Jeroot biomass,_yq., (estimated at 44% according t0) @)

And Heinrich et al. (2013)
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Phosphorus

The P budget was calculated for the 0—10-cm depth soil
layer excluding the pool of P extractable with HCI. As the
HCl-extractable P pool is very large in our calcareous soil,
variations occurring during the experiment were not detect-
able against the analytical error. Hence, the P budget error
can be interpreted as a net variation of the HCl-extractable

P pool size. Similarly, a net change in a P pool size gives an
indication of the net flux involving the pool; however, this
variation also includes the experimental error. The P budget
error is calculated with the amount of P supplied by fertili-
zation (Fertip), the P taken up by the crops between 0 and
10 cm (Pupt) and the concentration of P in the different soil
pools (Pi,egins Pigcoss Pinaoms POrco3s POnaor)- Microbial P is
already included in the organic P pools due to the extraction
method; therefore, it does not appear in the budget calculation.

P budget error (5P)(kg.ha_1) = Fertip — APsoil — Pupt
3)

where

APsoil =(P Lyesin T Pincos + Pinaon + Poycos + P ONaOH)TF

. . . ©))

= (Phresin + Pincos + Pinaorr + Poricos + Poyaon ) To

P crop uptake between 0 and 10 cm is calculated the same
way as the N crop uptake on 0-10 cm (see above).

Statistical analysis

Statistical analyses were carried out with Rstudio software (ver-
sion 3.6.1) (R Core Team 2017). To test the homogeneity of ini-
tial variable values at TO across blocks (tanks) and treatments,
we used a linear model with 2 factors: block (n=4) and treat-
ment (n=4) (16 samples in total), and significance was deter-
mined with the ANOVA (analysis of variance) function. Signif-
icant differences were only found for the variables Pi resin, and
MBN with differences of up to 41% and 52% respectively in the
mean pool size between the richest and the poorest tank. On T1
to TF values, ANOVAs were performed to assess the effect of
treatments on each variable and date separately. For each vari-
able measured, a linear mixed model (“Imer” function, Ime4
package, (Bates et al. 2015, p. 4)) was produced with “treat-
ment” (n=4) as fixed factor and “block” (n=4) as random fac-
tor to account for the initial differences between tanks observed
for certain variables. A Tukey’s multi-comparison test was per-
formed when the treatments had a significant effect on the vari-
able (significance level: p value <0.05). Correlations between
variables were assessed using Pearson correlation tests.

Results

Global result analysis

Soil analysis

At the end of the experiment, soil pH was lower in the U3

treatment (urine at 510 kgN ha™') than in all other treat-
ments, reaching 8.5, while it was over 8.8 in all other
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treatments. At T3, shortly after a fertilizer application, soil
conductivity was higher in all the fertilized treatments than
in the water treatment, but at the end of the experiment,
only the U3 treatment still had higher conductivity (+ 187%
compared to the water treatment, p =0.002) (Table 3). In
the U3 treatment, soil concentrations in Nat and C1~ were
also twice as high at TF as in the other treatments (Table 28,
Supplementary data). MBC and MBP showed no significant
response, but MBN showed a significant difference between
U3 and the control W at TF (+370% in U3 compared to W)
(Table 3). Soil nitrate and ammonium concentrations and
soil P pool concentrations are commented in Sect. 2.1 and
3 respectively.

Biomass and plant nutrient uptake

Aboveground biomass at the end of the experiment was
significantly different only between the control treatment
(W) and the synthetic fertilizer treatment (F). N and P
uptake by plants were significantly higher (p <0.05) in the
F and U3 treatments than in the W treatment, and inter-
mediate in the Ul treatment, i.e. not significantly differ-
ent from both W and U3 and F treatments. In addition,
the spinach crops in the tanks 1 and 8 took up more N
and P than the ones in the tanks 4 and 5 (up to 138% and
210% more for N and P respectively, data not shown). N
and P uptake were highly correlated (Pearson coefficient
r=0.97, p<0.0001). N uptake was correlated with soil
nitrate content from day 23 to day 28 (p =0.03, p=0.04,
p=0.01 for day 23, 26 and 28 respectively) but was not
correlated with soil ammonium content. P uptake was cor-
related with none of the P pools at the end of the experi-

ment (p > 0.05) (Table 4).
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Nitrogen stock evolution and losses
N-NH,*, N-NO;~ soil concentrations

In the water treatment, soil ammonium and nitrate contents
were very close to 0 kgN ha~! throughout the experiment
(Fig. 3). In the synthetic fertilizer treatment (F), both nitrate
and ammonium increased after the first application (day 10),
but, while ammonium content stayed relatively stable under
100 kgN ha™!, nitrate content increased up to 150 kgN ha™!
at day 30. In U3 and U1 treatments, ammonium reached a
peak during the experiment (at day 30 and day 20 respec-
tively) and then decreased to 0 kgN ha™! at the end (Fig. 3,
left panel). Nitrate concentration in Ul and U3 showed a
slow increase between day 10 and 20 and a sharp increase
between day 20 and 30 (Fig. 2). Overall, the nitrate and
ammonium curves of Ul and F were very similar, although
in the U1 treatment twice more ammonium was added than
in the F treatment.
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Estimation of ammonia volatilization

In order to validate the N fluxes simulated by Hydrus 1D,
simulated and observed ammonium and nitrate soil concen-
trations were compared (Fig. 4).

Modelled NH,* soil concentrations agreed relatively well
with measurements in the 3 treatments (RMSE < 69 kg ha™),
although they were slightly underestimated for U3. However,
NO;™ dynamics were poorly simulated by Hydrus 1D espe-
cially in the U3 treatment (RMSE =142 kg ha™!). As soil
NO;™ is not used in the calculation of ammonia volatilization,
this poor fitting should not affect the estimation of NH; volatil-
ization. It prevents, however, a good estimation of NO;™ leach-
ing and denitrification. Therefore, we did not use the Hydrus
1D model outputs to estimate these losses in the N budget.

As expected, ammonia volatilization simulated by
Hydrus 1D was especially high in the U3 treatment reach-
ing 260 kg ha™!, and it was almost two times higher in the
Ul treatment than in the F treatment (Table 5).

Visual Minteq estimated that 21% of NH," in soils would
be in NH; form for a soil at pH=_8.7; however, this pro-
portion decreases to 13.9% when the pH is at 8.5 as in the
treatment U3 at the end of the experiment (Table 1S, Sup-
plementary data).

Despite the models’ dissimilarities, their output for the flux
of NH; is similar (Table 5). Both models agree that more than
half of the nitrogen applied with the urine fertilizer was lost
by ammonia volatilization, whereas only approximately 30%
was lost with the NH,NO; synthetic fertilizer.

Fate of phosphorus from urine

P was similarly distributed in the different P pools in F,
U1 and W treatments, whereas in U3 treatment, the three
inorganic phosphorus pools were larger than in all others
at the end of the experiment, in particular Pi resin (+179%
compared to the W treatment) (p =0.00005) and Pi NaOH
(+38%) (p=0.0015). (Fig. 5).

In contrast, the HCl-extractable Pi (Pi HCI1) did not vary
significantly among treatments (Table 3). The P budget
calculation (6p) was negative in the Ul and U3 treatments
suggesting a potential decrease of approximatively 10 kgP
ha~! of the Pi HCI pool, which was not detectable against
replicate variability (Table 1S, Supplementary data).

Discussion
Effect of urine fertilization on soil pH and salinity
In our study, only the excessive dose of urine (U3) lowered

the pH of the calcareous soil. Previous studies on acidic soils
found a decrease in soil pH even with the appropriate urine
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Table 3 Results of ANOVA (p value) and post hoc Tukey tests on the
experiment variables. Values in the table are the means of the 4 rep-
licates in each treatment. Treatments are noted with letters, W =con-
trol, F=synthetic fertilizer, Ul =urine dosed at 170 kgN ha™!,
U3 =urine in excess at 510 kgN ha~!. Different letters (a, b, c) indi-

cate significant differences between treatments (p <0.05) for a same
date (TO at the beginning of the experiment before sowing, T1 to T6
right after every fertilization event and TF at the end of the experi-
ment)

Variables Time w F Ul U3 p value treatment effect p value
tank effect
pH TO 8.73a 8.76 a 8.73a 8.74a 0.3 0.4
TF 9.0l a 8.84b 8.88 ab 8.52¢ <0.0001 ##* Nd
Conductivity (uS cm™h) TO 160 a 135a 155 a 149 a 0.23 0.33
T3 150 ¢ 248 be 341b 528a <0.0001 Nd
TF 147b 154 b 177b 423 a 0.002% Nd
NO;~ +NO,™ (mgN kg~!) TO 76a 50a 82a 63a 0.21 0.6
T1 24a 19.1a 48a 39a 0.06 Nd
T2 8.8b 470a 23.1ab 425a 0.002 * Nd
T3 6.6b 443a 26.5 ab 39.7a 0.01 * Nd
T4 104 ¢ 88.8b 80.1 be 226.1a 0.00004 * Nd
T5 13¢c 1359b 104.8 b 2213a 0.00001 ** Nd
T6 6.7¢c 102.7b 57.1bc 21434 <0.00001 *#* Nd
TF 4.1b 2b 2b 121a 0.003 ** Nd
NH,* TO Oa Oa Oa Oa Nd Nd
(mgN kg™ Tl 0b 25 ab 22 ab 58a 0.01 Nd
T2 29c¢ 35be 66 b 145 a 0.0001 Nd
T3 l.lc 38¢ 86b 187 a <0.00001 *** Nd
T4 0b 35b 76 b 206 a 0.0001 Nd
T5 03b 35b 51b 260 a <0.00001 #*#* Nd
T6 0.8b 51b 52b 315a 0.0001 Nd
TF 0.6 a 09a 0.8 a la 0.5 Nd
Pi Resin TO 10.5a 97a 9.7a 10.8 a 0.4 0.009 **
(mgP kg™ TF 9.4b 11.7b 11.7b 262a 0.00005 ** Nd
Pi Bicarbonate TO 7.8a 11.6a 93a 89a 0.65 0.28
(mgP kg™ TF 115a 115a 11.1a 17.0a 0.05 Nd
Pi NaOH TO 11.5a 99a 95a 9.58a 0.13 0.02 *
(mgP kg™ TF 9.8b 109b 99b 13.5a 0.0015 ** Nd
Pi HCI TO 2244 209 a 206 a 221a 0.45 0.10
(mgP kg™ TF 225a 217a 219a 230 a 0.42 Nd
Po Bicarbonate TO 10.1 a 57a 75a 7.7 a 0.33 0.07
(mgP kg™ TF 69a 12.8a 12.1a 8.la 0.43 Nd
Po NaOH TO 245a 229a 2052 225a 0.81 0.09
(mgP kg™ TF 239a 213a 238a 209a 0.6 Nd
P total TO 2813 a 269.9 a 2543 a 289.3 a 0.21 0.07
(mgP kg™ TF 286.9 a 285.8a 288.5a 3163 a 0.03 * Nd
MBC TO 127 a 134a 140 a 140 a 0.67 0.03
(mgCkg™) TF 96 a 122 a 126 a 134a 0.10 Nd
MBN TO 9.8a 113a 11.1a 10.5a 0.17 0.001 **
(mgN kg™") TF 8.4b 20.1 ab 213 ab 395a 0.05 * Nd
MBP TO 71a 7.1a 8.8a 76a 0.9 0.8
(mgP kg™ TF 63a 51a 78a 10.5a 0.08 Nd

dosage (Mnkeni et al. 2008; Sangare et al. 2015). However,
calcareous soils have a stronger pH buffering capacity (Mag-
doff and Bartlett 1985; Raza et al. 2021); they are probably

more resistant to the acidifying effect of urine in the short
term. The effect of long-term urine application on soil pH is
uncertain and is potentially much greater for non-calcareous
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Table 4 Results of ANOVA (p value) and post hoc Tukey tests on
plant biomass and plant nutrient uptake variables assessed at the end
of the experiment. NUE and PUE (respectively nitrogen and phos-
phorus use efficiency) were assessed as the efficiency of N and P fer-
tilizer, i.e. the difference in nutrient uptake between a fertilized and
non-fertilized treatment, divided by the amount of applied nutrient.
Values in the table are the means of the 4 replicates. Different letters
(a, b, ¢) indicate significant differences between treatments (p <0.05)
for a same date

Variables w F Ul U3 p value
treatment
effect

Aboveground bio- 152b 27.8a 223ab 232ab 0.02*
mass (g)

Nuptake (kg/ha) 23.6b 529a 41.8ab 494a 0.02*
Puptake (kg/ha) 22b 43a 3.1ab 4la 0.03 *

C/N 10.19a 8.03b 821b 7.57b 0.005 **
C/P 130a  106a 119a 101a 0.17
NUE / 17 a 10a S5a 0.06
PUE / 24a  10a 7a 0.05

than for calcareous soils. Soil acidification can nevertheless
be reduced by applying correct amounts and most impor-
tantly by reducing urine-derived ammonia volatilization,
which exacerbates soil acidification.

Similarly, urine caused a buildup of soluble salt con-
centration and specifically NaCl only in the U3 treatment.
However, crops under the U3 treatment did not take up more
sodium than under the other treatments (Table 3S, Sup-
plementary data), and the soil salinity was still below the
spinach salt tolerance threshold established at 9.4 dS m™!

by Ferreira et al. (2018); so, it is unlikely that the spinach
crops underwent a saline stress. Other studies on urine fer-
tilization confirm that critical values of soil conductivity
are only observed when urine is applied in excess (up to
13 dS m~! with 800 kgN ha~!) (Boh and Sauerborn 2014;
Mnkeni et al. 2008; Neina 2013) and that the crop response
depends on its salt tolerance threshold (Mnkeni et al. 2008).
Nevertheless, the effects of urine fertilization on soil salin-
ity have not been investigated so far for longer than one or
two cropping seasons. The sodium adsorption ratio (SAR)
of diluted urine being high (Table 2), the potential effect
of urine on the buildup of harmful concentrations of soil
exchangeable sodium should be assessed in the long term,
and suitable solutions can be envisaged to avoid such a risk,
such as the addition of Ca and Mg amendments (Ayers and
Westcot 1985).

Considerable losses of nitrogen by volatilization

More than half of the nitrogen applied was estimated to be
lost by volatilization with urine application. Similar rates of
volatilization were obtained with liquid ammonium fertilizer
on calcareous soils (Hargrove et al. 1977; Powlson and Daw-
son 2022; Whitehead and Raistrick 1990). In addition, vola-
tilization is almost double with urine than with ammonium
nitrate fertilizer; similar values were found when comparing
urea and ammonium nitrate (Eckard et al. 2003).
According to Visual Minteq simulations, a small shift
in soil pH can considerably affect the NH,/NH; chemi-
cal equilibrium and so the potential of our soil for ammo-
nia volatilization. This highlights the interaction between
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Fig.3 Evolution of soil mineral nitrogen stocks during the experi-
ment as a function of treatment: F: synthetic fertilizer dosex 1, Ul:
urine dosex 1, U3: urine dosex3, W: unfertilized control (ammo-
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0 10 20 30
days after sowing
nium on the left panel and nitrate on the right panel). The dashed

lines represent the cumulative fertilization inputs and the errors bars
represent the standard error between the four replicates
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Fig.4 Comparison between concentration of ammonium and nitrate
in soils, as simulated by Hydrus 1D (lines) and observed (points) for
which the errors bars represent the standard error between the four

Table 5 Nitrogen lost by ammonia volatilization, as modelled by Vis-
ual Minteq and Hydrus 1D models

Treatment Hydrus Visual Minteq

Ul 57% (90 kg ha™") 67% (105 kg ha™!)
U3 55% (260 kg ha™") 58% (270 kg ha™")
F 28% (48 kg ha™") 38% (66 kg ha™)

~
a
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P extracted (mgP/kg)
H——
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[$))
1
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Fig.5 Distribution of phosphorus in different soil pools at the
end of experiment. The errors bars represent the standard error of
four replicates. Pi Resin=resin extractable inorganic P; Pi Bicar-
bonate =sodium bicarbonate extractable inorganic P; Po Bicarbo-
nate =sodium bicarbonate extractable organic P; Pi NaOH =sodium
hydroxide extractable inorganic P; Po NaOH=sodium hydroxide
extractable organic P

days after sowing

replicates. Tables in the figures report the RMSE (in kg ha™!) and
calculated for each treatment

fertilization, soil pH and ammonia volatilization that needs
to be considered when studying nitrogen fluxes. It is likely
that a high load of urine or long-term urine fertilization by
causing high losses through ammonia volatilization and high
nitrification rates decreases the pH of calcareous soils, thus
decreasing the potential of the soil for subsequent ammonia
volatilization.

The nitrogen budget error was especially high in the F
treatment (Fig. 6 and Table 4S, Supplementary data), sug-
gesting that unaccounted losses, most probably leaching and
denitrification, had a higher contribution in the N budget of
this treatment. Hence, nitrate leaching and denitrification
were probably higher in the fertilizer treatment than in the
urine treatments. Most likely, the NH,NO; fertilizer induced
a smaller volatilization rate but higher leaching and deni-
trification rates because of its partition between nitrate and
ammonium (Eckard et al. 2003; Fernandez-Escobar et al.
2004). In addition, such high levels of excess N were not
expected as the Ul and F fertilization rate had supposedly
been adjusted to meet crop requirements, but crop growth
was limited in our experiment possibly because of exces-
sive heat during that summer. In conditions of adequate crop
uptake, lower total N losses are to be expected.

In this experimental setup, soil conditions were optimal
for ammonia volatilization (pH at 8.7 and air temperature
ranging between 20 and 30 °C), so the high rates of volatili-
zation simulated in the urine treatments can be considered
an upper limit for urine fertilization. Although these high
ammonia emissions raise concern, it is possible to reduce
them with appropriate application techniques, timing and
dosage (Mencaroni et al. 2021; Rodhe et al. 2004).
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Fig.6 Nitrogen fate in each
fertilized treatment on a

Root uptake ]

0-10-cm soil profile. Percent-
ages represent the estimated
percentage of the N supplied

by fertilizer that had followed
each pathway at the end of the
experiment. Unaccounted losses

NH; )

are calculated by the nitrogen
budget error. A small budget
error (< 10% of N supplied)
suggests that unaccounted

Fertilizer

=

100%

Soil mineral N :

Unaccounted losses:

losses are close to 0

Microbial N

-8%
44% 12%
- 47%
2%
- U3 u1 r

Bioavailability of N from urine fertilizer for plants
and microbes

In our experiment, most of the ammonium supplied by urine
was readily nitrified in the soil. This result is consistent with
other studies with urine fertilization showing that the nitro-
gen applied was in nitrate form at the end of their experiment
(Cuttle et al. 2001). Ledgard and Saunders (1982) observed
a nitrate peak 10 days after fertilization, which is consist-
ent with our peak 13 days after the first urine application.
Ammonium oxidation into nitrite is faster than nitrite oxi-
dation into nitrate (Monaghan and Barraclough 1992). As
with our analytical method we could not distinguish nitrate
and nitrite, we cannot exclude that nitrite might have been
present along with nitrate. This could have caused nitro-
gen stress in the urine treatments, especially at the start of
vegetative growth, given that nitrite is not bioavailable and
that spinach prefers nitrate over ammonium (Okazaki et al.
2009). The lower crop uptake in the Ul treatment (Table 4)
could support the hypothesis of a nitrogen limitation due to
incomplete nitrification at the beginning of the experiment.
Another explanation for the lower N uptake in the Ul treat-
ment could lie in the high rate of ammonia volatilization,
reducing the amount of N available in the soil. In this case,
the nitrogen stress should have occurred at the end of the
growth cycle where the N demand was higher. However, the
plant growth data are not sufficiently detailed to determine
whether or when nitrogen stress occurred in the Ul treat-
ment (Fig. 2S, Supplementary data).

The microbial N pool appears to have increased in the
fertilized treatments between the beginning and end of
the experiment, with a stronger response in the U3 treat-
ment. Microbes were, therefore, able to immobilize N from
urine, making it unlikely that urine had a negative effect on

@ Springer

microbial activity. However, this increase was never accom-
panied by an increase in microbial C, causing a shift in the
microbial C to N ratio. Mason-Jones et al. (2022) recently
highlighted that soil microbes have the capacity to store
surplus nutrients to reduce their loss and release them later
upon microbial death. Thus, under urine application, part
of the added ammonium was probably stored in the micro-
bial biomass forming a readily available N pool. Similarly,
Zaman et al. (2006) found an increase of only microbial N
with NH,CI fertilizer, while both N and C microbial pools
increased with C-rich dairy shed effluent. Urine alone is
relatively poor in dissolved organic carbon (Table 2) and,
therefore, does not stimulate microbial growth.

Bioavailability of P from urine fertilizer

N and P uptake were highly correlated (Pearson coefficient
r=0.97). Therefore, the lower P uptake observed for the U1
treatment might be a consequence of the nitrogen stress that
likely occurred under Ul.

At low doses, the fate of phosphorus from urine and
synthetic fertilizer seemed relatively similar as there was
no difference in concentrations of the different P pools or
total P between Ul and F. The fate of P from urine was
clearly detectable in the U3 treatment, where the high dose
of urine supplied significantly increased the available P and
secondarily the less available P pools (Fig. 5). Therefore,
phosphorus from urine distributed mostly into available and
slightly available inorganic P (Pi Bicarbonate) with a resid-
ual effect that was still detectable after 5 weeks of cropping.
This result is in line with a study by Pandorf et al. (2018)
finding that P from urine can be taken up by snap beans and
turnips. In another experiment, Bonvin et al. (2015) applied
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synthetic and nitrified urine and found a similar P recovery
rate in the crops as under mineral fertilizer.

In contrast, the application of urine did not affect the size
of organic P pools, including microbial P. Again, this might
be explained by the low concentration of dissolved organic C
in urine, which does not foster microbial activity or growth.
However, unlike nitrogen, there was no storage of P in the
microbial pool. According to Chen et al. (2019), the more
the element is limiting the more it is stored once it becomes
available. At TO, the soil concentration in mineral nitrogen
was around 8 mgN kg™, while the available phosphorus (Pi
resin + Pi Bicarbonate) was around 19 mgP kg~!. Hence,
at the start of the experiment N was more limiting than P,
explaining the stronger N than P storage in the microbial
biomass.

Additionally, in the U3 treatment, P availability was
likely increased by the decrease in soil pH (0.2 units) caus-
ing calcium phosphate dissolution. In our experiment, it is
likely that the subsequent mobilized phosphate was partially
adsorbed on the soil exchange complex (Frossard et al. 1995)
explaining the increase of iron and aluminium bonded P
(Pi NaOH pool) (Adhami et al. 2006; Prietzel et al. 2016)
and partially remained in solution increasing the P available
pool.

Conclusion

In this experiment, urine supplied in appropriate doses
had a very similar behaviour to that of a synthetic ferti-
lizer in a calcareous soil suggesting that other compounds
present in urine did not affect N and P uptake by the crop
and their fate in the soil in the short term. Appropriate
doses of urine altered neither soil pH nor soil conductiv-
ity, and provided nitrogen and phosphorus in bioavailable
forms. Supplied phosphorus was either taken up by the
crop or dissolved in the soil, and the ammonium was nitri-
fied within about 10 days after application. However, this
study raises awareness on the amount of ammonia that
can be lost by volatilization in a calcareous soil. Indeed,
chemical equilibrium and solute transfer models agreed on
the estimation that about half of the N applied with urine
could be lost by volatilization. Therefore, it is imperative
to find more suitable fertilization techniques to mitigate
ammonia volatilization on alkaline soils. Overall, our
results demonstrate that although direct usage of human
urine for fertilization is possible, timing, dosage and soil
type need to be carefully considered for this practice to be
environmentally sustainable. Future studies are encour-
aged to focus on the long-term effect of urine fertilization
especially on soil pH and salinity which are key factors
of soil quality and disentangle the various indirect effects
that human urine could have on soil and plant health.
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