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1. ABSTRACT  29 

Prior exposure to microbial-associated molecular patterns or specific chemical compounds can 30 

promote plants into a primed state with stronger defence responses. -aminobutyric acid (BABA) is 31 

an endogenous stress metabolite that induces resistance protecting various plants towards diverse 32 

stresses. In this study, by integrating BABA-induced changes in selected metabolites with 33 

transcriptome and proteome data, we generated a global map of the molecular processes operating 34 

in BABA-induced resistance (BABA-IR) in tomato. BABA significantly restricts the growth of the 35 

pathogens Oidium neolycopersici and Phytophthora parasitica but not Botrytis cinerea. A cluster 36 

analysis of the upregulated processes showed that BABA acts mainly as a stress factor in tomato. The 37 

main factor distinguishing BABA-IR from other stress conditions was the extensive induction of 38 

signaling and perception machinery playing a key role in effective resistance against pathogens. 39 

Interestingly, the signalling processes and immune response activated during BABA-IR in tomato 40 

differed from those in Arabidopsis with substantial enrichment of genes associated with jasmonic 41 

acid (JA) and ethylene (ET) signalling and no change in Asp levels. Our results revealed key 42 

differences between the effect of BABA on tomato and other model plants studied until now. 43 

Surprisingly, salicylic acid (SA) is not involved in BABA downstream signalization whereas ET and JA 44 

play a crucial role. 45 

2. INTRODUCTION  46 

Throughout their lives, plants are constantly exposed to many stressful situations caused by 47 

changing environmental conditions or attacks by various pests and pathogenic microorganisms. 48 

Therefore, they have evolved structural barriers, microbicidal secondary metabolites, and inducible 49 

defence mechanisms to repel potential attackers. Unfortunately, the basal immune responses of 50 

plants are usually only sufficient to slow their colonisation by pathogens. As a result, a significant 51 

portion of the world's plant production is destroyed each year by fungi, oomycetes, bacteria, insects, 52 

and nematodes [1]. Although plants do not have the adaptive immune system of vertebrates, it has 53 

long been known that components of the innate immune system of plants can learn from the past 54 

[2]. When exposed to microbe-associated molecular patterns (MAMPs) or specific chemical 55 

compounds, plants can enter a state of enhanced defence characterised by more rapid and robust 56 

responses to stressful stimuli. Although the term "defence priming" was proposed in the 1930s, the 57 

molecular mechanisms underlying this phenomenon have only recently been partially elucidated, 58 

particularly in the model plant Arabidopsis thaliana [3,4]. Defence priming causes increased 59 

expression of genes related to stress and defence [5], including many transcription factors that 60 

regulate defence [6], and is now considered an essential component of several types of systemic 61 
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plant immunity, including acquired systemic acquired resistance (SAR), induced systemic resistance 62 

(ISR) [3,7], wound-induced resistance [8], and resistance induced by chemical compounds. Unlike 63 

strategies based on single resistance genes, defence priming activates multigenic defence 64 

mechanisms, conferring relatively durable resistance [3]. One of the most effective priming agents is 65 

the non-protein amino acid -aminobutyric acid (BABA), which protects various plant species against 66 

a wide range of stresses [9]. Importantly, this resistance is long-lasting and can be transferred to 67 

vegetative progeny [10,11]. BABA was previously considered a xenobiotic, but it has recently been 68 

shown to accumulate in stress-exposed plants [12], suggesting that it is an endogenous stress 69 

metabolite [13]. BABA induces resistance via the action of several hormones, including salicylic acid 70 

(SA) [14,15], jasmonic acid (JA) [16], abscisic acid (ABA) [17], and ethylene (ET) [15]; the signalling 71 

pathway that is activated appears to depend strongly on the particular plant-pathogen combination 72 

[6]. Recently, it was discovered that the aspartyl-tRNA synthetase (AspRS) IBI1 in Arabidopsis 73 

thaliana serves as an enantiomer-specific BABA receptor that interacts with the transcription factors 74 

VOZ1 and VOZ2 [17,18]. In BABA -primed cells, this interaction represses the expression of ABA 75 

genes, resulting in increased expression of PTI genes and callose-associated defence [17]. The 76 

previous study of our laboratory showed that, as in potato, effective BABA-IR is also associated with 77 

the formation of HR -like lesions in tomato [19]. However, while BABA-IR appears to activate SA 78 

signalling pathways in Arabidopsis and potato plants, our results suggest that ET signalling pathways 79 

play a key role in BABA-IR in tomato plants [19].  80 

Here, we present a study in which a combination of nontargeted approaches was used to 81 

elucidate the molecular basis of BABA-IR in tomato (Solanum lycopersicum cv. Marmande), an 82 

important crop [20]. BABA was applied by spraying onto leaves, as this application strategy is easy to 83 

implement in practical agriculture. Global transcriptomic and proteomic analysis of tomato plants 84 

allowed us to identify the molecular processes and signalling pathways that occur in tomato at BABA-85 

IR. 86 

3. RESULTS 87 

3.1 Growth of pathogens having different lifestyles after BABA treatment 88 

To determine the protective effect of BABA treatment towards pathogens with different 89 

lifestyles (biotrophic Oidium neolycopersici, hemibiotrophic Phytophthora parasitica, and 90 

necrotrophic Botrytis cinerea) in S. lycopersicum cv. Marmande plants, we treated plants with 10 mM 91 

BABA. This dose was selected based on a previous study [21] showing maximal (95%) protection 92 

against Phytophthora infestans with no effect on the general growth of the S. lycopersicum cv. F1 93 

hybrid cv Baby plants. Indeed, BABA was unable to trigger effective resistance, in our experimental 94 
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conditions, below concentration of 5mM, as shown previously [21]. More than two days after 95 

treatment we observed not reproducibly the appearance of HR-like microlesions on some BABA 96 

spayed leaves (S1 Fig) not connected to plant age or leaf position, as described previously [21]. BABA 97 

treatment significantly reduced the sporulation of O. neolycopersici and the spreading of P. parasitica 98 

but had no effect on B. cinerea disease (Fig 1A).  These findings are in agreement with previous 99 

studies showing that BABA-IR to biotrophic and hemibiotrophic pathogens in tomato and potato 100 

plants but gave inconsistent results against the necrotrophic pathogen B. cinerea, possibly due to the 101 

use of different methods to evaluate resistance [22–24].  102 

 103 

Figure 1. Resistance, Transcriptomic, and Proteomic changes associated with BABA-IR, overlap 104 

between BABA-induced genes in different plant species and overlap between genes induced by 105 

BABA and selected elicitors.  (A) Lesion surface area in 6-8 weeks-old tomato plants after spraying 106 

with 10 mM followed by challenge with the phytopathogens Botrytis cinerea, Phythophtora 107 

parasitica, and O. neolycopersici. (B) Total numbers of differentially expressed genes and proteins 108 

during BABA-IR (calculated as the ratio of the expression in 10 mM BABA-sprayed and water-sprayed 109 

leaves) 24 h after treatment. Cut-offs of a ≥2-fold difference in expression and P ≤ 0.01 (for genes) or 110 

P ≤ 0.05 (for proteins) were applied. The number of genes or proteins in each category is shown. (C) 111 

Degrees of overlap between orthologous groups identified in this study and previous transcriptomic 112 
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studies on BABA-treated potato (Bengtsson et al., 2014) and Arabidopsis plants (Zimmerli et al., 113 

2008). (D) Overlap between genes induced in BABA-treated tomato Marmande plants and in tomato 114 

Rio Grande (RG)-PtoR resistant plants during MTI, ETI, or both (Pombo et al., 2014). (E) Overlap 115 

between genes induced in BABA-treated tomato Marmande plants and in tomato plants treated with 116 

the virulence factors coronatine (COR) from Pst DC3000 (Geng et al., 2014), flagellin from P. syringae 117 

(Rosli et al., 2013), and elicitin INF1 secreted by P. infestans (Kawamura, 2009). Induced genes were 118 

identified by applying cut-offs of a ≥2-fold difference in expression and P <0.05. 119 

3.2 Transcriptome and proteome modifications during BABA-IR in tomato  120 

Three leaf biological replicates were sampled 24 h and 48 h after spraying with 10 mM BABA. 121 

Six samples collected at 24 hrs were used for RNA sequencing and six samples collected at 48 hrs 122 

were used for label-free LC-MS/ analysis of the proteome excluding microsomal fraction (thereafter 123 

proteome). RNA sequencing generated 334,275,668, high-quality reads with an average of 124 

55,712,611 reads per sample (S1 Table). The reads for each sample were mapped to the S. 125 

lycopersicum reference genome sequence, with 74% of reads being mapped successfully. Only genes 126 

with a median count above 20% in at least one treatment were considered in the subsequent 127 

analysis. The cut-offs used in the comparison were P < 0.01, and ≥ 2-fold expression change. Using 128 

these criteria, we identified 24,562 genes from 34,725 annotated genes (ITAG 2.4), with 1,523 genes 129 

being differentially expressed (Fig 1B, S2 Table). In the proteome analysis, protein identification was 130 

only performed for peptides of at least six amino acids with a statistically significant peptide score (q 131 

< 0.01, FDR 1 %; FDR based on decoy search against the reverse database). The cut-offs used for the 132 

comparison were q < 0.05 and ≥ 2-fold expression change. Using these criteria, we identified 1808 133 

protein groups (S3 Table) and 319 differentially expressed proteins (Fig 1B, S2 Table). As with the 134 

transcriptome, we found that far more proteins were upregulated (67%) than downregulated (33%) 135 

after BABA treatment (Fig 1B, S2 Table), however the correlation between proteins and transcripts 136 

changes was only about 10% as discussed previously [25]. These results confirm that BABA treatment 137 

causes extensive reprogramming of cellular processes in tomato plants, as previously observed in 138 

Arabidopsis and potato [22,26] . However, a comparison of orthologous groups between our 139 

transcriptomic study and previous studies on Arabidopsis [26] and potato [22] plants exposed to 140 

BABA revealed significantly greater overlap between the potato and tomato datasets than between 141 

Arabidopsis and tomato (Fig 1C, S4 Table). 142 

3.3 BABA exhibits common features with MAMPs-triggered immunity in tomato 143 

Sets of genes whose transcript abundance was specifically increased at 6 hours post-infection 144 

(hpi) during MAMPs-triggered immunity (MTI) and effector-triggered immunity (ETI) were recently 145 

identified using RNA-Seq technology in tomato Rio Grande (RG)-PtoR resistant plants [27]. 146 
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Interestingly, almost 50% of the BABA-upregulated genes were also differentially regulated during 147 

MTI, but there was no overlap between ETI-upregulated genes and BABA treatment (Fig 1D, S5 148 

Table). Following this result, the response of tomato plants to BABA was far more similar to that 149 

induced by exposure to a well-characterized MAMP flagellin flgII-28 from the bacterium 150 

Pseudomonas syringae [28] or elicitin INF1 secreted by Phytophthora infestans [29] than to the 151 

response induced by the virulence factor coronatine (COR) secreted by Pst DC3000 [30] (Fig 1E, S5 152 

Table). Specifically, almost 48% and 57% of BABA-upregulated genes  were also upregulated 153 

following exposure to flgII-28 analysed using RNA-Seq technology at 6 hpi [28] and INF1 analysed 154 

using a GeneChip tomato genomic array 12 hpi [31], respectively. Almost 85 % of COR-upregulated 155 

genes analysed using a TOM1 cDNA microarray 24 hpi of tomato var “Glamour” seedlings [32] were 156 

unaffected by BABA treatment (Fig 1E, S5 Table). The only genes upregulated by both BABA and COR 157 

were associated with ET (ACC synthase and ACC oxidase) and JA signalling pathways.  158 

3.4 BABA functions as a stress factor 159 

A gene ontology (GO) term enrichment analysis was performed to identify critical processes 160 

upregulated by BABA treatment. The sets of terms obtained using the transcriptomic and proteomic 161 

data were similar (S2 Fig, S6 Table), with many common terms in the GO categories “Process” and 162 

“Function”.  163 

The protein-protein interaction network based on RNA-Seq data was generated by directly 164 

mapping upregulated genes to proteins in the String database [33] (Fig 2A, S7 Table). The network is 165 

highly aggregated with clustered sub-networks comprising proteins associated with defence 166 

responses (PR proteins), JA and ET signalling and synthesis, regulation of transcription related to 167 

mitogen-activated protein kinase MPK3, and processes related to reactive oxygen species (ROS) 168 

production. This is also consistent with maps produced after the ReviGO [34] analysis showing 169 

significant enrichment of stress-associated clusters (S2 Fig, S6 Table). The protein-protein interaction 170 

network based on proteins exhibiting significant changes in abundance 48 hours after BABA 171 

treatment (Fig 2B, S7 Table) featured notable clusters relating to photosynthesis, secondary 172 

metabolite biosynthesis, and translation. The photosynthesis cluster shows that BABA induces 173 

complex changes in the regulation of photosynthesis-related energetic processes and carbohydrate 174 

metabolism. The cluster related to secondary metabolites includes the enzymes prephenate 175 

aminotransferase (PAT), arginase (ARG2), and lactate dehydrogenase. PAT plays a role in the 176 

biosynthesis of aromatic amino acids, while lactate dehydrogenase plays an important role in 177 

detoxifying D-lactate, a product of the glyoxalase pathway for detoxifying methylglyoxal, which 178 

accumulates under stress conditions [35]. The arginase in tomato leaves was suggested to be 179 

involved in ROS homeostasis when its expression was induced by JA signalling following wounding 180 
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and exposure to Pseudomonas syringae pv. tomato strain DC3000 [36]. The upregulation of the 181 

proteins in the cluster related to translation is probably related to translational switching from 182 

growth to defence [37] and supports the reported role of non-canonical functions of aminoacyl-tRNA 183 

synthetase in BABA responses [18].  184 

 185 

Figure 2. Transcriptomic and proteomic comparisons of plants treated with BABA revealed the 186 

existence of sets of genes and proteins that are specifically induced during BABA-IR. Protein-187 

protein association networks were generated for significantly induced (A) genes and (B) proteins, 188 

applying cut-offs of a ≥2-fold difference in expression and P ≤ 0.01 (for genes) or P ≤ 0.05 (for 189 
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proteins). Interaction networks were constructed in STRING using a minimum required interaction 190 

score of 0.7 [33] and visualized with Cytoscape [96]. 191 

To distinguish between stress-related genes upregulated following BABA treatment and 192 

defence-related genes involved in BABA-IR, we compared the BABA-upregulated genes to the sets of 193 

genes upregulated in previous transcriptomic studies on tomato plants subjected to temperature 194 

[38] and salinity [39] stress as well as those upregulated in tomato plants infected by the fungus 195 

Stemphylium lycopersici [40] and the FIRE (flagellin-induced repressed by effectors) genes, which 196 

represent a pathogen-defined core set of immune-related genes [28]. We found that 50% of the 197 

BABA-upregulated genes overlapped only with the sets of genes upregulated by abiotic stress, 198 

confirming the hypothesis that BABA acts on tomato plants primarily as a stress factor. However, 30 199 

% of the BABA-upregulated genes were also FIRE genes or genes upregulated following S. lycopersici 200 

infection, suggesting that these genes are associated with BABA-augmented defence expression 201 

against P. parasitica and O. neolycopersici. Moreover, about 20% of genes unique to the BABA 202 

treatment were significantly enriched in KEGG pathways related to plant-pathogen interaction, 203 

MAPK signalling, and phenylpropanoid synthesis, indicating that these genes are also involved in 204 

BABA-IR (Fig 3B, S5 Table).  205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

Figure 3. Overlap between genes induced by BABA and genes induced in tomato plants subject to 214 

various abiotic and biotic stresses. (A) Overlap between genes induced in BABA-treated tomato 215 

Marmande plants and genes upregulated in tomato plants subject to abiotic heat stress [38], genes 216 

upregulated in abiotic salinity stress [39], genes upregulated following infection by the fungus 217 

Ethylene signalling Perception 

JA signalling 

A B 

C 
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Stemphylium lycopersici (biotic stress; [40]), and FIRE (flagellin-induced repressed by effectors) 218 

genes, representing a pathogen-defined core set of immune-related genes [28]. Cut-offs of a ≥2-fold 219 

difference in expression and q <0.05 were applied. (B) KEGG and Gene Ontology (GO) term analysis 220 

were performed for genes in each category. The most-enriched GO terms in the process and function 221 

categories are shown. (C) Protein-protein association network for genes significantly induced by both 222 

BABA treatment and abiotic stress. The interaction network was constructed in STRING using a 223 

minimum required interaction score of 0.7 [33] and visualized with Cytoscape [96]. 224 

3.5 The BABA stress response is orchestrated via ethylene and jasmonic acid signalling 225 

The preceding analysis revealed a clear enrichment of genes associated with JA and ET 226 

signalling pathways. Moreover, both ET and JA accumulated in tomato plants during the first few 227 

hours after BABA treatment (Fig 4A, B). Accordingly, BABA induced upregulation of several isoforms 228 

of ACC synthase (ACS) and ACC oxidases (ACOs) (Fig 4C, S8 Table), essential enzymes for ET 229 

biosynthesis [41,42]. The high upregulation of the ACS2 and ACS6 isoforms is also consistent with 230 

their reported activation during defence reactions in Arabidopsis [43] and with the observed 231 

upregulation of WRKY33, which activates ACS2 and ACS6 expression downstream of the MPK3/MPK6 232 

cascade [44].  Our data also support the findings of an earlier study on Arabidopsis [45] showing that 233 

the conversion of methylthioadenosine (MTA) to Met via the Yang (or Met salvage) cycle is generally 234 

not controlled by ET signalling because BABA treatment had no detectable effect on the regulation of 235 

the Yang cycle genes MTN, MTK, MTI, and ARD (Fig 4C, S8 Table). 236 

Among the BABA-upregulated genes were the patatin-like proteins PLA1 and PLA3 (Fig 4D, S8 237 

Table), which have been implicated in wound responses and resistance to necrotrophic pathogens 238 

via JA signalling [46]. In addition, there was significant upregulation of genes encoding enzymes 239 

involved in the synthesis of endogenous JA (TomloxD, AOS2 and OPR3). The upregulation of these 240 

genes was accompanied by the accumulation of JA in BABA-treated leaves (Fig 4D). Also upregulated 241 

were 6 of the 12 Jasmonate ZIM Domain (JAZ) genes, key regulators of JA signalling that govern host 242 

and non-host pathogen-induced cell death in tomato. The most highly upregulated JAZ genes (SlJAZ1, 243 

SlJAZ2 and SlJAZ9-11) were also induced by treatment with COR [47].  244 

Surprisingly, unlike in previous studies on the effects of BABA in Arabidopsis [14] and potato 245 

plants [22], there was no significant enrichment of genes associated with the phytohormone SA. In 246 

keeping with this result, the levels of total SA declined slightly in leaves treated with BABA (Fig 4B).  A 247 

recent study showed that ABA signalling is suppressed during BABA-IR in Arabidopsis plants [17]. In 248 

accordance with this result and our previous study [48], we observed no enrichment of genes 249 

associated with ABA signalling following BABA treatment in tomato and several genes involved in 250 
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ABA catabolism were upregulated including CYP707A (Solyc08g005610.2.1) and UDP-251 

glucosyltransferase (UGT; Solyc09g098080.2.1) (Fig 4E, S8 Table).   252 

 253 

Figure 4. Involvement of signalling pathways in BABA-IR. (A) ET accumulation was measured at 24 254 

hrs after BABA treatment (10 mM) of leaflets (n = 8) by gas chromatography. (B) Levels of JA, 255 

jasmonic acid-isoleucine (JA-Ile), methyl-jasmonate (MeJA) and SA were measured by LC-MS 24 h 256 

after BABA treatment (10 mM) leaves (n = 6). The control tissue (CTRL) was a water-treated control 257 

sample. Each bar represents the mean ± SE. Asterisks denote mean values that differ significantly 258 

from that for the control group based on Student’s t-test at P ≤ 0.01 (**). (C-E) The BABA-induced 259 

induction of genes involved in the synthesis of ET (C) and JA (D) and the degradation of ABA (E) is 260 

shown. 261 

SAM –  S-Adenosyl-L-methionine, MTA – 5´-Methylthioadenosin, MTR – 5´-Methylthioribose, MTR-P – 5´-262 

Methylthioribose-1-phosphate, MTRu-P – 5´-Methylthioribulose-1-phosphate, DHKMP – 1,2-Dihydroxy-3-keto-263 

5-methylthiopentene, KMTB – 2-keto-4-methyl-thiobutyrate, SAM2 –  S-Adenosyl-L-methionine synthase, ACS 264 

– 1-aminocyclopropane-1-carboxylic acid synthase, ACC – 1-aminocyclopropane-1-carboxylic acid, ACO – 1-265 

aminocyclopropane-1-carboxylic acid oxidase, PLA – Phospholipase A, Lox – Lipoxygenase, (13S)-HPLA – 13-266 
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hydroperoxylinolenic acid, AOS – Allene oxide synthase, 12,13-EOLA – 12,13-epoxyoctadecatrienoic acid, AOC – 267 

Allene oxide cyclase, OPDA – (9S,13S)-12-oxo-phytodienoic acid, OPR – 12-oxo-phytodienoic acid 10,11 268 

reductase, OPC – 3-oxo-2-(2´-pentenyl)-cyclopentane-1-octanoic acid, ACX1A –  acyl-CoA oxidase, JA – Jasmonic 269 

acid, ABA – Abscisic acid, UGT – Abscisic acid glucosyl-transferase, ABA-GE  –  Abscisic acid glucosyl ester, 8´-OH 270 

ABA  –  8´-hydroxy abscisic acid   N.C. – transcript not changed, N.D. – transcript not detected. 271 

3.6 BABA upregulates perception and signalling machinery related to abiotic stress 272 

Protein kinases comprised 142 of the BABA-upregulated genes (S3 Fig, S9 Table), accounting 273 

for 15% of the total set of expressed kinases in our analysis. Similarly, 44 protein kinases were 274 

identified in the proteomic analysis, of which 14 were upregulated and only 3 were downregulated 275 

(S3 Fig). These results suggest that protein kinases play an important role in the BABA stress 276 

response (S3 Fig, S9 Table). An enrichment analysis of the BABA-responsive families using the chi-277 

squared test revealed overrepresentation of the large Receptor-Like Kinase/Pelle (RLK-Pelle) family, 278 

which is crucial for plant-specific adaptation [49] (S3 Fig) at both the transcriptomic and proteomic 279 

levels. This finding agrees well with the upregulation of 27 Receptor-Like Proteins (RLP), representing 280 

23% of the total expressed RLPs in our analysis. It is also notable that all previously reported PRRs in 281 

tomato plants were upregulated including those for flagellin (FLS2 and FLS3), the fungal elicitor EIX 282 

(LeEix1 and LeEix2), Ave1 from V. dahlia (Ve1 and Ve2) [50], and Avr factors (Cf-2, Cf-4, Cf-5 and Cf-9) 283 

[51]. This increased expression of perceptual proteins is consistent with the observed protein-protein 284 

interaction between WRKY33 and the MPK3 kinase from the CMGC family (Fig 2B, S3 Fig). The 285 

MPK3/MPK6 cascade causes the phosphorylation of WRKY33 and the closely related WRKY25, 286 

leading to ET production due to activation of the enzyme ACS as described above. Two other RLKs 287 

interacting with RLPs involved in MAMPs perception, SOBIR1 [52] and TARK1 [53], were also 288 

upregulated.  289 

In parallel with the induction of pathogen perception machinery, we also observed massive 290 

upregulation of genes encoding transcription factors (TFs): BABA treatment induced the upregulation 291 

of 130 TF genes (S4 Fig). The largest numbers of induced genes were found in the ERF, WRKY, MYB 292 

and NAC families (S4 Fig), which play essential roles in regulating stress responses in plants, mainly 293 

through ET and JA signalling pathways. The strong induction of ERFs following BABA treatment was 294 

particularly notable: of the 137 identified ERF genes in tomato [54], 113 were expressed, 33 were 295 

upregulated, and 5 were downregulated. The BABA response has many features in common with the 296 

responses to cold, salt, and mechanical stress observed in previous studies on tomato [38,55,56]. 297 

However, the BABA-upregulated genes SlERF5 (ERF5), SlERF43 (RAV2), SlERF55 (TSRF1), SlERF60 298 

(Pti5) or SlERF69 (ERF1) were previously linked to the activation of defence responses against diverse 299 

pathogens (S9 Table). Unlike in previous studies on tomato, no WRKY genes were downregulated 300 

after BABA treatment; their expression patterns resembled those induced by salt stress, the tomato 301 
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spotted wilt virus (TSWV), and the fungal elicitor EIX [57]. The largest class of plant MYB factors are 302 

the 2R proteins, which regulate primary and secondary metabolism, hormone signal transduction, 303 

development, and responses to biotic and abiotic stresses [58]. Of the 91 expressed 2RMYB genes, 304 

11 were upregulated following BABA treatment and 6 were downregulated. Their expression profile 305 

most closely resembled that seen in tomato plants treated with MeJA [59] or stressed by infection 306 

with the bacterial pathogens Pst DC3000 or P. putida (S9 Table). 307 

 Finally, a comparison of the BABA-upregulated RLPs/WRKY, ERF, and MYB genes to recent 308 

RNA-Seq results for tomato plants under biotic [27] and abiotic stress [38] confirmed that the pattern 309 

of upregulation induced by BABA is significantly more similar to that for abiotic stress than that for 310 

biotic stress (S9 Table).    311 

3.7 Amino acid metabolism in BABA-treated plants  312 

Transcriptomic and metabolomic studies have consistently shown that amino acid (AA) 313 

homeostasis plays a role in stress responses [60,61]. Moreover, BABA induces the stress-induced 314 

morphogenic response (SIMR). In Arabidopsis, Asp levels were increased 3-fold by treatment with the 315 

active (R)-BABA enantiomer but were unaffected by the (L) enantiomer, suggesting that BABA 316 

obstructs canonical AspRS activity [18]. Surprisingly, we observed no change in Asp levels in tomato 317 

plants after BABA treatment. However, there was a significant increase in the levels of the enzymes 318 

Asparagine-tRNA synthetase (GlnRS) and plastid Glutamyl-tRNA(Gln) amidotransferase (GATC) as 319 

well as the Glu, GABA, Pro, Phe, and Tyr, together with a reduction in Ala levels (Fig 2B, 5A). The 320 

glutamate family pathway is strongly activated under stress conditions, leading to the accumulation 321 

of GABA and proline. GABA is synthesized from Glu by a decarboxylation reaction in response to 322 

abiotic stress, viral infection, and herbivore attack [60]; its increased concentration in BABA-treated 323 

tomato plants is almost certainly connected to the strong transcriptomic and proteomic upregulation 324 

of its key biosynthetic enzyme glutamate decarboxylase (Solyc04g025530.2.1) (Fig 5C). Proline, which 325 

plays a pivotal role in responses to abiotic stresses, osmotic, salinity, and low temperature stresses, is 326 

synthesized predominantly from glutamate by two successive reductions catalysed by P5C 327 

synthetase (P5CS) and P5C reductase (P5CR), with P5CS being the rate-limiting enzyme for proline 328 

synthesis [62]. However, although BABA treatment increased the abundance of P5CS, it did not 329 

upregulate P5CS transcription. This suggests that the increase is due to a change in post-330 

transcriptional regulation, as observed previously [63]. Conversely, there was significant 331 

transcriptional upregulation of proline dehydrogenases (ProDH) (Solyc02g089630.2.1, 332 

Solyc02g089620.2.1), which catalyse the catabolic conversion of Pro into the toxic intermediate P5C 333 

(Fig 5C, S10 Table). Spraying Arabidopsis leaves with Pro or P5C causes the formation of HR-like 334 

lesions resembling those induced by BABA [64]. We therefore suggest that the lesion formation 335 
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observed in tomato after BABA foliar spraying [19,22] spraying can be attributed to the generation of 336 

very high local BABA concentrations on leaf surfaces (white deposits) and subsequent P5C 337 

accumulation.  338 

 339 

 340 

 341 

Figure 5. BABA-induced changes in amino acid levels and their metabolic pathways.  (A) Amino 342 

acids whose abundance in BABA-treated Marmande tomato plants differs significantly from that in 343 

water-treated controls. Data are means from three replicates; the errors are standard errors of 344 

means. Statistically significant differences recorded for each amino acid as determined by the t-test 345 

are indicated with different numbers of asterisks (*P < 0.05, **P < 0.01). (B, C) Induction of genes 346 

belonging to the phenylpropanoid pathway (B) and glutamate metabolic pathway (C).  347 

E4P  –  erythrose-4-phosphate, PEP – phosphoenolpyruvate, CRSM – chorismic acid, CM – chorismic acid 348 

mutase, PPA  – prephenate, PDH – prephenate dehydrogenasa, PDT – prephenate dehydratase, PAL – 349 

Phenylalanine ammonia-lyase, CA – cinnamic acid, C4H – Cytochrome P450, PCA – p-coumaric acid, 4CL – 4-350 

coumarate CoA ligase, THT – Tyramine N-(hydroxycinnamoyl) transferase, GM – Agmatine, ArgDC – Arginine 351 
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decarboxylase, 2OG – 2-ketoglutarate, GluDC – Glutamate decarboxylase, GABA  – gamma-Aminobutyric acid, 352 

AS1 – Asparagine synthase, P5CS – Gamma-glutamyl phosphate reductase, AstD – N-succinylglutamate 5-353 

semialdehyde dehydrogenase, P5C – 1-pyrroline-5-carboxylate, P5CR – Pyrroline-5-carboxylate reductase, 354 

ProDH – Proline dehydrogenase, N.C. – transcript not changed, N.D. – transcript not detected. 355 

 356 

BABA treatment also upregulated transcription of branched-chain amino acid 357 

aminotransferase (Solyc03g043880.2.1) and cysteine desulfurase (Solyc11g005840.1.1) (Fig 5C). Both 358 

of these enzymes are important in the degradation of branched AAs, whose complete oxidation in 359 

the mitochondria allows large amounts of ATP to be generated under stress conditions that impair 360 

photosynthesis [60]. BABA treatment also caused upregulation of the glutamine-dependent 361 

asparagine synthetase AS1 (Solyc06g007180.2.1) and LHTs, which function as high-affinity 362 

transporters of uncharged/acidic AAs in the mesophyll plasma membrane (Solyc11g066800.1.1, 363 

Solyc01g111980.2.1, Solyc10g055740.1.1). These changes indicate an effect on overall nitrogen 364 

metabolism in the plant (Fig 5C, S10 Table). The upregulation of all these proteins was previously 365 

observed during chlorosis caused by proteolytic activity and amino acid deamination during P. 366 

syringae infections [65].  BABA also upregulated four glutamate receptor genes (SlGLR1.2, SlGLR2.1, 367 

SlGLR2.2 and SlGLR2.5) implicated in various processes including the response to aluminium [66] and 368 

enhanced drought tolerance in plants [67].   369 

Two prephenate dehydrogenases (Solyc09g011870.1.1, Solyc06g050630.2.1) and one 370 

prephenate dehydratase (Solyc06g074530.1.1) were strongly upregulated at the transcript level 371 

following BABA treatment, and prephenate aminotransferase was upregulated at the protein level. 372 

These changes are clearly connected to the BABA-induced upregulation of the phenylpropanoid 373 

pathway and especially its lignin/lignan branch. Important upregulated enzymes of this branch 374 

include 4-coumarate CoA ligase (4-CL) and several caffeoyl-CoA O-methyltransferase (COMT), 375 

laccases (LAC), and peroxidases (PER), which catalyse the synthesis of several secondary metabolites 376 

(Fig 5B). BABA treatment also caused transcript-level upregulation of arginine decarboxylase 377 

(Solyc10g054440.1.1), which converts arginine into agmatine, a precursor of polyamines including 378 

putrescine, spermidine, and spermine (Fig 5B, S10 Table). Interestingly, however, we observed no 379 

increase in polyamine levels, suggesting that agmatine serves some other metabolic purpose in 380 

BABA-treated tomato plants [68]. It could possibly be converted into p-coumaroylagmatine; this 381 

hypothesis is supported by the upregulation of 4-CL (Solyc06g035960.2.1) and PAL together with 382 

several hydroxycinnamoyl-CoA:tyramine N-(hydroxycinnamoyl) transferases (THT1-3, THT1-4, THT7-383 

1, THT7-8), which are also upregulated during incompatible interactions of Pst with tomato [69] (Fig 384 

5B,  S10 Table).  385 

4. DISCUSSION 386 
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BABA has long been described as an agent inducing highly effective resistance against a wide 387 

spectrum of biotic and abiotic stresses in multiple plant species [9,14]. Although much has been 388 

learned about the perception and molecular action of BABA in Arabidopsis [17,18], many questions 389 

remain regarding its mechanisms of action. Since recent studies have shown that during plant 390 

immune responses translation is tightly regulated and poorly correlated with transcription [25], as 391 

observed here, we characterized BABA-induced changes in both the transcriptome and the 392 

intracellular proteome. In our experimental conditions only high BABA concentration after foliar 393 

spraying of the crop tomato cultivar Marmande (which would be a viable agricultural application 394 

strategy) behaves as a strong stress inducer that does not only triggers highly effective resistance and 395 

that deeply remodels transcriptome and subsequent proteome of tomato. Whether BABA primed 396 

tomato defences at lower concentrations without any protective effect was not our aim since it 397 

cannot be useful for crop protection. Transcriptomic and proteomic analyses showed a similar trend 398 

when most of differentially expressed genes and proteins were upregulated and have been linked to 399 

general stress responses and defence. Besides, many proteins exhibiting decreased amounts can be 400 

linked to the general decrease in the rate of photosynthesis and carbon metabolism under stress 401 

conditions as previously described [61]. It is this stress-induced reduction in plant growth induced by 402 

BABA that is the major factor limiting its commercial exploitation [18].   403 

Analysis of the genes and proteins upregulated following BABA treatment revealed 404 

enrichment of cellular processes related to primary metabolism and responses to stimuli when BABA 405 

increased the amount of enzymes involved in carbohydrate metabolism. Previous transcriptomic and 406 

genetic analyses have demonstrated the induction of genes involved in carbohydrate metabolism 407 

upon challenge by pathogens or PAMPs, and the expression of these genes was shown to affect 408 

downstream defence responses including ROS production and PR gene expression [61]. Induction of 409 

these genes was also observed in genome-wide studies in Arabidopsis plants infected with the 410 

avirulent pathogen P. syringae pv. Tomato [70] and in rice leaf sheaths infected by Rhizoctonia solani 411 

[71]. Thus, the genes upregulated in our study and publicly available datasets of potato [22] and 412 

Arabidopsis [26] (Fig 1C) can be seen as common defence response genes that contribute to BABA-IR.  413 

Previous studies have also shown that BABA-IR is driven by different signalling molecules in 414 

different plant species [15,16,72,73]. In Arabidopsis, BABA treatment induces accumulation of SA and 415 

SA glucoside (SAG) and causes significant changes in the abundance of isochorismate synthase (ICS), 416 

which is directly involved in SA biosynthesis which, in turn, is associated with the expression of acidic 417 

PR proteins [15,26]. Although we paid a particular attention to the role of SA in BABA-induced 418 

resistance, none of these responses were observed in tomato as in our recent study in which we 419 

determined decreased level of SA after BABA treatment of tomato leaflets via petiole aspiration [48]. 420 

In addition, unpublished results from our lab, clearly show that SA treatment on tomato leaves failed 421 
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to induce both a resistance to mildews and the classical defence marker genes outlined in the 422 

literature and in this paper (mainly PR-proteins coding genes). It seems that SA is probably not so 423 

important in tomato defence to biotic stresses since attempts to protect tomato with SA and SA 424 

mimics always failed in available literature with the exception of a protective effect observed 425 

towards tomato canker (Clavibacter michiganensis) with acibenzolar-S-methyl. Indeed, some plants, 426 

like rice or wintergreen, exhibit a high constitutive level of SA or SA methyl ester without being 427 

protected from diseases [74] and we have previously demonstrated that SA sensitizes carnation to 428 

disease by inhibiting N-benzoate-based phytoalexins biosynthesis [75]. Thus, what was demonstrated 429 

in Arabidopsis and even in tobacco should not signify that all the plant kingdom, especially among 430 

crops diversity, would follow the same defence regulation scheme. However, treatment of tomato 431 

with BABA did affect genes involved in the biosynthesis of JA and ET as well as basic isoforms of PR 432 

proteins, which were also observed in an earlier study on BABA-treated potato and tomato plants 433 

[22,48]. This finding is in accordance with impaired BABA-IR towards P. infestans in the tomato def 434 

mutant, which is defective in JA accumulation [73] and pivotal importance of ET in chitosan- and 435 

Flg22-induced local and systemic defence responses of tomato plants previously proved in Never-ripe 436 

(Nr) tomato mutants exhibiting insensitivity to ET in all vegetative tissues due to mutation in SlETR3 437 

receptor [76,77]. All these findings clearly emphasize the need to study plant biology with a 438 

necessary hindsight when comparisons to model plants fail to confirm established mechanisms. 439 

A recent screening of Arabidopsis mutations affecting BABA-IR revealed defects associated 440 

with the gene IBI1, which encodes aspartyl-tRNA synthetase (AspRS). The specific binding of  R-BABA 441 

to the L-Asp-binding domain of IBI1 primes the protein for non-canonical defence activity [18]. In 442 

accordance with these findings, we found that BABA had no effect on the regulation of the IBI1 443 

orthologue in tomato plants. However, we found no evidence of any change in aspartate levels 444 

driven by the accumulation of uncharged tRNAAsp leading to inhibition of translation activity via 445 

phosphorylation of the initiation factor eIF2[18]. Instead we observed elevated glutamate levels 446 

and increased expression of the enzymes GlnRS and GATC, which are involved in tRNAGln synthesis 447 

[78].  Following these findings, BABA treatment of tomato plants upregulated transcription of HSF24 448 

(Solyc02g090820.2.1), a HSF-type homologue of TBF1. The heat shock factor(HSF)-like transcription 449 

factor TBF1 was proven to play a crucial role in the growth-to-defence switch that activates multiple 450 

defence mechanisms and inhibits primary growth and development upon pathogen challenge [79]. 451 

Interestingly, one suggested activation mechanism for TBF1 is related to the GCN2-dependent 452 

phosphorylation of eIF2α, which is regulated via the accumulation of uncharged tRNAs. This is 453 

consistent with the reported inhibitory activity of R-BABA towards the cellular AspRS activity of IBI1 454 

in Arabidopsis [18]. Moreover, TBF1 controls distinct output genes in SAR and MTI, which could be 455 

connected to our observation that BABA-IR in tomato is mediated by genes involved in MTI. 456 
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Together, these observations convincingly explain the finding that BABA has dual activities in tomato, 457 

simultaneously activating defence mechanisms and downregulating protein synthesis and carbon 458 

metabolism. The latter activity is similar to the stress responses [61] associated with SIMR in 459 

Arabidopsis. It has been suggested that BABA primes defence responses simply via this stress 460 

imprinting process because L-glutamine treatment reduced both BABA-induced SIMR and BABA-IR 461 

[80]. In keeping with this hypothesis, 70% of the BABA-induced transcripts overlapped with the set of 462 

transcripts upregulated by abiotic salt [39].  463 

Two important processes in pathogen recognition and the subsequent activation of plant 464 

defence mechanisms are the secretion and spotting of diverse pattern-recognition receptors (PRRs) 465 

to the plasma membrane and the activation of protein kinases involved in signal transduction 466 

cascades. Augmented perception of stress signals by plant cells seems to be essential in BABA-IR, as 467 

demonstrated by the significant enrichment of GO terms and pathways related to receptor activity 468 

after BABA treatment. Moreover, extensive induction of signalling and perception machinery was 469 

one of the main factors distinguishing BABA-treatment from the other stress conditions and put 470 

forward in our data set. BABA induced a significant number of receptor and receptor-like kinases 471 

involved in abiotic stress responses (L-type lectin receptor kinases) [81], MAMPs perception, 472 

Phytophthora resistance (LysM, Bti9, SOBIR1) [52,82], and responses to pathogen infection, 473 

mechanical wounding, and oxidative stress (TPK1b) [83]. This is the first demonstration that BABA-IR 474 

in tomato is connected to a hyper-receptive status. In that way, BABA acts as a real priming agent, 475 

preparing the plant to rapidly recognize pathogens and to set-up strong defences.  476 

However, as stated above, BABA also induce a major plant stress. Whether these two aspects 477 

can be disconnected is a pending question to only keep the hyper-receptive side unless this status 478 

could be a consequence of the major stress. Plant defence responses are also modulated by AA 479 

homeostasis and treatment with high concentrations of AAs. For example, the Arabidopsis thaliana 480 

lht1 mutant, which has reduced levels of Gln, Ala, and Pro, exhibits SA dependent resistance to a 481 

wide range of diseases [84]. In addition, treatment of rice roots with the AAs Glu, Asn, Met, and Asp 482 

induced systemic disease resistance against rice blast that was partially dependent on SA signalling 483 

and did not cause any change in the content of free AAs in leaves [85]. In our experiments, treatment 484 

with BABA increased levels of Pro and the expression of the Glu biosynthetic enzyme ProDH, as well 485 

as the levels of free Glu in the leaves (Fig 5A, C). The ProDH is an enzyme that plays a crucial role in 486 

plant metabolism. Recent studies have shown that ProDH activity is upregulated in response to 487 

pathogen infection and contribute to HR and disease resistance, which apparently potentiates the 488 

accumulation of ROS. In addition, ProDH may also regulate the balance between proline and P5C, 489 

which has been shown to affect the accumulation of defence-related metabolites and the expression 490 

of defence genes [86–88]. Decreases in Glu and Pro levels are also associated with microbial 491 
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community breakdown and disease incidence , supporting the idea that they play an important role 492 

in the plant's defence response [89]. Free Glu may be recognized by glutamate receptor-like proteins 493 

(GLRs), which have been implicated in enhanced resistance to Hyaloperonospora arabidopsidis, and 494 

Pseudomonas syringae in Arabidopsis [90]. The initial cellular events in BABA-IR in tomato may thus 495 

involve GLRs as suggested previously in a study on AA-ISR to rice blast in leaves [85]. Interestingly, 496 

despite significant differences, the upregulated gene clusters in BABA-treated tomato overlap 497 

extensively with the sets of orthologous upregulated genes identified by microarray analysis of A. 498 

thaliana lht1 plants [84] and the genes upregulated in Glu-treated rice plants [85] (Fig 6A). Notably, 499 

the orthologous genes common to all three sets exhibited functional enrichment in the plant-500 

pathogen interaction pathway (KEGG) and in protein domains related to signal transduction 501 

(INTERPRO), suggesting that, in all three cases, induced resistance is driven by similar molecular 502 

mechanisms based on sensitization to stress responsiveness (Fig 6B), which may be characteristic of 503 

priming phenomena [3].   504 

 505 

Figure 6. Overlap between genes induced by BABA and genes induced in selected plants with 506 

altered amino acid homeostasis. (A) Degrees of overlap between orthologous groups identified in 507 

this study and previous transcriptomic studies on A. thaliana lht1 plants [84], and Glu-treated rice 508 

plants [85]. (B) Functional enrichment of the plant-pathogen interaction pathway (KEGG) and protein 509 

domains related to signal transduction (INTERPRO) among the orthologous genes common to all 510 

three sets. 511 

Collectively, here we demonstrate that a strong BABA-IR towards Phytophthora parasitica 512 

and Oidium neolycopersici in tomato cv Marmande resemble in many aspects responses to general 513 

stress.  This resistance was largely explained by the activation of the ET and JA pathways resulting in 514 

a strong defence set-up involving PR-proteins as well as phenyl propanoid pathway, lipid 515 

peroxidation but in the same time revealed a complete remodelling of plant functions including 516 

decrease in primary metabolism and in photosynthesis together with an enhanced ability to perceive 517 

(P)(M)(D)AMPs and to set-up downstream signalling. In conclusion, much more attention should be 518 

A B
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paid to comparative studies between plants of agronomic interest submitted to R-BABA treatment. 519 

We clearly evidenced that multiomics as well as targeted approaches can bring original insight on 520 

who to who, even though many black boxes still remain closed. 521 

5. MATERIALS AND METHODS 522 

5.1 Plant material and growing conditions 523 

Tomato plants (Solanum lycopersicum cv. Marmande) were grown at 75% humidity and 14 524 

hours of light (day 24°C, night 22°C). After 6 or 7 weeks of growth, whole tomato plants were sprayed 525 

with 10 mM DL-BABA or water. Leaflets were then removed from plants 24 or 48 hours after spraying 526 

for transcriptome and proteome analysis and processed immediately or stored at -80°C until use. 527 

Plants assigned to each treatment were randomly selected, labelled, and then returned to the 528 

growth chamber. Three biological replicates were selected for each treatment.  529 

5.2 Botrytis cinerea and Phytophthora parasitica inoculation and measurement 530 

Two days after spraying with 10 mM BABA or water, leaflets were removed from 7-8 week-531 

old tomato plants and placed in clear Styrofoam boxes with moist absorbent paper to maintain high 532 

relative humidity. The centre of each leaflet was inoculated with a mycelial plug (5 mm in diameter) 533 

from the growth margin of a 3-day-old culture of the BC21 strain of B. cinerea. Alternatively, leaflets 534 

were pricked with a needle at a marked spot and 20 µl of a P. parasitica zoospore suspension (40 000 535 

zoospores/ml) was applied to the wounded spot. Five replicates in styrofoam boxes with 3 leaflets 536 

each were used. After inoculation, the detached leaflets were incubated in a growth chamber under 537 

conditions conducive to disease development (21°C, 14-h photoperiod, 114 µmol.s-1.m-2). 538 

Symptoms were recorded after 3 days of incubation for P. parasitica or 4 days for B. cinerea. 539 

Photographs were analysed using the ImageJ image analysis programme to quantify the surface area 540 

of necrotic lesions (in mm²). Analysis of variance was used to evaluate whether differences between 541 

controls and treatments were significant for each of the three independent experiments. 542 

5.3 Oidium neolycopersici inoculation and measurement 543 

Spraying with 10 mM BABA or water was done on whole 5-6 week old tomato plants. Two 544 

days later, each plant was inoculated with approximately 10 ml of a spore suspension of O. 545 

neolycopersici at a concentration of 104 sp/ml. The inoculated plants were then incubated in a growth 546 

chamber under conditions conducive to disease development (21°C, RH > 80%, 14 hours of light). The 547 

number of powdery mildew colonies was counted 14 days after inoculation on 2 leaves per plant 548 

with 5 plants per test. Three independent tests were performed. 549 

5.4 Identification and quantification of proteins by LC-MS/MS 550 
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Three biological replicates in the form of separate plants were subjected to analysis. For each 551 

replicate, 4 g of leaflets from 3 different plants were harvested on ice and homogenised at 4°C in 20 552 

ml of extraction buffer (50 mM Tris-Mes (pH=8.0), 20 mM EDTA, 500 mM sucrose, 10 mM DTT, 100 553 

mM PMSF, cOmplete Mini Protease Inhibitor Cocktail tablets) using an Ultraturrax homogenizer (IKA, 554 

DE) at 15 000 rpm. Samples were filtered through Miracloth and centrifuged at 20 000 x g and 4°C. 555 

The supernatant was collected and centrifuged in a Beckman Optima (Beckman-Coulter) 556 

ultracentrifuge at 35 000 rpm and 4°C with a Ti45 rotor. The supernatant was collected and 557 

concentrated using Vivaspin® 3 kDa (GE Healthcare) sample concentrators. The concentrated 558 

samples were dialyzed overnight to 10 mM ammonium acetate and finally concentrated to 0.5 ml 559 

using 4 ml Amicon® Ultra 4 3 kDa (Merck Millipore Ltd.) sample concentrators. Each sample was then 560 

fractionated into 5 fractions by HPLC using an IEX PolyWAX LP mixed bed column (200 x 4.6 mm, 5 561 

µm particles, PolyLC Inc., Columbia, USA) and a gradient of ammonium acetate. The collected 562 

fractions were dried under vacuum and subjected to LC-MS /MS analysis ( S3 Table ). The dried 563 

protein fractions were processed using a philtre filter-aided sample preparation (FASP) method [83]. 564 

LC-MS /MS analyses of the peptide mixtures were performed using the RSLCnano system connected 565 

to the Orbitrap Elite hybrid spectrometer (Thermo Fisher Scientific). For more details, see the 566 

supplemental material (S1 Appendix). 567 

5.5 RNA sequencing analysis  568 

Total RNA was isolated using TRIzol reagent (Life Technologies, Grand Island, NY, USA) and 569 

checked for integrity on a Bioanalyzer 2200 (RIN ≥ 7.40). Libraries for sequencing were prepared 570 

according to a standard protocol for the SOLiD 5500 system (Life Technology). Sequencing was 571 

performed using the SOLiD 5500W platform. Raw reads of 75 bp in length were mapped to the 572 

Solanum lycopersicum build 2.40 reference using ITAG2.4 as the gene model in colour space with the 573 

Maxmapper algorithm implemented in Lifescope software (Life Technologies, Ltd). RNA content was 574 

assessed using a whole-transcriptome workflow with the quality threshold set to 10, resulting in an 575 

assignment probability of greater than 90. The raw sequencing data with corresponding metadata 576 

are available in the NCBI Gene Expression Omnibus (GEO) repository under accession number 577 

GSE108421. Analytical comparison between BABA and the control treatments was performed using 578 

the DESeq package [91].  579 

5.6 Orthology and Gene Ontology enrichment analysis 580 

Orthologous gene clusters were compared and annotated using the OrthoVenn web platform [92], 581 

and the results obtained were visualised using the eulerr R package [93]. Significantly differentially 582 

expressed genes and proteins were analysed by Singular Enrichment Analysis (SEA) for GO term 583 
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enrichment using agriGO [94] based on GO terms retrieved from the PLAZA 3.0 database [95]. 584 

Summarisation and visualization of SEA were done using REViGO [34] and Cytoscape [96] with DyNet 585 

[97].  Protein-protein association networks for significantly differentially expressed genes and 586 

proteins were generated using the STRING database with an interaction score of 0.9 [33] and 587 

visualized using Cytoscape [96]. 588 

5.7 HPLC analysis of amino acids   589 

Twenty-four hours after treatment with BABA, tomato leaves were collected, frozen in liquid 590 

nitrogen, and ground to a fine powder. A portion of 250 mg of this powder was then extracted with 1 591 

ml of extraction buffer (0.1 M HCl and 4.6 μg/ml L-2-aminoadipic acid as an internal standard), mixed 592 

thoroughly, incubated on ice for 5 minutes, and centrifuged. A 500 μl aliquot of the resulting 593 

supernatant was then diluted with 100 μl methanol and loaded onto an SPE C18 column to adsorb 594 

interfering secondary metabolites, which had previously been wetted with 1 ml MeOH and 595 

equilibrated with 20% MeOH in 0.1M HCl. The sample was loaded and the column was washed with 596 

400 μl of 20% MeOH in 0.1 M HCl. Amino acids were recovered in both the flow-through and wash 597 

fractions and derivatized and analyzed as previously described [98]. See supplemental material (S1 598 

Appendix) for further details. 599 

5.8 Quantitative analysis of salicylic acid, jasmonic acid, and jasmonic acid-isoleucine  600 

The tomato leaflest (100 mg) was frozen immediately after the harvest using liquid nitrogen, 601 

and the frozen materials ground under liquid nitrogen and extracted with 750 µl of MeOH-H2O-HOAc 602 

(90:9:1, v/v/v) containing 100 ng of o-anisic acid as an internal standard. The mixture was centrifuged 603 

at 10,000 x g for 1 min, the supernatant was collected, and the pellet was repeatadly extracted.  The 604 

pooled supernatants were dried under nitrogen, resuspended in 200 µl of 0.1% HOAc in H2O-MeOH 605 

(90:10, v/v), and a portion of the mixture (2–5 μl) was subjected to LC-MS analyzes using a TOF mass 606 

spectrometer (Agilent Technologies) as previously described [99]. Further details can be found in the 607 

supplemental material (S1 Appendix). 608 

5.9 Measurement of ethylene production 609 

Single tomato leaflets 24 hours after treatment with BABA or water were placed in 20 ml test 610 

tube when the cut end of the  petiole was in sterile water and sealed with a air-tight rubber syringe 611 

cap. ETwas accumulated for 4 hours before a 1-ml sample was withdrawn for analysis. ET production 612 

was measured using gas chromatography with a flame ionization detector quantified by using a gas 613 

chromatograph  flame ionization detector (Agilent GC 6890, Agilent Technologies) as previously 614 

described [19].   615 

 616 
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