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A B S T R A C T   

Study Region: Forty-one river basins in Brazil and neighboring countries in South America. 
Study Focus: In large river basins, on countrywide or continental scales, it is often difficult to have 
consistent and accurate long time series of spatially distributed precipitation data available. 
However, these are needed to calibrate hydrological models and to run hydrological simulations 
continuously in real-time streamflow forecasting. In this study, we assess two real-time precipi
tation products based on rain gauges and satellite data (TRMM-MERGE and CPC-NOAA) for their 
use in streamflow forecasting in the hydropower sector in Brazil. To take advantage of each 
precipitation data source and derive a unique dataset, a methodology is proposed to combine, 
extend, and validate the datasets. We consider the discharges at the river basin outlets as an 
independent and robust reference for hydrological applications. Observed discharges are used to 
quantify precipitation uncertainties and to weight the blending, while discharges obtained from 
hydrological modeling are used to validate the final precipitation product. 
New Hydrological Insights for the Region: The proposed blending method, which uses the uncer
tainty of the original datasets to define the weighting factors, was efficient in generating a pre
cipitation product that performs better than each dataset separately when used to force a 
hydrological model. The use of the double-mass curve correlation to extend the time series of the 
datasets beyond their common period allowed us to produce long time series of precipitation for 
South American basins and hydrological applications. The study shows that it is possible to rely 
on river discharge data and hydrological modeling to select and combine different precipitation 
products in the region and presents a step-by-step methodology to do so.   

1. Introduction 

Time series of quantitative precipitation estimates is crucial for calibrating and running hydrological models to be used in research 
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and operational applications such as water resource management, irrigation planning, hydropower operations, and forecasting of 
floods and droughts. However, in large river basins or on countrywide and continental scales, it is often difficult to have consistent and 
accurate time series of spatially distributed precipitation data available over a long period of time. Precipitation is one of the climate 
variables most difficult to estimate because of its heterogeneous distribution in space and high variability in time (Herold et al., 2015). 
It is also susceptible to measurement errors caused by wind, evaporation, wetting, splashing and drifting effects, and human errors, 
such as uncalibrated gauge equipment, acquisition, and data communication problems (Michelson, 2004). Therefore, it is a major 
challenge to produce consistent precipitation products in space and time over large areas and long periods, especially if such products 
should be continuously used in real-time operations in hydrology (Golding, 2009; Kucera et al., 2013; Pozzi et al., 2013; 
Serrat-Capdevila et al., 2013; Verkade et al., 2013; Lettenmaier et al., 2015; Van Osnabrugge et al., 2017). 

The main sources of precipitation data are ground-based gauges, weather radars, and satellite instruments (Gilewski and Nawalany, 
2018). The first two sources mentioned are more accurate, but they are not uniformly available over large areas such as South America. 
Satellite data emerge as a potential source of precipitation information in this context, given their capacity to cover large areas and 
provide continuous space-time data. They are however less accurate and need to be bias corrected (Cassalho et al., 2020). The main 
sensors used to estimate precipitation are passive microwave, calibrated infrared, and a combination of them (Hong et al., 2018). With 
the evolution of sensors, active microwave sensors have been added to the satellites over time, such as the Ku-band Cloud Profiling 
Radar (DPR) on the TRMM Satellite (Simpson et al., 1988), the W-band Cloud Profiling Radar on the CloudSat (Y. Chen et al., 2008; M. 
Chen et al., 2008b), and Ku-/Ka-band Dual-Frequency Precipitation Radar (DPR) on the GPM satellites (Huffman et al., 2017). Several 
algorithms have been developed to extract precipitation information from this constellation of satellites, ranging from the simplest 
IR-based GOES Precipitation Index (GPI) (Arkin and Meisner, 1987) to the most recent and sophisticated NASA GPM (Global Pre
cipitation Measurements) Integrated Multi-satellite Retrievals (IMERGE) (Huffman et al., 2017). 

On a global scale, gridded precipitation products have been available since the late 1990 s (Huffman et al., 1997; Adler et al., 2003; 
Sun et al., 2017; Beck et al., 2017). However, only a few are produced in near real-time, such as the CPC Unified Gauge-Based Analysis 
of Global Daily Precipitation from the U.S. National Oceanic and Atmospheric Administration (NOAA) (Y. Chen et al., 2008; M. Chen 
et al., 2008), and the IMERG for GPM dataset from the U.S. National Aeronautics and Space Administration (NASA) (Huffman et al., 
2017), which is the successor of the Tropical Rainfall Measuring Mission (TRMM) data products. For South America, the 
TRMM-MERGE product was developed by the Brazilian Centre for Weather Forecast and Climatic Studies (Centro de Previsão de 
Tempo e Estudos Climáticos, CPTEC) and made available for near real-time applications (Rozante et al., 2010). It combines gauging 
station datasets from the Global Telecommunications System, automatic stations from various agencies in South America, and the near 
real-time TRMM precipitation product to provide a gridded dataset of daily precipitation at 0.25◦ of spatial resolution for operational 
applications. When TRMM was discontinued, the product GPM-MERGE was built with the GPM dataset based on the IMERG-E al
gorithm (the substitute of TMPA-V7 in the TRMM mission). It maintains the same gauge stations and the algorithm MERGE (Rozante 
et al., 2010), although it presents a higher spatial resolution of 0.1◦ (Rozante et al., 2018, 2020). 

When different precipitation products are available over an area, the question arises whether it would be better to select one 
product or combine different products. Beck et al. (2017) investigated 22 gridded global and tropical precipitation datasets and 
concluded that the product that merged all information available, the Multi-Source Weighted-Ensemble Precipitation (MSWEPv1.0), 
had better overall performance. Recently, Reis et al. (2019) carried out a study comparing the CPC-NOAA and TRMM-MERGE 
real-time precipitation datasets over 41 river basins, mostly located in Brazil. The authors found considerable differences in space 
and time between these two datasets, with a tendency to increase differences when moving from south to north and from east to west. 
For the majority of the studied river basins, the recent decade of data (2008–2017) presented the biggest differences in terms of areal 
precipitation over the river basins. The authors also highlighted the fact that the differences between the precipitation datasets were 
propagated, and often amplified in simulated streamflow when used to force a hydrological rainfall-runoff model. 

Hydrological data and models can be useful tools for analyzing precipitation datasets. By comparing simulated and observed 
streamflows, the quality of a precipitation dataset used as forcing for the model can be indirectly assessed and the uncertainties 
evaluated. This strategy has been used in numerous previous studies to evaluate the quality of precipitation datasets at regional or 
global scales (e.g., Su et al., 2008; Collischonn et al., 2008; Voisin et al., 2008; Bitew et al., 2012; Li et al., 2013; Falck et al., 2015; Tang 
et al., 2016; Beck et al., 2017; Hong et al., 2021). Overall, the studies indicate that, once there are better estimates of observed flow 
than precipitation, the use of hydrological modeling can help in validating the precipitation data. Direct empirical comparisons be
tween rainfall and streamflow can be useful to evaluate rainfall datasets across multiple scales, but also to identify and quantify the 
magnitude of the uncertainty in the datasets used in hydrological modeling (Levy et al., 2017). Based on the water balance equation, 
and assuming that a catchment hydrologically behaves like a reservoir system, it is possible to invert the reservoir model equation and 
express the rainfall as a function of the streamflow and then use this relationship to estimate the uncertainty of the rainfall data 
(Kirchner, 2009; Henn, 2015). 

Hydrological models can also be used to define and evaluate the best combination of multiple precipitation data sources. The 
MSWEP product is an example of a combined product that uses river discharge observations from stations across the globe and hy
drological simulations to correct systematic terrestrial precipitation biases (Beck et al., 2017). It is a fully global, historic precipitation 
dataset available since 1979 (http://www.gloh2o.org/mswep/). It is based on data from gauge stations, satellite remote sensing, and 
atmospheric model reanalysis. The hydrological model used to evaluate the performance of the MSWEP product and compare it with 
other state-of-the-art gauge-adjusted datasets (i.e., WFDEI-CRU, GPCP-1DD, TMPA 3B42, and CPC Unified) was the HBV model 
(Bergström, 1995). Flow simulations using MSWEP showed better performance (median Nash–Sutcliffe efficiency -NSE of 0.52) than 
simulations with the other precipitation datasets (NSE values of 0.29–0.39). The median correlation obtained when using the MWSEP 
product was the best correlation for 60 % of independent precipitation gauges from FLUXNET tower stations used for validation (for 
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more details, see Beck et al., 2017). Recently, Siqueira et al. (2018) applied the MSWEP v1.1 precipitation product with the distributed 
MGB hydrological model over South America to simulate streamflows. They reported good overall performance of the simulations, 
with NSE > 0.6 in 55 % of the flow stations. The performance was better in large rivers and wet regions, decreasing in drier climates, 
where timing errors in rivers with floodplain effects had been reported. To merge different precipitation products in a unique product, 
Wong et al. (2021) propose a methodological framework that relies on the streamflow response to precipitation. It uses a hydrological 
model to identify locally, at the (sub-)sub-basin scale, the best product among several gridded precipitation products (satellite-derived 
and model reanalysis product). The authors use precipitation-gauge stations available to first evaluate the quality of each precipitation 
dataset and to assess the overall performance of the hydrological model in each streamflow station. The best product is locally selected 
according to the performance of the hydrological simulations evaluated at discharge gauging locations. The Canadian hydrologic-land 
surface model H-LSM MESH was used to generate a composite precipitation dataset in the Saskatchewan River basin in Canada, which 
was then validated by assessing hydrological fluxes and storage at downstream gauge stations. 

In many parts of the world, precipitation ground data are not available, or networks are too scarce to be used in the validation of 
gridded precipitation products. Reliable and consistent long time series of spatially distributed precipitation over large areas are 
however needed for many applications, including climatological assessments and seasonal streamflow forecasting. They are used to 
calibrate the hydrological models, warmup the flow forecasting models, bias correct numerical weather forecasts and apply the 
ensemble streamflow prediction (ESP) method, which relies on historic precipitation and temperature data as future possible climate 
scenarios (Crochemore et al., 2016; Bennett et al., 2017; Arnal et al., 2017; Harrigan et al., 2018). In flow forecasting applications, 
these datasets also must be available in real-time or near real-time to allow operational decision making. In Brazil, gridded large-scale 
precipitation products are of particular importance to the real-time operations of the hydropower sector (Schwanenberg et al., 2015; 
Gibertoni et al., 2017). The anticipation of hydrological conditions can strongly influence the centralized operation of the electrical 
system and energy prices (ONS, 2016). Given this regional context, this paper aims to present a methodology that uses a hydrological 
model and observed discharge time series to quantify uncertainties from the TRMM-MERGE and CPC precipitation datasets, combine 

Fig. 1. Geographic location of the study area with the 41 river basins (red contours).  
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Table 1 
Summary of the characteristics of the gridded precipitation datasets as used in this study.  

Dataset Spatial 
resolution 

Time 
resolution 

Time period 
covered 

Data provider and URL for download Main references 

TRMM- 
MERGE 

0.25◦ Daily 1997–2017 CPTEC 
ftp:ftp1.cptec.inpe.br/modelos/io/produtos/MERGETRMM-MERGE/ (data downloaded in 2018; now redirects to GPM- 
MERGE dataset: http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/DAILY/ 

Rozante et al. (2010) 

CPC 0.5◦ Daily 1979–2017 NCEP/NOAA 
ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB 

M. Chen et al. (2008); Y. Chen 
et al. (2008) 

MSWEP 0.1◦ Daily 1979–2014 GloH2O 
http://www.gloh2o.org/mswep/ 

Beck et al. (2017)  

A
.A
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the datasets, and derive a unique precipitation dataset that can be used in (near)real-time applications. The novelty of our approach 
lies on using both observed and simulated discharge data at the outlet of the river basins to take advantage of the information con
tained in each precipitation product and derive a unique dataset. Observed discharges are used to quantify precipitation uncertainties 
and to weight the blending, while discharges obtained from hydrological modeling are used to validate the final precipitation product. 
Therefore, instead of using a reference (ground or remote sensed) precipitation dataset, which might also contain errors in the pre
cipitation estimates, we use the discharges at the river basin outlets as an independent and more robust reference for hydrological 
applications at the catchment scale. In addition, this paper presents the validation of the methodology over a large set of catchments 
(41 river basins), covering a large area of South America. 

This paper addresses the following questions: i) How can we use hydrological data and hydrological modeling to blend different 
observed precipitation datasets and validate the combined product in order to have better precipitation data for hydrological simu
lation and flow forecasting? ii) How can we extend the combined precipitation product over a period other than the common period of 
the different observed precipitation time series to foster its use in (near)real-time applications? 

This paper illustrates how we can use hydrological data and modeling as a tool to quantify the uncertainty of precipitation esti
mates, combine different datasets and validate the combined product with the final goal of obtaining a precipitation product relevant 
to (near)real-time hydrological applications. Our methodology is applied to a large set of 41 river basins that are relevant to the 
hydropower sector in Brazil and neighboring countries. The TRMM-MERGE and CPC precipitation datasets are used to generate a 
combined precipitation product. The dataset obtained is compared with the benchmark MSWEP and evaluated in terms of how hy
drological simulations compare with observed discharges. In Section 2, the methodology and data used are presented. In Section 3, the 
results obtained are provided. Section 4 is a discussion of the results, and the conclusions and planned future studies are presented in 
Section 5. 

2. Materials and methods 

2.1. Study area and data 

The study area comprises 41 river basins distributed in different climatic regions within Brazil and neighboring countries (Fig. 1). 
The river basins vary in size, with areas ranging from 9300 to 382,000 km2. The study area extends from the north (Jari River, Madeira 
River, Xingu River, Tapajos River, Tocantins River, and others) to the south of Brazil (Iguaçu River, Uruguay River, and others) and 
includes river basins located in the central part of the country (Paraná River, Grande River, São Francisco River, etc.). The 41 river 
basins provide inflow to 30 hydropower plants (HPPs). 

For each river basin, daily areal precipitation was obtained from the TRMM-MERGE, the CPC-NOAA, and the MSWEP datasets 
(Table 1). Daily areal precipitation time series were calculated using the shape file of the basins and averaging all grid data points 
falling inside each river basin considered. 

Daily discharge data were obtained from the ONS (National Operator of the Electric System; downloaded from https://sintegre.ons. 
org.br). They correspond to the official HPP natural flow time series and are compiled annually by the national operator. In some cases, 
it is the ONS that takes into account the regularization effects of the reservoirs and adds their evaporation as well as any water uses to 
obtain the natural flows of the reservoir. In these cases, the flows are also validated by the electricity generators involved in the process 
(for more details, see ONS, 2005). Data availability depends on each river basin. For this study, the discharge dataset used covers the 
period 1979–2018 for all studied river basins. 

2.2. Methodological steps 

To select a better real-time precipitation dataset among the two available independent data sources and a dataset that is a com
bination of the two, and to validate the selection and blending procedure using a hydrological model and observed streamflow, an 
experiment was designed with six basic methodological steps. 

Step 1: For each river basin, the daily areal precipitation time series (average over the area of the river basin) is estimated for each 
precipitation data source. The daily observed flow data are extracted for the same period at each basin. In addition, the total annual 
precipitation, and the annual mean of observed daily flows are calculated to perform the analysis based on the water balance 
relationship (Step 2). 
Step 2: The uncertainty of each precipitation data source is identified and quantified by using empirical functions that relate the 
total annual precipitation amounts and the observed annual mean flows. The weights used to build the combined daily precipi
tation dataset are obtained based on the uncertainty quantified from the annual water balance, as detailed in Section 2.3. 
Step 3: Since the two independent precipitation data sources cover different time periods, a procedure is used to extend the 
combined precipitation dataset over the longest period using the double-mass curve, as described in Section 2.4. 
Step 4: For each daily precipitation dataset (the two independent sets and the combined one), the hydrological model is calibrated 
at each river basin by first applying the traditional split-sample test, which divides the time series (October 1998 to September 
2017) into two periods for calibration and validation. This allows to assess the robustness of the model when simulating 
streamflows over a period independent of the calibration period. We also apply the calibration procedure over the entire data 
period to evaluate how the parameters of the model change with the length of the time period used for calibration. This step is 
detailed in Section 2.5. 
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Step 5: For each precipitation dataset and river basin, the daily flows simulated by the hydrological model (with parameters 
calibrated over the entire data period) are evaluated against the observed flows at the outlet of the basin. We use a variety of 
performance metrics, as described in Section 2.6. 
Step 6: The extended combined precipitation dataset is evaluated against a benchmark of observed precipitation, and simulated 
discharges using the new dataset are evaluated against observed discharges. 

2.3. Combining two precipitation data sources using the annual water balance 

The water balance equation is used in hydrology to describe the flow of water in and out of a system. The period used to calculate 
the water balance is usually the hydrological year, which is a 12-month period that starts at the end of the dry season. For any given 
year, the water balance in a river basin with no external inflows from neighboring catchments can be written as: 

ΔS = Pi − Q − ET (1)  

where Pi is the annual precipitation for the given year (total precipitation over the hydrological year) of the precipitation data source i, 
Q is the annual mean flow, ET is the annual evapotranspiration, and ΔS is the annual variation of storage in the river basin, with all 
variables expressed in millimeters. 

For long-term averages (here calculated over the hydrological year), the change in storage ΔS for an annual time step is marginal 
and can be considered equal to zero (Shao et al., 2012; Beck et al., 2020). The ET term depends on physical factors, such as the 
vegetation type, soil cover and land use, as well as on climate factors, such as temperature, solar radiation, humidity, and wind speed, 
as considered in the Penman-Monteith method used to calculate evapotranspiration (Allen et al., 1998). Therefore, this term can be 
considered independent of the precipitation data source that is used in Eq. (1). In our study, we are not trying to evaluate the different 
components of the hydrological balance, but instead we want to capture how the uncertainty varies when we consider different 
precipitation sources in the same river basin. Eq. (1) can then be simplified, and the precipitation can be written as a function of the 
flow and the error term that will translate the uncertainties: 

Pi = f (Q) + εi (2)  

where f (Q) is the empirical function between the annual precipitation (in millimeters) and the annual flow (in millimeters), and εi is 
the annual error associated with the precipitation source Pi. 

The error εi is evaluated for each given year using the empirical function that relates each annual precipitation Pi to the annual flow 
Q. The evaluation is based on the standard deviation of the errors of each precipitation source Pi, and is computed over the time series 
of annual errors. The standard deviation estimates obtained were used to weight the proportion of each precipitation data source to 
create a combined precipitation dataset. The weights were based on the proportion of the standard deviation of the errors of one source 
with respect to the sum of standard deviations of the errors of both sources. The weights were obtained from the following equations: 

Wj = 1 −
σεj

σεj + σεk
(3)  

Wk = 1 − Wj (4)  

where Wj is the weight of the precipitation data source Pi=j, Wk is the weight of the precipitation data source Pi=k, σεj is the standard 
deviation of the annual errors of Pi=j, and σεk is the standard deviation of the annual errors of source Pi=k, at each basin. 

The main idea behind this methodology is not to identify the precipitation data source that displays the best correlation between Pi 
and Q. The goal is to access the uncertainty of each source to make it possible to give a higher weight to the source with smaller 
uncertainty when the two sources of precipitation data are combined in one unique dataset. 

Once the weights of each precipitation data source are obtained, they are applied to the daily precipitation time series to generate 
the combined daily precipitation dataset at each basin, according to Eq. (5): 

DPWC = DPj.Wj + DPk.Wk (5)  

where DPWC is the daily precipitation of the weighted combination of the two precipitation data sources, DPj and DPk. 

2.4. Double-mass curve method to extend the combined precipitation dataset 

Once the combined precipitation method is applied to the two different precipitation data sources, a combined precipitation dataset 
for the same period of the shorter precipitation data source is obtained. It is thus necessary to extend, in a consistent way, this 
combined precipitation time series to also cover the period of the longer available data source. In this study, the double-mass curve 
method developed by the US Geological Survey was used (Searcy et al., 1960). The method is commonly used in data analyses to check 
the consistency of hydrometeorological data and adjust the data for any inconsistencies. It is based on comparing the time series of 
accumulated values at a single data station (or a given data source) with those given by data from other stations in a surrounding area 
(or other data sources) during the same period. The theory of the double-mass curve is based on the fact that a graph of the accu
mulation of one time series against the accumulation of another time series, during the same period, plots as a straight line as long as 
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the data are proportional; the slope of the line represents the constant of proportionality (b) between them. Applied to this study, it 
gives Eq. (6): 

Pc = Pk.b (6)  

where Pc represents the precipitation variable of the combined precipitation dataset, and Pk is the precipitation variable coming from 
the longer time series of the two sources of precipitation used to produce the combined dataset. A break in the slope of Eq. (6) indicates 
a change in the constant of proportion and the presence of inconsistencies. 

In this study, the double-mass curve was applied to annual values of total precipitation as follows.  

• For each river basin, for the common period of TRMM-MERGE and CPC-NOAA data (i.e., 1998–2017), the graph of accumulated 
annual values of the combined dataset is plotted against the graph of the CPC-NOAA dataset, which is the longer precipitation 
dataset.  

• The years with a wide discrepancy around the normal tendency are removed, with the objective of having the most representative 
parameter to extend the time series.  

• The constant of proportionality obtained with this correlation is used to multiply the past period of the longer data source, 
obtaining thus a complete time series of daily precipitation back until 1979, in order to represent the extension of the combined 
precipitation dataset. 

To compare the combined precipitation dataset with the benchmark precipitation (MSWEP dataset), and to evaluate how the 
dispersion of the error varies in time, the standard deviation of the annual precipitation errors (observed precipitation minus the value 
calculated with the empirical functions of Eq. (2)) were calculated for 1980–2014 (full hydrological years of the benchmark data 
available) in a five-year moving window. To improve the analysis and avoid scale distortions caused by differences in wetter or drier 
years between MSWEP and the combined precipitation dataset, the standard deviation error was normalized by dividing its value by 
the average precipitation of each five-year window. 

2.5. HEC-HMS hydrological modeling and flow analyses 

To validate the combined precipitation dataset obtained, a hydrological model was used to evaluate the accuracy of the simulated 
discharges when this dataset drives the model. The hydrological model used in this study is the one proposed in the suite of the HEC- 
HMS model (Feldman, 2000). It is a flexible and user-friendly suite of models that can be used for many hydrological applications, such 
as urban and rural flooding, flood warning systems, water uses planning, etc. The models can be applied to simulate a single flow event 
or to perform continuous hydrological simulations in a semi-distributed modeling configuration. The modules can be chosen according 
to the needs of the user, the application envisaged and the expected accuracy (Feldman, 2000; Najim, 2013). Users can, for instance, 
select specific modules of the loss method, the transformation method, and the base flow method (Scharffenberg, 2016). 

Fig. 2. Illustration of the split-sample approach applied to evaluate the hydrological model: two periods of 10 years each are used for calibration/ 
validation (Cal. 1 and Cal. 2); the total period is used for calibration (Calibration 3), and for comparison with the results of the two separated periods 
(Simulation Cal. 3), and the results of the two separated validation periods (Simulation Total Period Cal. 1 and Cal. 2). The blue (black) hydrograph 
illustrates the simulated (observed) flow for a given river basin. 
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In this study, the HEC-HMS modeling framework was run for continuous simulations at the daily time step. The interception was 
modeled using the simple canopy (Bennett, 1998) and the simple surface (Bennett, 1998) methods. The excess of precipitation arrives 
on the soil and is captured until the storage capacity of the surface is filled and then runoff starts. The water in the surface will then 
infiltrate into the soil. The soil moisture accounting method is the unique module in the framework able to run a continuous simu
lation. It uses three layers to represent the dynamics of the water movement in the soil. For a given precipitation and evapotranspi
ration, it computes the basin’s surface runoff, groundwater flow, losses, and the deep percolation over the entire basin (Bennett, 1998). 
The Clark unit hydrograph was used to incorporate the translation of runoff through time within the basin and the attenuation of runoff 
through storage in a linear reservoir. Its principal parameters are the time of concentration, defining the travel time in the sub-basin, 
and the storage coefficient (Kull and Feldman, 1998). The linear reservoir method (Kull and Feldman, 1998) was used to represent the 
base flow. It uses a linear reservoir to model the recession of the base flow after a storm event, using the principles of conservation of 
mass. The lateral outflow of the groundwater is connected with the infiltration from the soil moisture accounting loss method. For the 
routing, the Lag method or the Muskingum-Cunge Routing method were used, depending on the complexity of the basin and the 
extension of the river reach. 

The split-sample approach (Klemes, 1986) was used to calibrate the hydrological model and test its robustness (validation). Each 
time series is split into two and both parts are used for calibration and validation. The results in terms of model performance are 
evaluated for the two validation periods and compared with the performance results obtained over the same periods but with the 
calibration based on the complete period. The main objective of these various calibration and validation periods is to verify that the 
calibration of the total period, which is used in the next steps, is robust and has equivalent performance to that of the split-sample 
approach. Fig. 2 illustrates the approach used and the different calibration and validation periods of the HEC-HMS hydrological model. 

The model was calibrated using a daily time step and for each source of precipitation separately. Large basins with different cli
matic characteristics across space were divided in sub-basins to better capture differences in precipitation and produce a better rainfall- 
runoff transformation. In total, there are 26 parameters to be calibrated in the HEC-HMS model. The parameters that have a stronger 
influence on the model outputs are the time of concentration and the storage coefficient, which are linked to the Clark unit hydrograph 
module, the maximum infiltration rate, the soil total storage, the soil tension storage, and the maximum soil percolation rate, which are 
linked to the loss module. An initial manual calibration was performed to obtain the first parameters set. Then, the automatic cali
bration procedure, available in the HEC-HMS model, was applied to obtain the optimal parameters using the Univariate-Gradient 
Search Algorithm. The objective function used for the Clark unit hydrograph parameters was the Minimum of Peak-Weighted RMS 
Error and, for the loss parameters, the Minimum Sum of Squared Residuals (Diskin and Simon, 1977). Since the objective functions are 
more sensitive to the volumes and peaks of the hydrographs, it is sometimes necessary to adjust the base flow parameters to have a 
better fit of the recession of the hydrographs, after running the model optimization. The calibration process is repeated three times for 
each calibration period (Fig. 2), for each precipitation data source and for the combined precipitation dataset, and for each river basin. 

2.6. Evaluation metrics 

To analyze the performance of the hydrological models run in this study (HEC-HMS model calibrated with the different observed 
precipitation datasets), the Nash–Sutcliffe efficiency - NSE (Nash, 1970), the Kling–Gupta efficiency - KGE (Gupta et al., 2009), the 
Mean Absolute Error - MAE, and the R2 (coefficient of determination) were used as performance indicators. These metrics are used to 
compare the daily simulated flows with the daily observed flows. They were evaluated for the calibration-independent time periods 
defined in Fig. 2 (October 1998 to September 2008; October 2008 to September 2017). In our evaluation, the performance indicators 
obtained for the validation periods 1 and 2 were used to evaluate the performance of the hydrological model at each river basin. The 
performance obtained during the total calibration period was used to define the best precipitation data source for each river basin. 

NSE: measures how good the results of the model are compared with the mean observed discharge. Values equal to 1 indicate a 
perfect fit, and values smaller than zero indicate that the mean discharge is a better predictor than the hydrological model. 

NSE = 1 −

∑n

i=1

(
Ysim

i − Yobs
i

)2

∑n

i=1

(
Yobs

i − Yobs)
2 (7)  

where Ysim
i is the simulated value at time step i, Yobs

i is the observed value at time step i, Yobs is the mean of the observed value, and n is 
the number of time steps. 

KGE: provides a decomposition of the Nash–Sutcliffe efficiency analysis. Values close to 1 indicate a more accurate model. 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+

(
μsim

μobs
− 1

)2

+

(
σsim

σobs
− 1

)2
√

(8)  

where, in the first part, r is the linear correlation between simulations and observations. In the second part (a measure of error 
variability), μsim is the mean of the simulations Ysim

i , and μobs the mean of the observations Yobs
i . In the third part (a bias term), σsim is the 

standard deviation of the simulations, and σobs is the standard deviation of the observations. 
MAE: gives the average deviation between the simulated and the observed discharges. Values closer to zero indicate better per

formance. 

A.A. Reis et al.                                                                                                                                                                                                         



Journal of Hydrology: Regional Studies 44 (2022) 101200

9

MAE =
1
n
∑n

i=1

⃒
⃒Ysim

i − Yobs
i

⃒
⃒ (9)  

where definitions are the same as in Eq. (7). 
R2: is the proportion of the variance in the dependent variable that is predictable from the independent variable. A value close to 1 

indicates a better fit of simulations to observations. 

R2 =

∑n

i=1

(
Ysim

i − Yobs)
2

∑n

i=1

(
Yobs

i − Yobs)
2 (10)  

where definitions are the same as in Eq. (7). 

3. Results 

3.1. Standard deviation of the annual precipitation errors 

Fig. 3 shows the boxplot distribution of the standard deviation of the annual precipitation errors (εi from Eq. (2)) obtained from the 
two sources of precipitation data and the combined precipitation dataset. The standard deviation values were evaluated over all 41 
river basins and 19 years of data (October 1998 - September 2017), and the linear function was the best fit in all basins, which makes 
sense since the annual water balance was represented by a linear function in Eq. (1). The standard deviation of annual precipitation 
errors from the benchmark MSWEP dataset, for all river basins and the period from 1998 to 2017, is also shown as reference. Table 2 
shows the results for each river basin, as well as the weights applied when combining the two precipitation data sources. 

The dispersion of the annual precipitation errors is reduced when the different precipitation data sources are combined. The 
combined precipitation dataset shows a lower standard deviation of the annual precipitation errors than the original datasets on 15 out 
of 41 river basins, and its boxplot distribution is closer to the reference MSWEP dataset. Although the median value of the error 
standard deviation is close to the TRMM-MERGE dataset median value, the interquartile range between the 75th and 25th percentiles 
is smaller in the combined dataset. This measure of dispersion of the precipitation errors around the empirical function gives an idea of 
the uncertainty of each precipitation dataset. In the combined dataset more weight is given to the precipitation dataset with lower 
uncertainty. In Table 2, we can see that the TRMM-MERGE dataset has more weight than the CPC dataset in 30 out of 41 river basins, 
and both have equal weight in 2 river basins. 

3.2. Hydrological model performance 

The three precipitation datasets (TRMM-MERGE, CPC and Combined) were used to calibrate and validate the HEC-HMS hydro
logical model in all 41 river basins. Fig. 4 shows the density functions representing the distribution of the four performance metrics 
analyzed: KGE, NSE, MAE (calculated in terms of specific discharge, in l/s.km2 to permit comparison of the values in basins with 
different sizes), and R2. The values obtained in calibration (validation) are in red (blue). Table 3 shows the median values of the metrics 
when considering all river basins, calibration, and validation periods (as defined in Fig. 2), and for each precipitation dataset. 

For most of the basins, the difference in performance metrics between calibration and validation is less than 10%. The calibrated 
models can be considered to perform well over the large river basin dataset of this study. For most of the 41 river basins, the NSE and 
KGE criteria are higher than 0.60, and the R2 coefficient is higher than 0.55. Table 3 shows that median values of NSE and KGE vary 

Fig. 3. Box-plot of the standard deviation of the annual precipitation errors (in mm) for areal precipitation over 41 river basins and for each 
precipitation dataset: CPC, TRMM-MERGE, Combined CPC and TRMM-MERGE and the reference MSWEP. 
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from 0.71 to 0.81 in calibration, and from 0.68 to 0.78 in validation. Median values of R2 coefficient in calibration and validation are 
also very close. These results indicate that the model calibration is sufficiently robust to represent the characteristics of the basins in 
different periods. Fig. 5 also shows that the combined dataset results in a more consistent calibration and validation performance, with 
sharper curves and fewer outliers of performance. The combined dataset is also the one that presents the highest median values of NSE, 
KGE and R2 and the lowest median values of MAE (Table 3). These results can also be another indicator of the robustness and good 
performance of the combined precipitation dataset. 

3.3. Selection of the best precipitation dataset 

After the evaluation and validation of the performance of the hydrological model for each river basin, the best performing pre
cipitation dataset was evaluated in terms of simulated discharges. The simulations were made using the model with parameters 
calibrated with each precipitation dataset and over the entire period (October 1998 - September 2017). Fig. 5 shows the MAE, KGE, 
NSE, and R2 performance metrics obtained for the 41 river basins and the three sources of precipitation data (TRMM-MERGE, CPC, and 
the combined precipitation dataset). 

In general, the simulated discharges using the CPC precipitation dataset clearly performed worse for the four indicators analyzed. 
The simulated discharges using the combined precipitation dataset performs best for almost all basins. When the scores are not the best 
for this dataset in a river basin, the differences are less than 10 % in the majority of the cases (not shown). The best performance of the 
combined dataset is clearly shown with the NSE, MAE and R2 criteria. In terms of the KGE criterion, 50 % of the river basins present 
values higher than 0.79 when using the combined and the TRMM-MERGE precipitation datasets. There are small differences in KGE 
between these two datasets, although the use of the combined dataset resulted in fewer outliers in terms of performance and notably 

Table 2 
Standard deviation of the annual precipitation errors (in mm) for each river basin and precipitation dataset (TRMM-MERGE, CPC and Combined 
TRMM-MERGE and CPC) and weights used for the combined precipitation dataset. The dataset with the best performance is colored.  

RIVER BASIN Standard Deviation of annual precipitation errors Weights used in the combined dataset 

TRMM-MERGE CPC Comb. TRMM-MERGE CPC 

1) HPP 14_DE_JULHO  128  100  101  0.44  0.56 
2) HPP DONA_FRANCISCA  163  180  163  0.53  0.47 
3) HPP BARRA_GRANDE  196  124  134  0.39  0.61 
4) HPP CAMPOS_NOVOS  141  135  130  0.49  0.51 
5) HPP FOZ_DO_CHAPECO  237  181  198  0.43  0.57 
6) HPP G_B_MUNHOZ  111  161  122  0.59  0.41 
7) HPP SALTO_CAXIAS  149  290  159  0.66  0.34 
8) HPP ITAIPU  115  126  116  0.52  0.48 
9) HPP ROSANA  116  80  75  0.41  0.59 
10) HPP PORTO_PRIMAVERA  95  106  90  0.53  0.47 
11) HPP NOVA_AVANHANDAVA  199  126  138  0.39  0.61 
12) HPP AGUA_VERMELHA  169  101  120  0.38  0.62 
13) HPP FURNAS  85  121  96  0.59  0.41 
14) INC_HPP SAO_SIMAO  99  100  94  0.50  0.50 
15) INC_HPP ITUMBIARA  120  150  124  0.56  0.44 
16) HPP CAPIM_BRANCO_2  93  98  89  0.51  0.49 
17) HPP EMBORCACAO  97  146  110  0.60  0.40 
18) HPP ILHA_DOS_POMBOS  89  115  79  0.56  0.44 
19) HPP MASCARENHAS  85  93  80  0.52  0.48 
20) HPP ITAPEBI  43  54  42  0.55  0.45 
21) HPP TRES_MARIAS  110  153  110  0.58  0.42 
22) VELHAS  92  124  99  0.57  0.43 
23) PARACATU  93  103  89  0.52  0.48 
24) CARINHANHA  95  109  99  0.54  0.46 
25) HPP SOBRADINHO_INC  122  135  127  0.52  0.48 
26) HPP LAJEADO  76  100  72  0.57  0.43 
27) CONC_DO_ARAGUAIA  78  119  70  0.60  0.40 
28) HPP TUCURUI_INC  121  162  125  0.57  0.43 
29) BOA_SORTE  101  227  114  0.69  0.31 
30) HPP BELO_MONTE_INC  135  259  142  0.66  0.34 
31) HPP MANSO  198  266  200  0.57  0.43 
32) HPP TELES_PIRES  87  190  102  0.69  0.31 
33) EBEC  69  171  68  0.71  0.29 
34) HPP TAPAJOS  89  340  106  0.79  0.21 
35) PUERTO_SILES  72  81  73  0.53  0.47 
36) PENA_AMARILLA  152  136  139  0.47  0.53 
37) MIRA_FLORES  148  105  110  0.41  0.59 
38) INC_GUAJARA_MIRIM  93  93  89  0.50  0.50 
39) INC_ HPP_SANTO_ANTONIO  111  131  104  0.54  0.46 
40) HPP STO_ANTONIO_DO_JARI  228  257  137  0.53  0.47 
41) HPP FERREIRA_GOMES  250  461  271  0.65  0.35  
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less river basins with low values of KGE. For individual river basins showing the lowest values of KGE with the combined dataset, the 
differences regarding the KGE with the TRMM-MERGE are lower than 8 %. 

3.4. Extension of the combined precipitation dataset 

Once the evaluation showed that the combined precipitation of the two precipitation data sources achieved the best performance 

Fig. 4. Density functions of the values of the performance metrics NSE, KGE, MAE and R2 for the simulated flows in calibration (line in red) and 
validation (line in blue) periods from the hydrological model HEC-HMS applied over 41 river basins with the TRMM-MERGE, CPC and Combined 
CPC and TRMM-MERGE precipitation datasets. Calibration and validation periods come from the split-sample test of the total 1998–2017 
data period. 

Table 3 
Median values of the performance metrics NSE, KGE, MAE and R2 for the simulated flows in calibration and validation periods from the hydrological 
model HEC-HMS applied over 41 river basins with the TRMM-MERGE, CPC and Combined CPC and TRMM-MERGE precipitation datasets. Calibration 
and validation periods come from the split-sample test of the total 1998–2017 data period.  

Metric Median values 

TRMM-MERGE CPC Combined 

NSE Calibration  0.73  0.71  0.77 
Validation  0.71  0.68  0.75 

KGE Calibration  0.81  0.79  0.81  
Validation  0.78  0.75  0.78 

MAE (l/s.km2) Calibration  3.87  4.07  3.45  
Validation  3.94  4.33  3.64 

R2 Calibration  0.69  0.66  0.70  
Validation  0.67  0.64  0.69  
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over the common period of data (October 1998 - September 2017), the next step was to use the double-mass procedure (Section 2.4) to 
extend the combined dataset. The correlation of the double-mass curve between the longest dataset (CPC) and the combined dataset 
was used to extend the period of the combined dataset until 1979 (first year of data available in the longest CPC dataset). To validate 
the extended dataset obtained, the hydrological models were run for each river basin, with parameters calibrated for the period 
1998–2017. The performance of the streamflow simulations of this recent period was compared with the performance of the simu
lations obtained over the extended (validation) period of 1979–1997. Fig. 6 shows the distribution of streamflow performance metrics 
(MAE, NSE, and R2) over the 41 river basins of this study. 

In terms of accuracy of the streamflow simulations (MAE), the average error for the extended (validation) period (1979–1998) is 
slightly lower than the average error of the recent (calibration) period (1998–2017). Considering the NSE criterion, the extended 
period has, on average, better performance (higher NSE values) than the recent period. For the R2 correlation, the values obtained over 
the extended period are clearly higher than the values obtained over the recent period. These results validate the extension of the 
combined precipitation dataset in terms of its ability to provide streamflow simulations in the extended earlier period that match the 
observed streamflows as well as in the more recent period of the combined precipitation dataset. 

Fig. 5. Performance metrics MAE, KGE, NSE and R2 for the simulated flows in the calibration period 1998–2017 from the hydrological model HEC- 
HMS applied over 41 river basins with the TRMM-MERGE, CPC and Combined CPC and TRMM-MERGE precipitation datasets. 

Fig. 6. Performance metrics MAE, NSE and R2 for the simulated flows from the hydrological model HEC-HMS applied over 41 river basins with the 
Combined CPC and TRMM-MERGE precipitation datasets in the calibration period 1998–2017 and in the validation extended period 1979–1998. 
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3.5. Comparison of the combined precipitation dataset with the benchmark 

The combined precipitation dataset was evaluated against the benchmark MSWEP dataset. Fig. 7 shows the evolution in time of the 
normalized standard deviation of the annual precipitation errors obtained for 1980–2017 in a five-year moving window. The thickest 
lines represent the median of the values for all river basins and the shadowed areas show the 25th and 75th percentiles (variability 
among river basins). 

The extended period of the combined precipitation (before 1998) tends to have a behavior closer to the benchmark. It shows similar 
standard deviation of annual precipitation errors, but higher values: median values are closer to 6% versus median values closer to 5 % 
for the benchmark. The combined precipitation dataset does not exhibit a visible temporal trend. However, the standard deviation of 
the precipitation errors decreases after the year 2000, to increase again just a few years later. 

The standard deviation of the MWSEP annual precipitation errors is smaller and more stable over time comparatively to the 
combined precipitation dataset. It also shows less variability among river basins. After around 1998, there is a reduction in the MSWEP 
error standard deviation, probably due to the use of satellite observations to improve the estimates of precipitation. After 2008, median 
values tend to increase again to values similar to those before 1998, although the variability among river basins remain reduced. 

When the entire period (1980–2017) is considered, the combined precipitation dataset has a higher median and variability among 
river basins than the benchmark, but the difference can be considered small, especially considering that the combined precipitation is a 
real-time dataset, subject to errors that might be corrected afterwards, and the level of consistency is not comparable to a reanalysis 
dataset such as MSWEP. 

In terms of spatial distribution of the errors, there is no evidence of a pattern or regions with a clear higher normalized standard 
deviation of the errors (not shown). For almost all basins, the combined precipitation dataset displays values between 4 % and 9 %. 
Only a few basins have values higher than 11 %, and they are not concentrated in the same region. 

3.6. Examples of simulated hydrographs using the combined precipitation dataset 

As showed in Sections 3.2 and 3.3, the combined precipitation dataset displayed good performance for the period used to build it 
from the two existing data sources, i.e., 1998–2017, with NSE and KGE values above 0.75. Fig. 8 shows three examples of the simulated 
flows using the combined precipitation dataset for the complete period generated from this study, i.e., from October 1st, 1979 to 
September 30th, 2021. Three river basins were selected to represent the southern region (HPP Foz do Chapecó at the Uruguai River), 
the southeast region (HPP Emborcação at the Paranaíba River), and the north region (HPP Santo Antônio at the Madeira River). 

In the southern region, the weather does not present a clear seasonality and peaks of flow may occur in any month of the year. The 
simulated flows tend to underestimate the highest peaks and overestimate the lowest flows (NSE = 0.78). In the southeast region, 
seasonality is present, and the wet season is from November to March. The simulated flows tend to overestimate the flow peaks for the 
period 1983–1993 and underestimate them for 2005–2010. Despite these tendencies, this river basin also presents a good statistical fit, 
with NSE value of 0.76. In the north region, the biggest basin of our dataset is shown. A clear seasonality is observed, with the wet 
season from December to May. The simulated flows display an overall better and more stable performance, with a good fit to flow 
peaks and flow recession periods (NSE = 0.87). 

4. Discussion 

This study proposes a methodology that allows us to combine, extend and validate two precipitation datasets, based on precipi
tation gauges and satellite-based products (CPC and TRMM-MERGE), by using observed and simulated discharges at river basin 
outlets. By relying on discharge data and hydrological modeling to process the global gridded precipitation products, it provides a 
framework that can be applied, in particular, in large areas where ground networks of rain gauges, often considered as the most 

Fig. 7. Normalized standard deviation of the annual precipitation errors with the combined precipitation dataset (red) and the benchmark MSWEP 
dataset (blue). Median values (lines) and 25th and 75th percentiles (shadowed areas) are calculated in a five-year moving window and over 41 
river basins. 
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accurate source of precipitation information, is not reliable or dense enough for hydrological applications. We tested and validated the 
approach over 41 river basins in Brazil and neighboring countries (basin sizes ranging from 9300 km2 to 382,000 km2). This study area 
has a continental dimension, exhibiting diverse patterns of weather and climate governed by large scale climate phenomena (Garreaud 
et al., 2009). We find climate regimes with a clear precipitation seasonality: the drier semi-arid weather at the northeast region (Tinôco 
et al., 2018), the South America monsoon system responsible for high precipitation amounts at the southeast and central-western of 
Brazil (Ferreira and Gan, 2011), and the intense convective storms from tropical weather at the Amazon region (Garreaud et al., 2009). 
The study area also comprises a weather type with no seasonality: the subtropical weather at the south region of the continent, which 
presents wet and dry periods in any month of the year (Garreaud et al., 2009). This large domain of application illustrates the ability of 
the approach to provide the means to combine precipitation datasets under a variety of hydrological and climatic conditions. 

The approach proposed in this study also allow us to take advantage of the quality control and knowledge already developed in 
each precipitation source, such as the five levels quality control at the CPC dataset (Chen. M, et al., 2008). Observed discharges are 
used in the computation of the annual water balance in order to quantify the uncertainties of each precipitation source. This is done by 
using the standard deviation of the errors, which are then used to define the weights that will generate the blending of the different 
precipitation datasets at each river basin. This first step is an important step before performing any hydrological analysis or using the 
available datasets in real time flow forecasting (Levy et al., 2017). In our study we found that the uncertainty, as measured by the 
standard deviation of annual precipitation errors, had the highest values in the CPC dataset for most of the basins. This result agrees 
with the finds of Rozante et al. (2010), when comparing the performance of TRMM-MERGE product with the gauge based product 
OBS90, showing a superior quality of the MERGE product over the gauge-based CPC product. When the precipitation data sources were 

Fig. 8. Simulated (blue) and observed (red) daily streamflows for three representative river basins from October 1st, 1980 to September 30th, 2021: 
Foz do Chapecó (Uruguai River) in the south region (top panel), Emborcação (Paranaíba River) in the southeast region (middle panel), and Santo 
Antônio (Madeira River) in the north region (bottom panel). 
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combined, the new dataset displayed remarkably similar annual uncertainty to the one evaluated from the source which had the 
smallest standard deviation values. However, the uncertainty variability among the river basins was reduced in the combined dataset 
and became more similar to the one displayed by the reference dataset we used in this study, the non-real time MSWEP precipitation 
dataset. This result is in line with the results obtained by Beck at al. (2017), where the authors reported the superior quality of their 
merged product (based on satellite, rain gauges and reanalysis) when the product and the individual sources were evaluated against 
ground observations of precipitation. 

The data source presenting the lower standard deviation of annual precipitation errors is usually the one with the higher weight 
when combining the daily precipitation data. The proposed method uses the annual uncertainty to define the blending weights but 
blends the precipitation datasets at a daily time step on the river basin scale. Therefore, the reduction of uncertainty that results from 
the combination of individual datasets also impacts the quality of the precipitation at shorter time scales. At the annual scale, large 
errors of each data source were smoothed during the combination process in several cases (15 out of the 41 basins), and the resultant 
precipitation dataset displayed lower standard deviation of annual precipitation errors. At the daily scales, where the hydrological 
models are usually calibrated and validated for hydrological applications such as streamflow forecasting and climate change impact 
assessment, the performance was better for practically all river basins, reflecting lower uncertainty from the combination of precip
itation data sources also at this shorter time step. These results are the first indication that the methodology proposed for the com
bination of the different sources of data can lead to a precipitation forcing dataset that is more robust and display lower uncertainty at 
different time scales. This is relevant because lower uncertainty can result in better and more robust calibration of the hydrological 
model, with fewer differences in performance of flow simulations when comparing validation and calibration periods. Robustness in 
hydrological modeling is crucial for real time flow forecasting, when future events that were not experienced in the past, and hence 
were not included in the model calibration process, might occur and generate extreme situations of interest for hydrological risk and 
water resources management. 

Parameter estimation and uncertainty analysis in hydrological modeling (see, for instance, Zhang et al., 2016; Teweldebrhan et al, 
2018; Herrera et al., 2021) was not in the scope of this study. We assumed that the application of the split sample test and the use of a 
long time series were satisfactory to achieve robust parameters of the hydrological model. When calibrating the hydrological models, 
we generated nine simulations, three for each precipitation forcing (TRMM-MERGE, CPC, and their combination). Following the 
traditional split-sample test, there were two calibration-validation procedures applied each to half of the sample. Additionally, one 
calibration covered the entire data period of almost twenty years. The results were evaluated using performance indicators (NSE, KGE, 
MAE, and R2) and it was shown that, for most of the basins, the results in terms of performance of simulated flows are similar among 
the different periods. This enabled the use of the hydrological model as a tool for the selection and validation of the precipitation 
datasets, including the combined precipitation dataset. This can be an interesting strategy when the focus of a precipitation dataset 
analysis is its specific use for hydrological applications, as, for instance, in seasonal streamflow forecasting, where the traditional 
method of ESP (Ensemble Streamflow Prediction) for issuing reliable hydrological forecasts requires long series of homogeneous 
historic precipitation data. Wong et al. (2021) also illustrated the interest of evaluating precipitation products in terms of streamflow 
simulations. They showed that, at the scale of a large river basin in Canada, the best precipitation product evaluated against the 
precipitation-gauge stations did not necessarily display the best streamflow performance across the sub-catchments of the river basin. 
The authors also highlighted the benefit of using streamflow as it presents smaller uncertainties when compared to other hydrological 
information that can be derived from a hydrological model. 

Our results are also in agreement with the conclusions drawn by Beck et al. (2017, 2019), which evaluated a large group of 
observed precipitation data sources and concluded that the combination of data sources into one reanalysis dataset provided better 
estimates of precipitation. The unique MSWEP (Multi-Source Weighted-Ensemble Precipitation) dataset of global terrestrial precipi
tation dataset provides a high-resolution (3-hourly temporal and 0.1◦ spatial resolution) reanalysis dataset. While it was used in our 
study as a reference dataset to evaluate (and validate) the combined dataset built, its direct use for real time operations is not possible 
given the fact that this dataset it is not yet processed to be available in real time. Combined precipitation datasets are particularly 
useful when water managers have to operate over large areas, from tens to hundred square kilometers, and cannot compile different 
data sets in real time for each river basin under their management. The use of a unique and robust precipitation dataset is an asset in 
operational settings and continental-wide applications. The fact that our combined dataset performs well compared with the MSWEP 
dataset also opens the opportunity for the future use of the MSWEP dataset when it will become available in real time. 

The performance results of this study can be compared with other large-scale model experiments in terms of overall performance. 
For the NSE criterion, our results show the performance is higher than 0.60 for 97 % of the basins and the average NSE over the study 
area is 0.75. The KGE criterion is also higher than 0.60 for all basins and the average value is 0.77. The average coefficient of cor
relation is 0.67 for the study basins. Siqueira et al. (2018), using a distributed hydrological model (MGB) and the MSWEP data from 
Beck et al. (2017) as precipitation forcing, obtained NSE values for discharge and water levels higher than 0.60 for 55 % of the studied 
cases and KGE values higher than 0.60 in 70 % of the studied cases of streamflow simulation. According to the authors, the global 
models (WaterGap, LISFLOOD, and HTESSEL/CaMaFlood) showed more than 40 % of the basins in South America with an NSE and a 
KGE lower than zero. When comparing the HEC-HMS models calibrated in this study with the other experiments realized in South 
America, we can see that the results and the performance of the HEC-HMS models are robust and sufficient for the next step of the 
study, which is the application of the combined precipitation dataset and the calibrated model for seasonal streamflow forecasting. 

The combined precipitation dataset has a similar evolution of precipitation uncertainty (standard deviation of annual areal pre
cipitation errors) as the reference MSWEP dataset, notably in the periods before late 1990 s and early 2000 s. The median values are 
however higher (generally, 1 % higher), as well as the variability of standard deviation of annual areal precipitation errors among river 
basins. Although differences in median values are more important in the period 2005–2010, median values become comparable in the 
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more recent period. Despite having more information available in the recent period, since satellite data is added to the TRMM-MERGE 
dataset, the uncertainty of the combined precipitation dataset is not reduced, as can be seen in the MSWEP dataset, which presents a 
decrease in the variability of the standard deviation of the errors among the river basins in the period after 1998. These differences can 
be explained by the fact that the MSWEP dataset uses more information and more consistent data than real time datasets. Errors and 
inconsistencies are often present in real time datasets, such as the ones used to build the combined dataset in this study, so it is expected 
that this impacts the quality of the precipitation data. Despite these issues, an important aspect of the combined precipitation dataset is 
that it provides a more homogeneous dataset over the region, since no regions in the study area displayed specific patterns of errors. 
Patterns were identified previously in the CPC and TRMM-MERGE precipitation datasets (Reis et al., 2019), with differences between 
the datasets growing toward the northwest of Brazil. After the combination of the datasets, the uncertainty did not show any clear 
dependency on the spatial location of the river basins. 

The TRMM-MERGE dataset used in this study was discontinued in May 2020, and now CPTEC provides a merge product called 
GPM-MERGE, based on the GPM satellite product (Rozante et al., 2018; Skofronik-Jackson et al., 2018). It uses the new IMERGE 
retrieval algorithm, which “fuses the early precipitation estimates collected during the operation of the TRMM satellite (2000–2015) 
with more recent precipitation estimates collected during the operation of the GPM satellite (2014 - present)” (https://gpm.nasa. 
gov/data/imerg). The new CPTEC GPM-MERGE dataset maintains the same gage stations used at the TRMM-MERGE product and the 
same MERG algorithm (Rozante et al., 2010), which gives preference to the use of the station data over the satellite information 
(Rozante et al., 2020). In their study comparing the old product TMPA-V7, based on the TRMM mission, with the new products 
IMERGE and the GSMaP-G from JAXA, Rozante et al. (2018) found that the IMERG-E and TMPA-V7 show a similar behavior in terms of 
Critical success index (CSI), Adjusted Equitable Threat Score (ETS), Probability of Detection (POD), False Alarm Ratio (FAR) and Bias, 
with a better performance for IMERGE. These characteristics make the new GPM-MERGE the natural substitute of the discontinued 
TRMM-MERGE, with similar behavior, but with a better performance and higher resolution of 0.1◦ x 0.1◦. Due the similarity of the 
products, we believe the results obtained in our study with the TRMM-MERGE will remain valid with the use of the new GPM-MERGE 
(available after May 2020). 

The same is valid for the MSWEP dataset (Beck et al., 2019). The dataset used in this study is the product version V2.2, with daily 
precipitation data and a 0.1◦ spatial resolution. A comparison of the combined precipitation generated from the methodology proposed 
in this study with the reference MSWEP, our benchmark dataset, showed that the combined dataset has a level of uncertainty com
parable with the benchmark. The examples of simulated flows showed that the calibrated models can correctly represent the long-term 
flow variations in different regions and climates in the study area. The MSWEP product is however in constant evolution. At the time of 
writing, its current version V2.8 (MSWEP V2.8 2021) provides data with daily and 3 hourly time resolutions and with the same 0.1◦

spatial resolution. As mentioned earlier, the complete version is still not available in real time, due to the latency of some of the 
products used in its production (MSWEP, 2021). However, this latency is reducing year after year, and we believe that in the next years 
we will have new real time products. The methodology proposed can be easily applied to consider such new products. 

5. Conclusions 

In this study, a sequence of steps was described that can be used to blend different real-time precipitation datasets, validate the 
results, and obtain a better near real-time observed precipitation forcing dataset for river basins in South America (Brazil and 
neighboring countries). The methodology proposed allowed us to build a long historical period of precipitation estimates at the river 
basin scale, which can be used in future hydrological studies such as streamflow forecasting. The main conclusion of this study is that 
the use of hydrological data and modeling is an asset to combine and validate precipitation datasets from different sources at large river 
basins in views of providing a blended dataset for hydrological applications in places where rain gauges are scarce or non-existing. Our 
study showed that a combination of existing precipitation datasets, weighted by the annual uncertainty of each original source, reduces 
precipitation uncertainty at the river basin scale. The methodology proposed allowed us to adapt, for each river basin, the proportion 
of each precipitation source to be considered in the combined dataset, taking thus into account the specific hydroclimatic charac
teristics of each river basin. The uncertainty reduction was also observed when we analyzed the results at the daily time step, with 
better results in terms of daily hydrological simulation when using the combined dataset than when using each precipitation source 
individually. 

A drawback of combining data sources is the fact that datasets are often not available for the same period. In this study, we show 
that a possible practical solution is to extend the period of the combined precipitation dataset to cover the longest possible period, 
given the original datasets, by using the double-mass curve correlation. The validation of such extension was also illustrated using a 
hydrological model. The model allows users to evaluate, in terms of simulated discharges, if the performance of a precipitation dataset 
in the extended period, where not all data sources are available, remains similar and consistent to the one in the original period, where 
all data sources were available to build the combined precipitation dataset. Hydrological modeling proved to be a useful tool to 
evaluate the performance of different sources of precipitation data, as also suggested recently by Levy et al. (2017), who highlighted 
the importance of the problem of “data selection uncertainty” when analyzing nine datasets in Brazil. 

Ongoing research focuses on the different uses of the combined precipitation dataset generated in this study. The main application 
is to generate ensemble members of the ESP method for seasonal streamflow forecasting and to evaluate the performance of the ESP 
method against streamflow forecasts based on dynamical predictions from climate models. The combined precipitation dataset will 
also be used to evaluate the performance of precipitation forecasts issued by meteorological (medium-range) and climate (long-range) 
models and, if biases are detected, to apply bias correction methods to improve these forecasts at local scales. 
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