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Abstract

While a sharp decline in air pollution has been documented during early Covid-19 lockdown

periods, the stability and homogeneity of this effect are still under debate. Building on pollution

data with a very high level of resolution, this paper estimates the impact of lockdown policies

on PM2.5 exposure in France over the whole year 2020. Our analyses highlight a surprising and

undocumented increase in exposure to particulate pollution during lockdown periods. This result

is observed during both lockdown periods, in early spring and late fall, and is robust to several

identification strategies and model specifications. Combining administrative datasets with ma-

chine learning techniques, this paper also highlights strong spatial heterogeneity in lockdown

effects, especially according to long-term pollution exposure.

JEL Codes: C23, I18, Q53

Keywords: air pollution; PM2.5; lockdown; spatial heterogeneity; machine learning; Covid-19

∗We are grateful to Richard Le Goff, Kévin Jean and Sandrine Mathy for their help and comments. We thank

INERIS for providing us access to the data used in this work. We also thank the support of the ADEME grant

AQACIA 2162D0019 - Air-COV project.
†Center for Environmental Economics Montpellier. Email: simon.briole@umontpellier.fr
‡National Institute for Industrial Environment and Risks (INERIS). Email: Augustin.COLETTE@ineris.fr
§Center for Environmental Economics Montpellier. Email: emmanuelle.lavaine@umontpellier.fr

1



1 Introduction

A growing body of evidence highlights a sharp decline in air pollution in many countries during

early Covid-19 lockdown periods (Venter et al., 2020; Berman & Ebisu, 2020; Mahato et al., 2020;

Dang & Trinh, 2021; Brodeur et al., 2021). This effect appears to be driven by sharp reductions

in human mobility and economic activity (Faridi et al., 2021). However, some recent studies tend

to mitigate this result and the stability and homogeneity of this effect is still under debate (Adam

et al., 2021; Schneider et al., 2022; Bartoňová et al., 2022). In particular, these studies suggest that

the effects of lockdown policies are likely be very heterogeneous depending on the geographic area

and the type of air pollutant considered. Understanding the heterogeneity in lockdown effects on air

pollution and analyzing the mechanisms mediating this heterogeneity is key given the large detri-

mental effects of air pollution on health and economic outcomes (Aı̈chi & Husson, 2015; Deryugina

et al., 2019).

This paper investigates the effects of lockdown policies on PM2.5 and NO2 exposure in France,

a country where PM2.5 emissions primarily originate from the residential and tertiary sector. In

such a context, the theoretical impact of lockdown policies on PM2.5 is unclear. On the one hand,

the curtailment of economic activities and reduced human mobility (Dang & Trinh, 2021) during

lockdown periods tend to decrease the level of PM2.5. On the other hand, increases in residential

heating or biomass burning (Sicard et al., 2020) as well as increases in O3 (Adam et al., 2021) may

enhance the formation of PM2.5.

Like in many countries, France was hit by two Covid-19 epidemic waves in 2020, one in early

spring and the other in late fall, and implemented lockdown policies during the two corresponding

periods. We show that these two periods coincided with strong increases in PM2.5 concentration,

by about 25% with respect to non-lockdown periods. By contrast, nitrogen dioxide (NO2), which

is mainly related to transport emissions, decreased drastically during both periods.

To reach these conclusions, our analyses draw on daily air pollution data available for the whole

French territory over the 2015-2020 period. This dataset provides daily measures of PM2.5 and NO2

exposure with a very high level of resolution (2x2km grid level). Our estimation strategy builds on

the comparison between air pollution during lockdown and non-lockdown periods, controlling for the

same baseline difference in previous years. This approach allows us to control for any seasonal and

geographic correlations between pollutant emissions, meteorological conditions and air pollution at

a very fine scale.

This paper contributes to the growing literature studying the causal impact of lockdown policies

on PM2.5. Causal evidence of lockdown-induced pollution remains scarce and primarily based on

the analysis of early phases of the pandemic (Brodeur et al., 2021; Dang & Trinh, 2021). In this

paper, we leverage long-term air pollution data to build a measure of excess pollution exposure,
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defined as the deviation in 2020 PM2.5 pollution exposure with respect to a counterfactual (pre-

lockdown) period – namely the average of pollution exposure over the 2015-2019 period. This

strategy deals not only with geographic correlations but also with seasonal correlations between

pollutant emissions, meteorological conditions and air pollution. On top of this, our analyses build

on a massive dataset of nearly 50 millions observations, defined at the 2x2km grid level, a much

finer geographic scale than the one used by previous papers which typically build on county-level

or national-level analyses.

Our results highlight the importance of documenting the heterogeneity in the effects of lockdown

on air pollution. While most of the existing evidence point to a positive effect of lockdown on air

quality, we document a sharp increase in PM2.5 in France during lockdown periods. Building on

Machine Learning techniques, we also show that the impact of lockdown is stronger in the areas

with the highest levels of long-term exposure to air pollution. These results are consistent with

the fact that PM2.5 emissions in France primarily originate from the residential and tertiary sector

as well as with the fact that people spent much more time at home than usual during the two

lockdown periods (Brandily et al., 2021). They also suggest that the effects of lockdown policies on

air pollution can vary a lot both across and within countries and crucially depends on the type of

pollutant considered and its sources of emissions.

The remainder of this paper is organised as follows. Section 2 presents background information

on air pollution, lockdown policies and the data exploited. Section 3 provides graphical evidence

on the evolution of air pollution in France in 2020. Section 4 presents the estimation strategy and

the main results from our regression analyses. Finally, Section 5 concludes with a brief discussion

of the main results outlined in this paper.

2 Background and data

2.1 Air Pollution

Our analyses draw on air pollution data provided by the French National Institute for Industrial

Environment and Risks (INERIS ), available over the 2000-2020 period for the whole of metropoli-

tan France. This gridded reanalysis pollution data combines numerical modeling data from the

CHIMERE chemistry-transport model (Menut et al., 2013) with measures of air quality from mon-

itoring stations to correct for ground observations. Gridded reanalysis pollution data are computed

by INERIS in order to build population-wide measures of background pollution exposure.1 They

provide hourly measures of exposure to the four main regulated pollutants: PM2.5, PM10, NO2,

1By contrast, we do not exploit directly measures based on local station data (industrial or traffic), whose purpose
is to measure pollution emissions - rather than exposure - at a local level. These monitoring stations are sparse and
strategically placed to capture locally produced emissions (e.g., from road traffic or industrial activities).
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and O3. These measures are available at a very fine geographical level, namely at the 2km x 2km

level. We aggregate pollution data at the daily level, for each of the 134,459 grid cells located in

metropolitan France.

Our analyses focus on exposure to PM2.5 and NO2, whose negative effects on human health

have long been documented in the epidemiological and economic literature.2 The thresholds recom-

mended by the World Health Organization with respect to PM2.5 are 5 µg/m3 for annual average

exposure and 15 µg/m3 for daily average exposure. The thresholds for NO2 are 10 µg/m3 for

annual exposure and 25 µg/m3 for daily exposure (WHO, 2021). PM2.5 exposure in France has

slightly but continuously decreased over the last decade, in line with the global trends observed

in European countries (Sicard et al., 2021; Salesse, 2022) and in the US (Currie & Walker, 2019;

Currie et al., 2023). Despite this encouraging trend, average exposure to PM2.5 in France in 2020

is 7.8 µg/m3, which is well above the recommended threshold.3 Beyond the annual averages, the

daily thresholds set by the WHO are very regularly exceeded over the 2015-2020 period, even when

considering weekly averages PM2.5 exposure (Figure A1). Figure A2 also shows that there is a

strong spatial heterogeneity in PM2.5 exposure over the French territory.

More than 55% of PM2.5 emissions in France originate from the residential and tertiary sector,

while 15% originate from the transport sector (Lavaine et al., 2020; Citepa, 2022). By contrast, NOx

emissions primarily originate from the transport sector (58%). For both pollutants, the agricultural

and industrial sectors respectively account for 10-17% of emissions. As outlined in Figure A1,

which depicts weekly average levels of PM2.5 exposure in France over the 2015-2020 period, there

is a strong seasonality in PM2.5 concentration, due to both anthropogenic emissions and weather

conditions.

2.2 Weather Data

On top of pollutant emissions, air quality conditions are also determined by changes in weather

conditions.4 To account for these factors, we match our pollution data with weather data from

the the French national institute for meteorological data monitoring (Météo France). We match

each grid cell from pollution data to the closest weather station,5 and we derive the following daily

2This literature highlights in particular the negative role played by fine particulate matter (Pope et al., 2002;
Lepeule et al., 2012; Lelieveld et al., 2015; Ciarelli et al., 2019; Deryugina et al., 2019). For example, the Environmental
Protection Agency (EPA) estimates that PM2.5 is responsible for over 90% of air pollution-related health damages
in the US (US Environmental Protection Agency, 2011). A growing body of evidence also documents the adverse
economic effects of air pollution on non-health outcomes, including labor supply, cognitive performance and labor
productivity, educational attainment or crime. See Aguilar-Gomez et al. (2022) for a recent review of this evidence.

3Average exposure to NO2 in France in 2020 is 8.3 µg/m3.
4In a critical review of more than 200 papers, Gkatzelis et al. (2021) highlight the significant effects of meteorological

conditions on pollutant concentrations. Barré et al. (2021) further show the importance of accounting for weather
conditions to estimate NO2 changes induced by lockdown policies.

5There are 875 weather stations in our dataset. The average distance between a grid cell from our pollution data
and the closest weather station is 11.8km. The maximum distance is 50 km, but more than 99% of grid cells are
located less than 27kms away from the closest weather station.
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weather variables for each grid cell: total precipitations, surface maximum temperatures, surface

minimum temperatures, wind speed and wind direction. For this last parameter, we build dummies

for each of four directions: North (below 45◦ or above 315◦), East (between 45◦ and 135◦), South

(between 135◦ and 225◦) and West (between 225◦ and 315◦).

2.3 Socio-economic data

To investigate the heterogeneity of our results, we also match our pollution data with the

Filosofi 2017 dataset, an administrative fiscal dataset produced by the French National Institute

for Statistics (INSEE ). This gridded dataset provides socio-economic indicators at a very local level,

namely at the 1x1km grid level, for the whole French population in 2017. For each grid cell, the

dataset provides the number of inhabitants and their age distribution, the average standard of living

(i.e., the disposable household income divided by the number of consumption units), the share of

poor households, the share of owner households and the share of single-parent households. This

dataset also includes detailed information on housing conditions, allowing us to compute for each

grid cell the the share of households living in houses, the share living in collective dwellings, the

share living in subsidized housing, the total surface area of dwellings and the age of houses.

2.4 Lockdown policies

2.4.1 Lockdown periods in France in 2020

Like in many European countries, France was hit by two distinct Covid-19 epidemic waves in

2020. These two waves respectively peaked in April, with 15,479 excess deaths observed over this

single month, and November, with 12,537 excess deaths (Brandily et al., 2021).6 In both cases,

the French government reacted by taking extraordinary containment measures. As COVID-19 first

spread in the country in early 2020, the government decided of a national lockdown on March 17

and that eventually lasted until May 11. This first lockdown was the most stringent: all workers

stayed home except if their activity was deemed essential for the country. A second lockdown was

decided on October 30 and continued until December 15. This second lockdown was slightly less

stringent than the previous one and got repealed quicker, with the end of a first phase after a month

when all shops opened again. Using Google mobility data, Brandily et al. (2021) show that, all

over the 2020 year in France, time spent at home appears much higher when a lockdown policy is

in place, and slightly more so during the first lockdown than the second.

6Overall in 2020, there was 49,495 deaths in excess in French urban areas in comparison with the average of 2018
and 2019 (Brandily et al., 2021).
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2.4.2 Oxford Stringency Index

To better account for the variety in the nature and intensity of policy responses taken by the

French government over the 2020 year, and to the likely resulting variations in air pollution, we

also exploit the Oxford Stringency Index (OSI). This index was developed by Hale et al. (2021) to

measure the overall strictness of lockdown restrictions at a given point in time in a given country.

It is constructed as the mean of eight policy measures, namely school closing, workplace closing,

canceling of public events, restrictions on gathering, closed public transportation, stay-at-home

requirements and travel restrictions (both internally and internationally). The OSI is computed

as the mean of the standardized policy measures (between 0 and 1), so that each policy measure

contributes equally to the index, independently from its number of levels. The OSI is then rescaled to

have values between 0 (no response) and 100 (maximum response in every possible policy measure).

Figure A3 in the appendix shows the evolution of this index in France over the 2020 year. It

can be noted that the period in between the two lockdown periods is not characterized by the

absence of restriction measures, confirming the interest of using a more continuous measure of

policy restrictions.

3 The Effects of Lockdown Policies on Air Pollution: Graphical

Evidence

In the remainder of the paper, we explore the effects of lockdown policies on air pollution. Before

moving on to our econometric investigations, we start by providing simple graphical evidence on

the evolution of exposure to PM2.5 and NO2 over the 2020 year. Figure 1 first depicts the evolution

of the daily national exposure to PM2.5 in France in 2020, contrasting lockdown periods (in black)

with regular periods (in gray). The figure reveals a marked increase in the national exposure to

PM2.5 during the two lockdown periods. In particular, it shows a clear discontinuity in PM2.5

exposure, with a jump right after the start of each lockdown period, respectively in March 17 and

October 30.7 Such discontinuity is less visible NO2 exposure, and the average levels of exposure

don’t seem to be sharply different during lockdown periods, as opposed to regular periods of 2020

(Figure 2).

While Figure 1 suggests a positive effect of lockdown restrictions on PM2.5 exposure, it could

also reflects the strong seasonality in PM2.5 concentrations highlighted in Figure A1. To take one

step further, we compute for each grid cell the difference between the level of exposure to PM2.5

a given day of the year in 2020 and the average level observed during that same day of the year

over the 2015-2019 period. This allows us to account for spatial and temporal regularity in terms of

7Analyses based on a formal Regression Discontinuity in Time (RDiT) approach confirm the existence of a signif-
icant discontinuity in PM2.5 at both time cutoffs (see Appendix B1).
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pollutant emissions and weather conditions at a very fine scale (i.e., controlling for day-of-the-year

× grid fixed-effects).

Figures 3 and 4 replicate Figures 1 and 2, but plotting this outcome expressed in difference

instead of the raw level of exposure. These two figures first confirm that both PM2.5 and NO2 con-

centration levels are lower in 2020 than in previous years, a result that have been widely documented

in the recent literature (Venter et al., 2020). However, Figure 3 also reveals that lockdown periods

systematically coincide with sudden and sustained increases in PM2.5 differential exposure levels,

in line with analyses based on raw exposure levels. It seems harder to conclude on the relation-

ship between NO2 differential exposure levels and lockdown policies from this graphical analysis.

The next section presents results from econometric analyses aiming at testing the robustness and

exploring the heterogeneity of these effects.

4 The Effects of Lockdown Policies on Air Pollution: Regression

Analysis

4.1 Econometric approach

Our objective is to estimate the effects of restrictions imposed by lockdown policies on PM2.5

exposure. As a baseline approach, we compare the levels of PM2.5 exposure observed in 2020 in

each grid cell during lockdown vs. regular periods, controlling for local weather conditions and grid

cell fixed effects. In practice, we estimate the following model:

Yit = α+ β1Lockdownt + β2Wit + µi + ϵit (1)

where Yit represents PM2.5 exposure in grid i on day t of year 2020 and Lockdownt is a dummy

indicating lockdown periods. µi represents the full set of grid fixed effects. This parameter allows

us to control for any geographic differences in PM2.5 exposure that is constant over time across

grid cells. Wit represents the set of weather control variables described in Section 2.2.8 We cluster

all standard errors at the day level, which is the level at which our “treatment” variable (i.e., the

lockdown dummy) varies.

While our baseline approach accounts for the confounding effects of local weather conditions

as well as for any geographic differences in PM2.5 exposure that is constant over time, it could be

biased by seasonal effects on pollution emissions or concentrations. In particular, human activities

may not be constant throughout the year, with some periods corresponding systematically to an

8For computational reasons, our main estimations include a continuous specification of our 4 weather variables
(total precipitations, surface maximum temperatures, surface minimum temperatures, wind speed) as well as a dummy
for each of the four possible wind directions. In Appendix B2, we provide evidence that our results are unchanged when
including a very large set of weather fixed effects, based on bins for each of the four variables and their interactions.
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increase in pollutant emissions and others to a reduction in emissions. These seasonal effects may

also vary over space, depending on the type of area considered (e.g., rural vs urban, North vs South,

etc.). To account for these factors, we estimate a model that allows PM2.5 exposure to depend on

grid-specific × day-of-the-year fixed effects (κit).
9 We compute Y ∗

it , the difference between PM2.5

exposure in 2020 in grid cell i on day-of-the-year t and the average PM2.5 exposure in that same

grid cell and day-of-the-year over the 2015-2019 period. We then estimate the following (implicit)

difference-in-difference (DiD) model:10

Y ∗
it = α+ β1Lockdownt + β2W

∗
it + ϵ∗it (2)

where Y ∗
it = Yit,2020 − Ȳit,2015−2019. This model therefore compares pollution exposure in lock-

down vs. regular days in 2020 vs. 2015-2019. It implicitly controls for year, day-of-the-year, grid

cell and grid cell × day-of-the-year fixed effects. It therefore accounts for the global decreasing

trend in PM2.5 observed over our period of observation. It also accounts for any seasonal correla-

tion between human activities and pollution, allowing this correlation to vary at a very local level

(i.e., 2x2km grid cell). The parameter of interest β1 captures the causal effects of lockdown on

PM2.5 exposure under the assumption that, absent lockdown (and once controlled for local weather

shocks), the difference in PM2.5 between lockdown and regular periods observed in 2020 would

have been similar to that same difference in previous years (2015-2019). In Appendix B, we provide

extensive evidence that our results are robust to several alternative identification strategies and/or

specifications: our main conclusions hold with a model based on a regression discontinuity design

(Section B1), with an explicit DiD model (Section B3), when changing weather controls (Section

B2) or when relying on randomization-based inference (Section B4).

While our main analyses compare days of lockdown with days of regular periods in a binary way,

we also implement regressions using the Oxford Stringency Index. To do so, we estimate Equations

(1) and (2) using this index instead of the dummy indicating lockdown periods. This allows us to

capture more variability in the restriction measures implemented all over the 2020 year.

4.2 Average effects

Table 1 shows the results of the estimation of Equations (1) and (2), using a dummy indicating

lockdown periods on the one hand and the Oxford Stringency Index on the other hand. As can

be seen in column (1), PM2.5 exposure levels are higher during lockdown than regular periods in

France, once controlled for local weather conditions and grid cell fixed effects. The point estimate

is significant at the 1% level and suggests that on average, there was a 2.5 µg/m3 higher exposure

9Note that day-of-the-year fixed effects and grid fixed effects are included in κit.
10In Appendix B3, we show that our results are robust to estimating a formal (explicit) DiD model.
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during lockdown periods. This result is confirmed by the estimation of a model that accounts for

seasonal effects in pollution emissions and meteorological conditions. As can be seen in column

(2), PM2.5 exposure levels are 1.9 µg/m3 higher during lockdown than during regular periods of

2020, compared to the same baseline difference in previous years. This lockdown-induced increase

in PM2.5 is consistent with the fact that PM2.5 emissions in France primarily originate from the

residential and tertiary sector as well as with the fact that people spent much more time at home

than usual during the two lockdown periods (Brandily et al., 2021). We further investigate the

stability of this effect across lockdown periods. Interestingly, results presented in Table 2 show a

very high stability in the effects of lockdown policies on PM2.5 exposure: in both specifications, the

effect is virtually the same across the two lockdown periods. This result is important with respect to

the external validity of our conclusions. It also further reduces concerns that meteorological factors

may drive the estimated effects.

Analyses based on the Oxford Stringency Index, which accounts for restriction measures in a

more flexible way than the simple lockdown dummy, provide very similar results. The estimates

presented in columns (3) and (4) both suggest a positive and significant effect of these measures on

PM2.5 exposure, both in level and in difference with respect to the 2015-2019 period. The point

estimate in the last column implies that a 45 points increase in the index (i.e., the average difference

in the index between lockdown and regular periods) would result in a 1.8 µg/m3 increase in PM2.5

differential exposure between lockdown and regular periods, compared to the baseline difference in

previous years.

Table 3 replicates the analyses presented in Table 1 with NO2 as the outcome. The results

presented in this table suggest that lockdown restriction measures affect negatively the level of

NO2 exposure. The point estimate presented in column (2) implies that NO2 exposure levels

are 1.9 µg/m3 lower during lockdown than during regular periods of 2020, compared to the same

baseline difference in previous years. This lockdown-induced reduction in NO2 is consistent with

the fact that NO2 emissions in France primarily originate from the transport sector and with the

sharp decline in transport emissions observed in France during lockdown periods due to reduced

human mobility. It is also consistent with previous studies on the effects of lockdown on NO2

exposure (Venter et al., 2020; Berman & Ebisu, 2020; Mahato et al., 2020; Schneider et al., 2022).

4.3 Heterogeneous effects

The implementation of Covid-19 lockdown policies coincides with an increase in PM2.5 exposure

in France in 2020. An important question, however, is whether this effect have been homogeneous

over the territory. In this section, we build on Machine Learning techniques to explore this issue and

to shed light on the distribution of treatment effects over the territory according to socio-economic

indicators and long-term pollution levels.
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4.3.1 Machine Learning analysis

In this section, we take a Machine Learning approach to explore the spatial heterogeneity of

lockdown effects in a data-driven manner, allowing us to include a high number of heterogeneity

dimensions without being subject to the risk of overfitting. More specifically, we implement the

generalized random forest (GRF) procedure introduced by Athey et al. (2019). This approach has

been implemented in several recent studies exploring the heterogeneity of treatment effects in a

variety of contexts (see e.g., Carter et al. (2019); Allcott et al. (2020); Haaland & Roth (2020);

Sylvia et al. (2021); Briole et al. (2022)). In our setting, it makes it possible to predict treatment

effects for each grid cell individually using all available information on its characteristics and to test

the existence of heterogeneity in lockdown effects.11 To train our procedures, we use two measures

of long-term pollution exposure defined at the grid level, namely average exposure to PM2.5 and

NO2 over the 2009-2019 period, as well as all the socio-economic indicators described in Section 2.

Denoting Y our main outcome of interest, L the dummy indicating lockdown periods and Z

the set of baseline covariates, this procedure starts by growing two regression forests to construct

estimates Y (Z) and L(Z) of E(Y |Z) and E(L|Z). Building on these two estimates, the procedure

then grows a causal forest to construct an estimate S(Z) of the conditional average treatment

effect s0(Z) = E(Y1 − Y0|Z), where Y1 and Y0 represent grid cells’ potential outcomes in treated

and non-treated states. Finally, following Athey & Wager (2019) and Chernozhukov et al. (2018),

it is possible to test for the existence of heterogeneity in s0(Z) by regressing Y − Y (Z) on C =

S̄(L − L(Z)) and SD = (S(Z) − S̄)(L − L(Z)), where S̄ represents the average of S(Z), and

by looking at the significance of the regression coefficient of SD, which provides an estimate of

Cov(S(Z), s0(Z))/V ar(S(Z)). Let’s denote this regression coefficient by β. Rejecting H0 : β = 0

implies rejecting that the actual variance of s0(Z) is zero. It also implies rejecting that the causal

forest estimates of treatment effects do not represent relevant predictors of the actual treatment

effects.12

We conducted this test by considering Y ∗
it , namely the difference between PM2.5 exposure in

2020 in a given grid cell on a given day-of-the-year and the average PM2.5 exposure in that same

grid cell and day-of-the-year over the 2015-2019 period, as our main outcome. To implement this

test, we randomly selected a subsample representing 5% of the total number of observations in our

main sample (i.e., 2,146,677 observations) for computational reasons. The detailed results of this

test are given in Table 4. They show that the null hypothesis that β = 0 is unambiguously rejected

for our main outcome variable, highlighting the presence of a significant spatial heterogeneity in the

effects of lockdown on PM2.5 exposure. Further evidence of this spatial heterogeneity is provided

11The analyses conducted in this section use the R package grf, version 2.0.2 (Tibshirani et al. (2021)).
12Conversely, when H0 is not rejected, this does not necessarily imply that there is no significant heterogeneity in

treatment effects, it may also mean that the causal forest procedure does not produce relevant predictions of treatment
effects.
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by Figure C1, which depicts the distribution of conditional average treatment effects (CATEs). As

the figure reveals, CATEs vary considerably, taking a range of values from 0 to +6.

To further explore the sources of treatment effect heterogeneity, it is possible to identify the

variables that are most often used by the causal forest procedure to grow trees and predict individual

treatment effects. More specifically, for each heterogeneity variable, it is possible to count the

proportion of splits on this variable used by the procedure, giving a higher weight to a split the

earlier it occurs in the development of a tree. When we conduct this analysis, we find that the most

important sources of treatment heterogeneity relate to long-term pollution exposure (both PM2.5

and NO2).
13

To illustrate the importance of long-term pollution exposure, Figures 5 (a) and 5 (b) respectively

plot the distribution of long-term PM2.5 and NO2 exposure by deciles of the CATEs distribution.

These figures reveal a clear positive and linear relationship between the impact of lockdown on PM2.5

exposure as predicted by the GRF procedure and long-term pollution exposure in the grid cell, for

both PM2.5 and NO2 long-term exposure. Analyses based on a classical regression approach confirm

the significance of these heterogeneous effects (Tables C1 and C2). These analyses also show that

the correlation between lockdown effects and long-term exposure is much stronger when considering

PM2.5 rather than NO2.

Finally, on top of long-term pollution levels, the effects of lockdown on PM2.5 exposure appear

to be heterogeneous along some socio-economic indicators. As illustrated in Figures C2, C3 and

C4, the predicted impact of lockdown tends to be stronger in grid cells with younger inhabitants,

with a higher share of households living in collective dwellings and with higher household income.

Altogether, these results suggest that the positive impact of lockdown on PM2.5 exposure tend to

be stronger in urban than rural settings.

5 Discussion and conclusion

While a recent literature highlights the positive effects of lockdown policies on air quality, ev-

idence based on causal methodologies remains scarce and focuses on the early implementation of

lockdown policies. This paper builds on daily air pollution data available at a very fine geographical

level in France to estimate the impact of lockdown on PM2.5 and NO2 exposure. Building on an

implicit DiD strategy, we contrast excess pollution during days of lockdown to excess pollution

during days of regular periods of 2020, compared to the same baseline difference in previous years.

Our results first point to a general decrease in PM2.5 and NO2 exposure in 2020 compared to

previous years, especially in the most polluted areas. More surprisingly, our analyses also highlight

13These two variables respectively account for 72% and 16% of the splits. Other variables that appear in at least
2-3% of the splits relate to the age distribution of inhabitants, to their average income and to the proportion of
households living in collective dwellings.
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a strong increase in PM2.5 during both lockdown periods, with exposure levels about 2 µg/m3

(+25%) higher than during the rest of the year. This result holds when accounting for seasonality

in human activities and meteorological conditions in a very flexible way, or when using alternative

identification strategies or specifications.

Based on machine learning techniques, we also find strong spatial heterogeneity in this effect,

with the increase during lockdown periods being more pronounced in areas with a high level of

long-term pollution exposure. This result is consistent with the fact that PM2.5 emissions primarily

originate from the residential and tertiary sectors in France as well as with the fact that people

spent much more time at home than usual during lockdown periods. To the extent that long-term

exposure is able to capture it, the increase of residential heating in areas with high energy poverty

may be another source of explanation for this strong pattern of heterogeneity.

Our results are contrast with previous finding in the literature documenting strong improvement

in air quality related to lockdown policies implemented during early phases of the Covid-19 crisis.

They highlight the necessity to account for the spatial and temporal heterogeneity of lockdown

effects on air pollution, especially with respect to the main sources of pollution. Understanding

the impact lockdown policies on PM2.5 and NO2 exposure is crucial from a health perspective.

An extensive literature documents the detrimental of these pollutants on mortality, hospitalizations

related to cardiovascular, respiratory or metabolic problems and associated economic outcomes

(Deryugina et al., 2019; Aı̈chi & Husson, 2015). In addition to usual health outcomes, PM2.5 expo-

sure could also play an important role in the severity of Covid-19 symptoms (Persico & Johnson,

2021; Isphording & Pestel, 2021). Finally, the oxidative potential of PM2.5 emitted during lockdown

periods could be strong. While assessments of the chronic and acute effects of particulate matter on

human health tend to be based on mass concentration, with particle size and composition, a recent

literature shed light on the oxidative potential concentration mostly associated with anthropogenic

sources, in particular with fine-mode secondary organic aerosols largely from residential biomass

burning and coarse-mode metals from vehicular non-exhaust emissions (Daellenbach et al., 2020).

Besides, a review about air quality changes during lockdown periods highlights the enhanced forma-

tion of secondary PM2.5 during these periods (Adam et al., 2021). Future research should further

explore the causal impact of secondary PM2.5 exposure on health during lockdown periods.
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Flemming, J., Garćıa-Pando, C. P., et al. 2021. “Estimating lockdown-induced European NO2

changes using satellite and surface observations and air quality models”. Atmospheric chemistry

and physics, 21(9):7373–7394.
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Main Figures

Figure 1: PM2.5 exposure in France in 2020

Note: This figure plots the 3-day moving average of the daily national exposure to PM2.5 in France in 2020,
computed at the 2x2km grid level. Each grid is weighted by the number of individuals living in the corresponding
area.
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Figure 2: NO2 exposure in France: 2020

Note: This figure plots the 3-day moving average of the daily national exposure to NO2 in France in 2020, computed
at the 2x2km grid level. Each grid is weighted by the number of individuals living in the corresponding area.
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Figure 3: PM2.5 exposure in France: 2020 vs 2015-2019

Note: This figure plots the 3-day moving average of the difference between daily national exposure to PM2.5 in
France in 2020 vs 2015-2019, computed at the 2x2km level. Each grid is weighted by the number of individuals
living in the corresponding area.
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Figure 4: NO2 exposure in France: 2020 vs 2015-2019

Note:This figure plots the 3-day moving average of the difference between daily national exposure to NO2 in France
in 2020 vs 2015-2019, computed at the 2x2km level. Each grid is weighted by the number of individuals living in the
corresponding area.
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(a)

(b)

Figure 5: Conditional Average Treatment Effects and Long-term Pollution Exposure

Note: Figure 5 (a) shows the distribution of grid cells average PM2.5 exposure over the 2009-2019 period by deciles
of the conditional average treatment effects estimated from the GRF procedure. Figure 5 (b) shows the distribution
of grid cells average NO2 exposure over the 2009-2019 period by deciles of the conditional average treatment effects
estimated from the GRF procedure.
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Main Tables

Table 1: Effects of lockdown on PM2.5 exposure in 2020

(1) (2) (3) (4)
PM2.5 2020 2020 vs 2015-2019 2020 2020 vs 2015-2019

Lockdown dummy 2.5048∗∗∗ 1.9054∗∗∗

(.44992) (.49143)

Oxford Stringency Index .02052∗∗ .03905∗∗∗

(.00998) (.00843)

Weather controls ✓ ✓ ✓ ✓
Observations 49211994 49211994 46119437 46119437

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Effects of lockdown on PM2.5 exposure in 2020: distinguishing the two lockdown periods

(1) (2)
PM2.5 2020 2020 vs 2015-2019

First lockdown 2.5921∗∗∗ 1.8955∗∗∗

(.61298) (.72495)

Second lockdown 2.4362∗∗∗ 1.9135∗∗∗

(.55303) (.61200)

Observations 49211994 49211994

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Effects of lockdown on NO2 exposure in 2020

(1) (2) (3) (4)
NO2 2020 2020 vs 2015-2019 2020 2020 vs 2015-2019

Lockdown dummy -1.2756∗∗∗ -1.9966∗∗∗

(.35583) (.27802)

Oxford Stringency Index -.04621∗∗∗ -.01303∗

(.0064) (.00677)

Weather controls ✓ ✓ ✓ ✓
Observations 49211994 49211994 46119437 46119437

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Generalized Random Forests: Tests for Heterogeneity

(1)
PM2.5: 2020 vs 2015-19

β coefficient 0.35 ***
(0.01)

Most important variables Long-term PM2.5

Long-term NO2

Inhabitants’ age
Average income

Collective dwellings

Note: This table shows the results of the test for heterogeneity in treat-
ment effect proposed by Chernozhukov et al. (2018), which seeks to fit
the Conditional Average Treatment Effect (CATE) as a linear function
of the out-of-bag causal forest estimates. This test is performed on our
main outcome that measures PM2.5 differential exposure in 2020 (as
compared to 2015-2019), using a random subsample representing 5% of
our main sample. The first row of the table shows the main β coefficient
of this regression and its standard errors (in parentheses), clustered at
the day-of-the-year level. The next 5 rows show the 5 most important
variables determining the heterogeneity of lockdown effects. * p<0.10,
** p<0.05, *** p<0.01.
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Appendix A Descriptive Statistics

Figure A1: Evolution of PM2.5 exposure in France (µg/m3)

Note: This figure represents the evolution of the population-weighted weekly average of PM2.5 exposure in France
over the 2015-2020 period. The World Health Organization recommendations for annual and daily exposure are 5
µg/m3 and 15 µg/m3, respectively.
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Figure A2: Spatial distribution of PM2.5 exposure in France

Note: This figure maps the geographical distribution of the annual average exposure PM2.5 in 2019 on the French
territory.

Figure A3: Evolution of the Oxford Stringency Index in France in 2020
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Appendix B Robustness checks

B1 A regression discontinuity approach

One potential threat to the validity of our main identification assumption relates to the existence

of shocks that would correlate with both air quality and lockdown policies, which could bias our

main estimates. In particular, a recent literature highlighted a positive association between air

pollution and the number of COVID-19 cases and related-mortality.14 Higher levels of air pollution

could therefore indirectly induce governments to implement more stringent lockdown.

To further check the robustness of our main results, we estimate a Regression Discontinuity in

Time (RDiT) model around lockdown dates. This alternative identification takes advantage of the

fact that the implementation of lockdown policies represent a sudden and exogenous shock (Dang

& Trinh, 2021). In this approach, observations just before the lockdown starting dates provide the

counterfactual for observations immediately after the lockdown dates. It relies on the assumption

that the exact starting date of the lockdown policy is randomized in the close neighborhood of the

actual date.15

In practice, we estimate the following model using the rdrobust stata package (Calonico et al.,

2017):

Yit = α+ τ1t≥t0 + δff(t) + δig(t)1t≥t0 + ϵit (3)

where Yit represents PM2.5 exposure in grid i in 2020 on day t, t0 indicates the cutoff (lockdown

starting date) and 1t≥t0 is a dummy indicating lockdown implementation. f(.) and g(.) are flexible

functions that we allow to differ on each side of the time cutoff. We cluster standard errors at the

day level. We use the optimal data-driven bandwidth selection procedures proposed by Calonico

et al. (2020).

Table B1 shows the result of the estimation of Equation (3) using different functional forms of

the running variable: a linear model (column (1)), a quadratic model (column (2)) and a cubic

model (column (3)). The first panel of the table shows the estimation for the first lockdown, which

started on March, 17. The second panel of the table shows the estimation for the second lockdown,

which started on October, 30. RDD results are consistent with the main results outlined in this

paper, as a discontinuous increase in PM2.5 exposure is observed right after the implementation of

each lockdown period. Figures 1(a) and 1(b), which respectively depicts the effects of the first and

14See for example Coker et al. (2020); Wu et al. (2020); Isphording & Pestel (2021); Persico & Johnson (2021);
Weaver et al. (2022) or Becchetti et al. (2022).

15RDiT methods have been widely implemented in the economic literature that estimate the causal impact of
specific shocks on air quality (Davis, 2008; Auffhammer & Kellogg, 2011; Chen & Whalley, 2012; Gallego et al., 2013;
Dang & Trinh, 2021). However, these methods may suffer from methodological limitations, especially in the presence
of time varying treatment effects or autoregression (Hausman & Rapson, 2018).
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second lockdown estimated with the cubic model, further confirm the increase in PM2.5 exposure

caused by restriction measures.

Table B1: Effects of lockdown on PM2.5 exposure in 2020: RDD estimations

(1) (2) (3)
PM2.5 PM2.5 PM2.5

First lockdown
RD Estimate 5.3573∗∗∗ 3.5473∗∗∗ 3.3465∗∗∗

(1.1934) (.65153) (.69797)

Observations 1236434 1236434 1236434

Second lockdown
RD Estimate 1.8269∗∗ .99007 2.1329∗∗∗

(.93159) (1.222) (.76227)

Observations 1224741 1224741 1224741

Model Linear Quadratic Cubic
Note:
This table shows the estimation of lockdown effects using a Regression
Discontinuity in Time approach design. The bandwidth has been com-
puted using the optimal data-driven procedure proposed by Calonico
et al. (2020). Standard errors (in parentheses) are clustered at the day
level. * p<0.10, ** p<0.05, *** p<0.01.
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(a)

(b)

Figure B1: RD plot of lockdown effects
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B2 Weather controls

Our main econometric approach control for weather conditions in a very parsimonious way to

avoid excessive computation time. In this appendix section, we provide evidence that controlling for

weather conditions in a much more flexible way doesn’t change the nature of our main results. The

high granularity and comprehensive scope of our data makes it possible to include a very large set of

weather condition fixed effects. For each of our 4 weather variables (daily maximum temperatures,

daily minimum temperatures, daily total precipitation and daily average wind speed), we generate

indicators for the quartiles of these variables. We then generate a set of indicators for all possible

interactions of these temperature (min and max), precipitation, wind speed and wind direction

variables and include it in our main specification as Wit. This regression model thus controls for

more than 1,000 possible combinations of weather conditions. Table B2 reproduces the main results

presented in Table 1 with a model including the large set of weather control variables, estimated

on a 5% random subsample of the main sample. Those results reinforce the assumption that our

estimates are not driven by unobserved meteorological factors that would be correlated with both

lockdown implementation and PM2.5 concentration. Finally, our estimates are also robust to the

omission of weather controls (Table B3).

Table B2: Effects of lockdown on PM2.5 exposure: large set of weather controls

(1) (2) (3) (4)
PM2.5 2020 2020 vs 2015-2019 2020 2020 vs 2015-2019

Lockdown dummy 2.4271∗∗∗ 1.5201∗∗∗

(.3939) (.46194)

Oxford Stringency Index .02108∗∗ .03381∗∗∗

(.00871) (.00781)

Weather controls ✓ ✓ ✓ ✓
Observations 1410501 1409959 1319347 1318805

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B3: Effects of lockdown on PM2.5 exposure: without weather controls

(1) (2) (3) (4)
PM2.5 2020 2020 vs 2015-2019 2020 2020 vs 2015-2019

Lockdown dummy 3.9309∗∗∗ 2.559∗∗∗

(.48366) (.56552)

Oxford Stringency Index .03899∗∗∗ .05258∗∗∗

(.01169) (.01014)

Weather controls . . . .
Observations 49211994 49211994 46119437 46119437

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B3 Explicit DiD

Our main econometric model can be viewed as an implicit difference-in-difference (DiD) design

where the coefficient of interest is β1. It estimates the difference in excess pollution (time dimension)

between days of lockdown (“treatment group”) and days of regular period (“comparison group‘”).

This model identifies the causal effect of lockdown policies on excess pollution under the assumption

that, absent lockdown, the evolution of pollution between 2015-2019 and 2020 would have been

similar on average between days of lockdown and days of regular periods, after accounting for

grid-specific seasonality and local weather conditions.

To further check the robustness of our results, we take advantage of the panel nature of our

data to estimate an explicit DiD model, which includes day-of-the-year × grid fixed effects and uses

PM2.5 exposure level as the main dependent variable. Formally, we estimate the following model,

on a 5% random subsample of observations from our main sample:

Yity = α+ β1Lockdownt + β2Lockdownt × 1y=2020 + β3Wity + µit + δy + ϵity (4)

where Yity represents PM2.5 exposure in grid i on day t of year y and Lockdownt is a dummy

indicating lockdown periods. µit represents the full set of day-of-the-year × grid fixed effects. Wity

represents the set of weather control variables described in Section 2.2. Note that 1y=2020 is included

in the set of year fixed effects δy and that day and grid fixed effects are included in day × grid fixed

effects µit. We cluster all standard errors at the day level.

As shown in Table B4, the nature of the result is unchanged when implementing this explicit

DiD model: on average, PM2.5 is 1.57 µg/m3 higher during days of lockdown.

Table B4: Effects of lockdown on PM2.5: Explicit DiD model

(1) (2)
PM2.5 PM2.5

Lockdown × 2020 1.5732∗∗∗

(.36577)

OSI × 2020 .02573∗∗∗

(.00806)

Observations 17190826 17036461

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B4 Permutation tests

We further check the robustness of our results to an alternative (randomization-based) inference

approach by performing permutation tests. These tests randomly reassign the treatment status (i.e.,

lockdown) over days of the 2020 year. We then compare the observed difference in our outcome

(PM2.5 exposure) between lockdown and regular days with the distribution of this difference in the

placebo tests. This comparison allows us to assess whether the observed difference is likely to have

been produced by chance - and not by the effects of lockdown policies. We implement these tests

on a 5% random subsample of observations, using the ritest command (Heß, 2017) and simulating

100 permutations. As can be seen in Table B5, none of the 100 permutations performed provides

a greater difference in our outcome than the one that is actually observed. This result further

confirms that the likelihood that our estimated effect of lockdown policies is caused by chance is

close to 0.

Table B5: Effects of lockdown on PM2.5: permutation tests

(1) (2)
PM2.5 2020 PM2.5 2020 vs 2015-2019

Lockdown 2.51∗∗∗ 1.92∗∗∗

(0.01) (0.01)
[0.00] [0.00]

Observations 2459583 2459583

Standard errors (in parentheses) clustered at the day level.

p-values (within brackets): ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix C Spatial heterogeneity in the effects of lockdown

Table C1: Effects of lockdown on PM2.5: Heterogeneity by PM2.5 long-term exposure level

(1) (2) (3) (4)
PM2.5 2020 2020 vs 2015-2019 2020 2020 vs 2015-2019

Lockdown dummy 2.5094∗∗∗ 1.8969∗∗∗

(.4506) (.49141)

Oxford Stringency Index (OSI) .02056∗∗ .03911∗∗∗

(.00999) (.00845)

PM2.5 exposure 2009-2019 -.44317∗∗∗ -.89601∗∗∗

(.04764) (.15975)

PM2.5 exposure 2009-2019 × Lockdown .43694∗∗∗ .24796∗∗

(.10504) (.12552)

PM2.5 exposure 2009-2019 × OSI .0062∗∗ .00899∗∗∗

(.00251) (.00266)

Observations 49211628 49211628 46119094 46119094

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table C2: Effects of lockdown on PM2.5: Heterogeneity by NO2 long-term exposure level

(1) (2) (3) (4)
PM2.5 2020 2020 vs 2015-2019 2020 2020 vs 2015-2019

Lockdown dummy 1.4667∗∗ .79774
(.58172) (.71047)

Oxford Stringency Index (OSI) -.0015 .00032
(.01132) (.01204)

NO2 exposure 2009-2019 -.14905∗∗∗ -.30326∗∗∗

(.01651) (.05116)

NO2 exposure 2009-2019 × Lockdown .07926∗∗ .0834∗∗

(.03691) (.04176)

NO2 exposure 2009-2019 × OSI .00168∗∗ .00294∗∗∗

(.00083) (.00086)

Observations 49211628 49211628 46119094 46119094

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure C1: Conditional Average Treatment Effects distribution

Note: This figure shows the distribution of the conditional average treatment effects estimated from the GRF
procedure.
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Figure C2: Conditional Average Treatment Effects and Inhabitants Age

(a) (b)

(c) (d)

Note: Figures C2 (a) to (d) respectively show the distribution of grid cells average proportion of inhabitants
between 0 and 17 years old, between 18 and 24 years old, between 25 and 64 years old, and above 65 years old, by
deciles of the conditional average treatment effects estimated from the GRF procedure.
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Figure C3: Conditional Average Treatment Effects and share of Households in Collective Dwellings

Note: This figure shows the distribution of grid cells’ average share of households living in collective dwellings by
deciles of the conditional average treatment effects estimated from the GRF procedure.
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Figure C4: Conditional Average Treatment Effects and Household Income

Note: This figure shows the distribution of grid cells’ average household income by deciles of the conditional average
treatment effects estimated from the GRF procedure.
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