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Abstract 

Background:  Genotyping and sequencing technologies produce increasingly large 
numbers of genetic markers with potentially high rates of missing or erroneous data. 
Therefore, the construction of linkage maps is more and more complex. Moreover, the 
size of segregating populations remains constrained by cost issues and is less and less 
commensurate with the numbers of SNPs available. Thus, guaranteeing a statistically 
robust marker order requires that maps include only a carefully selected subset of SNPs.

Results:  In this context, the SeSAM software allows automatic genetic map construc-
tion using seriation and placement approaches, to produce (1) a high-robustness 
framework map which includes as many markers as possible while keeping the order 
robustness beyond a given statistical threshold, and (2) a high-density total map 
including the framework plus almost all polymorphic markers. During this process, 
care is taken to limit the impact of genotyping errors and of missing data on mapping 
quality. SeSAM can be used with a wide range of biparental populations including from 
outcrossing species for which phases are inferred on-the-fly by maximum-likelihood 
during map elongation. The package also includes functions to simulate data sets, 
convert data formats, detect putative genotyping errors, visualize data and map quality 
(including graphical genotypes), and merge several maps into a consensus. SeSAM 
is also suitable for interactive map construction, by providing lower-level functions 
for 2-point and multipoint EM analyses. The software is implemented in a R package 
including functions in C++.

Conclusions:  SeSAM is a fully automatic linkage mapping software designed to (1) 
produce a framework map as robust as desired by optimizing the selection of a subset 
of markers, and (2) produce a high-density map including almost all polymorphic 
markers. The software can be used with a wide range of biparental mapping popula-
tions including cases from outcrossing. SeSAM is freely available under a GNU GPL v3 
license and works on Linux, Windows, and macOS platforms. It can be downloaded 
together with its user-manual and quick-start tutorial from ForgeMIA (SeSAM project) 
at https://​forge​mia.​inra.​fr/​gqe-​acep/​sesam/-/​relea​ses

Keywords:  Genetic mapping, Linkage, Automated software, Seriation, Marker order 
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Background
Genetic linkage maps are representations of positions of polymorphic genetic elements 
along chromosomes, based on allele co-segregation patterns. Map distances are cal-
culated from the frequency of meiotic crossovers between two linked loci; in the first 
historical maps, such frequencies were inferred from the segregation of phenotypes 
determined by two linked genes [1]. With the development of DNA technologies, the 
number of genetic markers increased, allowing genetic maps to become saturated, which 
means that any locus on the genome is significantly linked with at least one marker of 
the map [2, 3]. Linkage maps initially played an important role in unraveling the general 
organization of genomes [4], and in spite of genome sequencing becoming more and 
more accessible for structural genomics, they are still of great use e.g. for QTL detection 
via linkage or association studies, to help the orienting and placing of sequence contigs 
during genome assembly [5], or to detect errors a posteriori in assembled genomes [6].

In practice, genetic maps are built from observing the allelic segregation of polymor-
phic markers in mapping populations produced by different types of crossing schemes 
[7]. Biparental populations are the most frequently used, typically based on either two 
homozygous parents or two (partly) heterozygous parents as in the case of Cross-Pol-
linated (CP) populations of many forest or fruit trees. The latter case involves more 
complex algorithms because current genotyping technologies do not directly provide 
long haplotype information, so the phase between multi-locus allelic configurations is 
unknown and must be inferred [8, 9]. Populations obtained from homozygous parents 
can be backcross (BC) or Doubled-Haploids (DH) which are very similar to BC with 
regards to map estimation, F2–Fn, Recombinant Inbred Lines (RIL) [10], or Intermated 
Recombinant Inbred lines (IRIL) populations. IRILs include some generations of ran-
dom intermating between the F2 and the inbreeding generations, thereby increasing the 
number of crossovers captured and thus the resolution of the map for a given population 
size [11, 12].

The usual process for genetic map construction involves three successive steps [13] 
corresponding to (1) determination of linkage groups (when the map is saturated, link-
age groups correspond to chromosomes), (2) ordering of markers in each linkage group, 
and (3) estimation of genetic distances between adjacent ordered markers. A lot of algo-
rithmic effort has been made in particular for the ordering step, because as soon as the 
number of markers is not very small, it becomes unfeasible to evaluate an objective func-
tion for each possible order (m!/2 orders if m is the number of markers). This problem, 
which is very similar to the Traveling Salesman Problem [14], is usually addressed in 
mapping softwares via different heuristics to escape this combinatorial explosion (see 
some examples in [13, 15–18]; non-exhaustive list shown as Additional file 1: Table S1). 
The ordering algorithmic problem obviously becomes more difficult with recent geno-
typing technologies (including genotyping-by-sequencing) which can produce millions 
of SNPs. But with such technologies, an even more limiting issue is that whatever the 
algorithm, the information allowing ordering lies in the crossovers arising in the pop-
ulation, and thus scales up only with population size, which is generally much more 
expensive to increase than marker number. A consequence is that if one wants to fix a 
minimum threshold for a robustness statistical criterion (for instance the minimum log-
arithm of odds (LOD) between the best order found and any other order), the number 
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of markers in the map will be limited for a given population type and size: the higher the 
threshold, the lower the number of markers which can be included in the map. For usual 
levels of threshold (e.g. LOD = 3) and large data sets, the maximum number of markers 
in the map will most often represent only a fraction of the SNPs available. The problem 
then translates into chosing the largest subset of markers which allows the order to be 
statistically robust at a given threshold. Here we propose the SeSAM (Seriation-based 
Suite for Automatic Mapping) package as a way to address the genetic mapping problem 
from this perspective.

Another consequence of the evolution of genotyping technologies is the number of 
missing data and/or genotyping errors, which can vary a lot depending on the approach 
used. For example, genotyping using low-coverage NGS sequencing [19–21] can pro-
duce many missing data which, depending on the protocol used for library preparation, 
can be distributed differently in the genome in different individuals of the mapping pop-
ulation. This is of particular concern for linkage analysis because detecting crossovers 
between two markers requires valid data in both markers. In multipoint estimations 
however, it is possible to impute part of the missing information for instance through 
Expectation–Maximization (EM) [22] algorithms, and it is possible to make use of data 
for genotype likelihoods [23], but beyond a certain level of missing data, map estimation 
always becomes challenging. The problem of genotyping errors is even more important 
when the number of markers becomes very large: each miscalled allele can produce a 
singleton interpreted as the result of two crossovers, thus for a given rate of genotyping 
errors, the more markers in the map, the more dramatically map length will be artifi-
cially inflated, and marker ordering altered [24]. A number of algorithms identify sin-
gletons and putative erroneous data; replacing them by missing data limits their effect 
on the mapping outcome [25–28]. Conversely, it is also possible to identify markers 
that have a very low probability of displaying genotyping errors based on redundancy 
("twins" approach [29–31]).

Numerous software tools have been developed for genetic mapping (see non-exhaus-
tive list as Additional file 1: Table S1). Many of them feature sophisticated algorithms for 
marker ordering, some even include several different algorithms which can be compared 
to each other to assess the robustness of their outcome (see for instance [15]). Most of 
the time, the main goal is to achieve optimal performances for finding the best order 
between all markers of a given linkage group (sometimes the 2nd, 3rd, etc.… best maps 
are also provided). In some cases however, particularly (but not only) when population 
size is limited, an interesting alternative is the "bin-mapping" strategy [32–34]. In that 
approach, (1) a framework core skeletal map including only a subset of selected markers 
is produced to ensure an order robustness statistically supported at a desired thresh-
old. The larger the mapping population, the more markers are included in this frame-
work map. (2) Then all remaining polymorphic markers are placed within one of the 
bins delimited by the framework markers and their relative map position is calculated 
within the bin. Thus even though the order between close "placed" markers is not statis-
tically supported, the order between each placed marker and the framework markers is. 
This strategy has several advantages: (1) the position of all markers can still be estimated 
precisely, while escaping the challenging computational problem of ordering too many 
markers, (2) the number of markers may become as high as desired, the computation 
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time will remain close to linear with that number, (3) the uncertainty on the order of 
very close placed markers has no consequence on the estimated map length, and thus 
that uncertainty is no longer a problem for many applications. In practice, such a bin-
mapping strategy is usually carried out through an interactive process between an expert 
user and computer programs. Tools have been developed to automate the placing step 
[33], but to our knowledge, there is today no integrated software able to carry out a com-
plete automated mapping process based on the bin-mapping strategy. So here we pro-
pose the SeSAM package, which automatically chains all steps necessary for genetic map 
construction based on this approach (Fig. 1), the two main steps being: (1) producing a 
framework map by selecting an optimal subset of markers from the initial data set, so 
order robustness can be statistically supported, and (2) producing a total map by placing 
all remaining polymorphic markers one by one into that framework. In the first step, the 
determination of linkage groups is done during the elongation of an ordered low-density 
high-robustness map (scaffold map) through a seriation-based algorithm (Fig. 1A) [35, 
36], after which iterative densification of that scaffold leads to adding as many markers 
as possible while keeping the order robust at the desired threshold, which produces the 
framework map (Fig. 1B). During this process, putative genotyping errors are detected 
and put aside to limit artifactual inflation of map length and ordering flaws. Finally, the 
remaining markers are placed on the framework (Fig. 1C).

Implementation
SeSAM is implemented as a R package, which allows to easily chain map construc-
tion to any other input data formatting (or map output exploiting) R script. The pack-
age includes C++ functions for its most computation-intensive parts (e.g. likelihood 
computations, EM algorithms). A detailed description of all algorithms and functions 
of SeSAM is provided in the user manual available as Additional file 2, and also from 
ForgeMIA at https://​forge​mia.​inra.​fr/​gqe-​acep/​sesam/-/​relea​ses. The main functional-
ity of SeSAM lies in the function autoMap(), which is a completely automated pipeline 
going through different main steps carried out by the following functions: loadData(), 
which reads and checks segregation data, generateSeeds(), which draws the seed mark-
ers used to initiate the seriation process, buildScaffold(), which extends a highly robust 
sparse map by seriation from the seed markers, assignment(), which assigns all poly-
morphic markers to a linkage group, buildFramework(), which densifies the scaffolds 
with the maximum possible number of markers while keeping a given statistical level 
of order robustness to the framework map, and placement(), which adds all remaining 
markers to the framework map without ensuring a statistical value for order robustness. 
Missing data are imputed in all multipoint calculations via an EM algorithm, and puta-
tive genotyping errors are detected and taken into account via two different methods. 
Finally, the SeSAM package includes a toolbox of functions to perform various types of 
format conversions on data files, interactive step-by-step custom mapping processes, 
and assessment of map and data quality through different types of graphs. More detailed 
information about these different functions is available as Additional file 1: Text S1, and 
in the reference user manual available as Additional file 2 and containing a quick-start 
guide.

https://forgemia.inra.fr/gqe-acep/sesam/-/releases
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Results and discussion
Behavior with number of markers and population size was assessed by simulating data 
sets for different population types, numbers of markers, and numbers of individuals. 
SeSAM was run on a desktop computer using 4 cores Intel(R) Core(TM) i7-4790 CPU 
@ 3.60 GHz (2 threads per core) under the Debian 11 Linux OS, using SeSAM default 
parameters. The scripts and data used to produce these benchmarking results are avail-
able in Additional file 3. Computation time for total maps construction was more or less 
linear with the number of markers for F2 and CP populations (Fig. 2). It was also close 

Fig. 1  General algorithm of automatic map construction in SeSAM. A: Construction of the scaffold map by 
seriation. B: Densification of the scaffold to produce the high-robustness framework map. C: Placement of all 
polymorphic markers to produce the high-density total map
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to linear with the number of individuals of the F2 population, but close to quadratic with 
the number of individuals for the CP population (Fig. 3). Finally, Fig. 4 shows that CP 
data sets necessitate substantially longer computation time than other population types, 
which is expected due to the extra phasing process required for such data.

To assess the quality of the maps produced by SeSAM, we generated arbitrary refer-
ence maps with different marker densities and used them to simulate segregation data. 
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Fig. 2  SeSAM computation time for automatic total map construction, as a function of the density of 
markers in a F2 (black circles and line) and in a CP (red triangles and line) population of 100 individuals. 
Data were simulated using the SeSAM function simulatePop() for two chromosomes (100 and 200 cM) with 
markers regularly spaced. Lines were obtained from linear regression y = a.x + b (a = 0.007, b = 1.9 for F2 and 
a = 0.035, b = 3.4 for CP)
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Fig. 3  SeSAM computation time for automatic total map construction, as a function of the number of 
individuals in a F2 (black circles and line) and in a CP (red triangles and line) population. Data were simulated 
using the SeSAM function simulatePop() for two chromosomes (100 and 200 cM) with markers regularly 
spaced at a density of 1 marker/cM. For F2, the line was obtained from linear regression y = a.x + b (a = 0.022, 
b = 0.99). For CP, the line was obtained from non-linear regression y = a.x2 + b.x + c (a = 0, b = 0.066, c = 0.99)
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Then, for different numbers of individuals or markers (same maps as for Figs. 2 and 3), 
we measured the deviation from colinearity (through Spearman’s rank correlation) and 
the map length ratio between the framework (or total) map computed from these segre-
gation data and the initial reference map. Finally, we measured the inclusion rate, that is 
the proportion of markers in the data set that could be included in the map (see Addi-
tional file 1: Tables S2 and S3). We see that in F2 or CP populations, the framework maps 
were always perfectly colinear to the reference map. The total maps were also perfectly 
colinear to their reference map, except for the F2 population with only 50 individuals. 
The map length ratios were always between 0.88 and 1.03 for the framework map except 
for very small F2 and CP populations (50 individuals) for which the scaffold could not 
meet the robustness criteria up to the extremities of the chromosomes and thus dropped 
some terminal regions. Similar behaviours were observed for the total maps. All markers 
of the data sets could be included into the total maps except in the case of the F2 popula-
tion of 50 individuals for which the framework did not cover the whole of the chromo-
somes as seen before. On the other hand, when looking at the framework maps, we see 
as expected that their inclusion rate increases with population size, and decreases with 
the number of markers.

Sensitivity to data quality was assessed by simulating data sets with increasing rates 
of genotyping errors up to extremely high rates (20%). We chose to distribute false data 
rates uniformly across markers and individuals, although the simulatePop() function 
of SeSAM is able to use Gamma distributions which allow to slide continuously from 
L-shaped to almost symmetrical distributions. The effect of increasing rates of erroneous 
data on map quality is shown in Fig. 5 for F2 and CP populations without and with acti-
vating the error correction option of SeSAM. In both populations, the artefactual infla-
tion of the map due to the genotyping errors is strongly reduced by the error correction 
algorithm, although high rates of errors cannot be completely corrected, particularly in 
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Fig. 4  SeSAM computation times for automatic total map construction for different types of mapping 
populations of 200 individuals. Data were simulated using the SeSAM function simulatePop() for two 
chromosomes (100 and 200 cM) with markers regularly spaced at a density of 1 marker/cM. Error bars 
indicate 95% confidence intervals based on nine independent replicates with different seeds for the random 
number generator used to simulate the data
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CP populations. However, in most real data sets, error rates are generally expected to be 
under 5%, so in such cases, SeSAM correction mostly avoids significant map inflation 
due to such errors.

Comparison with other existing softwares To assess how the level of map quality 
achieved by SeSAM compares with that of other mapping softwares currently available, 
we generated simulated data sets with different numbers of individuals and markers, 
and ran them with SeSAM as well as with four different programs: IciMapping, ASMap, 
MapDisto, and TSPmap (see Additional file 1: Table S4). We also tried to use HighMap, 
but we could not obtain the software from the address mentioned in the paper. All tools 
tested excepted TSPmap produced high-quality total maps, showing high colinearity 
and similar lengths when compared to the theoretical map used to simulate the segrega-
tion data. However, with increasing numbers of markers (> = 10,000), we couldn’t get 
some of the softwares to complete the mapping (see Additional file 1: Table S4). Com-
putation times varied a lot between programs, with Lep-map performing much faster 
than all others, and SeSAM being in the average of the remaining ones. Overall, SeSAM 
produces maps with at least similar quality as the other softwares tested. Using SeSAM 
thus allows to have a fully automatic tool to produce total maps with a level of quality 
similar to most other software currently available, but contrary to those other programs, 
in addition to producing a total map with all polymorphic markers, SeSAM also auto-
matically selects an optimally large subset of markers to produce a framework map sta-
tistically robust at any desired LOD threshold.

Examples with biological data To illustrate how SeSAM can perform with real biologi-
cal data, mapping results obtained from five anonymized experimental data sets from 
agricultural plant species are presented in Additional file 1: Table S5 and Fig. S1–S5. The 
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Fig. 5  Map length ratio between the framework map and the simulated reference map after SeSAM 
automatic map construction, as a function of the percentage of genotyping errors in a F2 (left panel) or CP 
(right panel) population of 200 individuals, without and with activating the genotyping error correction 
option of SeSAM (black circles and red triangles respectively). Data were simulated using the SeSAM function 
simulatePop() for two chromosomes (100 and 200 cM) with markers regularly spaced at a density of 1 marker/
cM, with increasing proportions of genotyping errors uniformly distributed along chromosomes. Lines were 
obtained by non-linear regression y = a*sqrt(x) + b*x + c (values of (a,b,c) without and with genotyping 
error correction, leading to respectively (1.09, − 0.06, 0.64) and (0.07, 0.025, 0.89) for F2, and respectively 
(0.93, − 0.049, 0.64) and (0.20, 0.022, 0.84) for CP). Error bars indicate 95% confidence intervals based on five 
independent replicates with different seeds for the random number generator used to simulate the data. 
Dotted lines indicate the theoretical outcome of a perfect genotyping error correction (y = 1)
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corresponding anonymized data sets are available as Additional file 4. The number of mark-
ers included in the framework map was always lower than the total number of polymorphic 
markers, because no more markers could be included without losing the order robustness 
at the given default LOD threshold (3.0). In BC_ano, RIL1_ano, and CP_ano data sets, 
which have small population sizes, the frameworks include less markers than in F2_ano and 
RIL2_ano, which have larger populations (see Additional file 1: Table S5). This is expected 
because there are more informative crossovers contributing to the order information in 
the latter. Moreover, the backcross-derived BC_ano data contain less crossovers (only one 
effective meiosis) than the other populations, which contributes to the fact that relatively 
few markers could be incorporated to the BC_ano framework map. Finally, with similar 
population sizes, the CP_ano map included less markers in its framework map than RIL1_
ano. This is partly due to the fact that not all 2-point marker configurations are informative 
in CP populations (e.g. there is no linkage information between one male pseudo-backcross 
marker and one female pseudo-backcross marker). As expected, the number of markers 
in the framework map is thus commensurate with population size and population type 
since this ensures statistically supported marker orders. Considering now the total maps 
obtained after placement, they include almost all polymorphic markers for all data sets, the 
few non-mapped markers being unlinked to any linkage group, or linked to several linkage 
groups with similar LODs.

To visualy assess the quality of maps produced, SeSAM generates heat maps of pairwise 
2-point LOD matrices. If the quality of the map is good, such heat maps should display a 
smooth decreasing gradient when going away from the diagonal (see left panels of Addi-
tional file 1: Figs. S1–S5). Another useful graph generated by SeSAM to assess map quality 
is the Marey map, which represents the genetic positions vs the physical positions of the 
markers. The derivative of the Marey map curve gives the local values of recombination 
rate along the chromosomes (called recombination landscape). If the quality of both physi-
cal and genetic maps is high, Marey maps are supposed to be smooth and always increas-
ing (see right panels of Additional file 1: Figs. S2–S5). The large flat regions observed with 
BC_ano, F2_ano, RIL2_ano, and CP_ano typically correspond to the low peri-centromeric 
recombination rates. For the BC_ano data set however (see Additional file 1: Fig. S1), the 
Marey map is non-monotonic. Since the 2-point linkage matrix indicates a high-quality 
genetic mapping, the quality of the physical map may be questionable here. Elsewhere, the 
case of the RIL1_ano data set illustrates the possibilty of using a previously existing genetic 
map to guide the choice of the seed markers to initiate the seriation process, when no phys-
ical map is available. In such cases, the ‘phyMap.txt’ file actually contains a genetic map, so 
the ‘Marey map’ obtained has an almost constant slope, but it may also be used to compare 
recombination landscapes between different crosses.

Finally, using the same general algorithm as SeSAM, but with earlier generations of 
codes, we already produced genetic maps used in several published studies on Maize [6, 34, 
37–42], Pea [43–45], and Faba bean [46].

Conclusions
Compared to existing mapping software, SeSAM is to our knowledge the only one to 
carry out a completely automatic bin-mapping procedure producing first a mid-den-
sity framework map from an optimized subset of markers which allow the order to be 
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statistically supported at the desired statistical threshold, and then a high-density total 
map including nearly all polymorphic markers, but preserving the global structure and 
length of the framework map. SeSAM is freely available to all users, including the source 
code, and is compatible with Linux, macOS, or Windows platforms.

Availabillity and requirements
Project name: SeSAM.
Project home page: https://​forge​mia.​inra.​fr/​gqe-​acep/​sesam
Operating systems: GNU Linux, macOS (> = 10.13), Windows10.
Programming language: R, C++
Other requirements: the following C++ libraries are required when compiling the pack-
age from source: gmp, boost-dev, boost-math (> = 1.56).
License: GNU GPL v3.
Any restrictions to use by non-academics: none.

Abbreviations
CP	� Cross-pollinated
BC	� Back-cross
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