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Spatiotemporal risk forecasting to improve locust 
management 
Cyril Piou1,2 and Lucile Marescot1,2   

Locusts are among the most feared agricultural pests. 
Spatiotemporal forecasting is a key process in their 
management. The present review aims to 1) set a common 
language on the subject, 2) evaluate the current methodologies, 
and 3) identify opportunities to improve forecasting tools. 
Forecasts can be used to provide reliable predictions on locust 
presence, reproduction events, gregarization areas, population 
outbreaks, and potential impacts on agriculture. Statistical 
approaches are used for the first four objectives, whereas 
mechanistic approaches are used for the latter. We advocate 1) 
to build reliable and reproducible spatiotemporal forecasting 
systems for the impacts on agriculture, 2) to turn scientific 
studies into operational forecasting systems, and 3) to evaluate 
the performance of these systems. 
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Introduction 
Locusts are among the most feared agricultural pests 
across the world. Their phase polyphenism allows them to 
go from a solitarious phase at low density to a swarming 
gregarious phase at high density [1]. This extreme form of 
phenotypic plasticity confers them the capacity to quickly 
outbreak through this phase change called ‘gregarization’. 
The understanding of their ecology as well as finding new 
ways to control them have been the subject of many 
scientific studies (see reviews by [2–4]). 

Despite this knowledge, locusts continue to cause im-
portant damage to agriculture in the 21st century. More 

than 400 million US$ were spent to stop Schistocerca 
gregaria in Africa between 2003 and 2005 [5] and several 
hundred million US$ in Eastern Africa and Southwest 
Asia between 2019 and 2021 [6]. In 2013–2015, a 37 
million US$ effort was necessary to control a large out-
break of Locusta migratoria in Madagascar [7]. Central 
Asia was strongly impacted in 2014 by L. migratoria and 
two other locust species, Dociostaurus maroccanus and 
Calliptamus italicus. Australia is also regularly affected by 
Chortoicetes terminifera, which displayed a large outbreak 
in 2010 costing 50 million US$ [8]. Another example was 
Schistocerca cancellata that exhibited an outbreak in Ar-
gentina, Bolivia, and Paraguay from 2015 to 2020 [9]. 

A preventive approach to control locusts was proposed as 
early as the 1930s after the discovery by Uvarov [10] of 
phase polyphenism. There have been debates about 
when to initiate locust prevention measures [11,12], as 
well as whether to call it ‘proaction’ after gregarization 
occurs [13]. Nonetheless, most antilocust management 
systems nowadays appear to favor proactive or preventive 
actions taken before swarms have an impact on agri-
culture [4]. Such preventive management needs a mon-
itoring system triggering early warnings to deploy a 
control response to onsets of outbreaks. In this context, 
spatiotemporal forecasts are useful at different levels. 
Forecasts help to orientate field teams and improve the 
efficiency of the monitoring system. Forecasts are also 
necessary to justify the control response when outbreaks 
happen. The present review aims to 1) set the bases of a 
common language about spatiotemporal locust risk fore-
casting, 2) evaluate the current methodologies at different 
scales of forecasting, and 3) identify opportunities and 
challenges of scientific research to develop improved 
forecasting tools for the management of locusts. 

Definitions and objectives of spatiotemporal 
locust risk forecasting 
To improve monitoring, proactive action implementa-
tion, and management evaluation from the knowledge 
gained from the forecast, we need to have some common 
terminology definitions. The term ‘risk’ is used 
throughout locust literature but with rare definitions 
given. We consider the definition of the International 
Standardization Organization of risk as the ‘effect of 
uncertainty on objectives’. 

This definition supposes to have identified the ‘objec-
tives’ at stake. The main and fundamental objective of 
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locust management is to maintain safe agricultural pro-
duction (Figure 1). To reach this main goal, intermediate 
‘means’ objectives emerge, at different stage of the 
management process, ranging from (early) prevention 
strategies to (late-stage) crop protection measures (de-
scribed in [4]). In a preventive strategy context, the 
means objectives are to monitor different levels of locust 
population development to avoid missing the onset of an 
outbreak. In a proactive context, the means objective is 
to monitor bands and swarms’ development before they 
reach cultivated lands. The differences between funda-
mental and means objectives have been defined in 
adaptive management [14]. 

The standard definition of risk also stresses the im-
portance of uncertainty, ultimately positioned as the main 
source of the risk. Uncertainty may come from an un-
predictable event or a predictable but unexpected or 
unforeseen event [15]. In locust management, most 
outbreaks could be predicted by environmental drivers 
of population development. However, there are 

different uncertainties regarding the occurrence of the 
predictable events due to unknowns on the situation in 
the field, including the capacity of the management 
system to respond and the future of climatic conditions 
(Figure 1). 

This standard definition of risk with objectives and un-
certainties leads naturally to forecast events related to 
locust risks under different sources of uncertainties. In 
this context, forecasts are statements that give prob-
abilities of particular events to happen. Locust risk 
forecasting hence needs to have defined the objective at 
stake and the sources of uncertainty that generate the 
risk. Figure 1 summarizes the different levels of mean 
objectives, the corresponding uncertainties, and fore-
casted risks. The hierarchical levels of mean objectives 
in Figure 1 correspond to different means to reach the 
fundamental objective and avoid the associated risks. 
The 5 different forecasting events highlighted in Figure 1 
are locust presence, reproduction events, gregarization 
areas, population outbreaks, and potential impacts on 

Figure 1  
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Forecasting locust-related risks at different spatiotemporal scales and governance levels as a means to fulfill a main goal: maintain safe agriculture. 
This goal is the fundamental objective, it relies on decision-makers and stakeholders’ values. It answers the question ‘why is it important?’, while the 
means objectives answer the question ‘how to get there?’. Those provide the tasks and forecasting tools necessary to reach the main goal from the 
bottom to the top (model, monitoring, and management). The figure presents those risks as the conjunction between objectives and uncertainties. Risk 
forecasting provides decision-makers answers to the underlying monitoring and management questions regarding the strategies that could be taken. 
The colors correspond to different parts of the system: blue for governance issues, green for the agroecological system, red for the management, 
yellow for the specific surveys in the management system, and gray for the models. The uncertainties of upper levels are affecting the more precise 
mean objectives (hence the overlapping boxes). The risks result from the uncertainties’ effect on the objectives. The forecasts attempt to avoid the 
corresponding risks. Five specific forecasting events are highlighted with black circles: 1 locust presence, 2 locust breeding, 3 gregarization areas, 4 
population outbreaks, and 5 impacts on agriculture. Terms were defined and the illustration was inspired by [14]. 
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agriculture. In the following section, we review the cur-
rent methodologies for forecasting each of these events. 

Current methodologies at different scales of 
forecasting 
Forecasting locust presence 
Forecasting locust presence at a small spatial scale 
(≤ 1 km) and under a short-to-medium time horizon (≤ 1 
month) to orient field teams of the preventive man-
agement system was the objective of the work of Piou 
et al. [16]. They used the normalized difference vege-
tation index (NDVI) from remote sensing (RS) to cor-
relate ground survey observations of Schistocerca gregaria 
presence in remission periods to vegetation dynamics 
and spatial structure. In Piou et al. [17], the approach 
was extended to soil moisture estimated also from RS 
and using machine learning (ML) algorithms. These 
studies showed that an increase in vegetation 
1–2 months before or an increase in surface soil 
moisture 2–3 months before a survey increases the 
chances to observe desert locusts. These statistical 
works can be used to develop dynamic operational 
systems that map the probability of the presence of 
locusts. This was developed operationally for desert 
locust with a mapping system updating every 16 days to 
orient the field teams of Morocco [18]. 

Forecasting reproduction events 
Tratalos et al. [19] showed that forecasting reproduction 
sites of desert locust at a scale of a few kilometers was 
hardly possible with NDVI. However, more recent 
works using ML managed to link reproduction sites and 
soil moisture from RS. Using Random Forests, Gomez 
et al. [20] showed that breeding sites of desert locust 
could be forecasted with a surface soil moisture above 
0.07 m3/m3 for more than 6 days. Further, Gomez et al.  
[21] explored different combinations of variables to 
forecast breeding sites and found that medium soil 
temperature, high root-zone soil moisture, and high 
NDVI best explained breeding observations. Kimathi 
et al [22] proposed, with a presence-only approach used 
in species distribution modeling, static maps of the 
probability of desert locust breeding depending on cli-
matic and soil variables. Static maps of reproduction 
probability were also the results of spatial smoothing 
kernels over Mauritania and Morocco [23] and Tchad  
[24]. Combining static information and vegetation con-
ditions, Klein et al. [25] used a multiscale approach in-
tegrating high spatial-resolution RS data and ecological 
niche modeling techniques to create breeding suitability 
maps of Calliptamus italicus, Dociostaurus maroccanus, and 
S. gregaria at the spatial scale of large districts or river 
basins. 

The static maps have been used by management 
systems to orient field campaigns in search of breeding 
grounds for decades (e.g. [26]). However, operational 
dynamical applications integrating locust demography 
are still to be developed and evaluated. These should 
improve preventive management and particularly of 
diapausing locust species such as C. italicus or D. 
maroccanus. 

Forecasting gregarization areas 
In preventive management, forecasting is used to iden-
tify the gregarization sites as early as possible [4]. Veran 
et al. [27] developed a hidden Markov model (HMM in  
Figure 1) to estimate the transition probability that 
Australian Plague locusts, Chortoicetes terminifera, switch 
from low densities to gregarious densities. Such a hybrid 
method, lying between statistical and mechanistic 
models, allowed the disentanglement of the gregariza-
tion process from the observation processes that create 
uncertainty in individual detection and phase identifi-
cation. Sun et al. [28], attempting to forecast desert lo-
cust hopper bands, used ML and sliding temporal 
windows of NDVI and soil moisture. Lawton et al. [29] 
used hierarchical generalized additive models to explore 
the relationships between temporal variations of NDVI 
and the presence of gregarious hoppers of S. gregaria and 
C. terminifera. They showed that both species respond to 
spatial hierarchy where regional dynamics influence the 
local probabilities to observe outbreaking locust popu-
lations. However, preceding vegetation growth was 
shown to shape the outbreaks of desert locust sooner 
than it shapes the Australian ones, as S. gregaria lives in a 
more arid climate, with faster vegetation growth fol-
lowing rainfall. 

Forecasting population outbreaks 
With the creation of large datasets of survey points, re-
cent studies use advanced statistical approaches that are 
suitable for opportunistic and heterogeneous data col-
lected at large scale. Some studies fit species distribution 
models to presence-only data to examine how likely 
climate change will cause shifts in locust ecological ni-
ches and will trigger outbreaks in new areas [30–32]. 
Ecological niche modeling was used to identify areas of 
potential outbreaks for several species of locusts and 
grasshoppers [33–36]. Checke et al. [37] showed with 
Ornstein-Uhlenbeck state-space testing and convergent 
cross-mapping that oceanic oscillations provoked by the 
decadal solar cycles are likely to drive abundance peaks 
of the desert locust and the oriental migratory locust. 
This study revealed that monitoring distal factors such as 
sunspot cycles and large-scale weather patterns may help 
to anticipate an outbreak. 
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All these studies are very promising for the im-
plementation of operational tools. The Australian Plague 
Locust Commission uses a geographic information 
system (GIS) combining field and RS data to forecast 
outbreaks and distribution [38,39]. However, operational 
dynamical forecasting systems to map gregarization sites 
with a few weeks or months of anticipation are lacking 
for other parts of the world. 

Forecasting impacts on agriculture 
Some tools using field surveys, meteorological, and RS 
information have been designed for real-time and re-
mote transmission of pest impacts in agricultural areas 
and to forecast the level of damage [38,40]. The in-
tegrated pest management models of [41–44] simulated 
the dynamics of Oedaleus senegalensis with several pre-
dators and plants, including a cost/benefit analysis of 
different treatments for agriculture, such as the biocon-
trol agent Metarhizium anisopliae. Cressman [45] or 
Pedgley [46] described the process of preparing desert 
locust forecasts. The FAO warning system from the 
Desert Locust Information Service (DLIS) provides 
national-level threat to crop forecasting [47]. These 
forecasts are based on a GIS that integrates historical and 
contemporary data on desert locust populations, along 
with observations or putative ongoing events of re-
production, migration, and gregarization and various 
meteorological and RS data as environmental drivers  
[48,49]. Many of the parts used in the building of the 
forecasts are coming out of scientific studies such as 
development models [50,51]. Recent attempts of fore-
casting swarms’ movements [52–54] could also be used. 
However, scientific studies describing a reproducible 
process to create spatiotemporal forecasts of impacts on 
agriculture are lacking and forecasts may be considered 
as much an art than a science [45]. There is also a clear 
lack of systematic evaluation of forecasting accuracy at 
the level of impact on agriculture. 

Opportunities and challenges of locust 
forecasting 
Current methodological limitations 
Many statistical tools and RS studies helped understand 
and map locust distribution (reviews by [55,56]). How-
ever, there is a clear need 1) to make more reliable and 
reproducible spatiotemporal forecasting systems for the 
impacts on agriculture, 2) to turn scientific studies on 
forecasts of means objectives at short-to-large time hor-
izons into operational forecasting systems to orientate 
surveys for many locust species, and 3) to evaluate the 
performance of all these decision-support systems 
through iterative processes of learning by doing. 

Before the surge of statistical models, most studies 
trying to predict locust outbreaks relied on deductive 
demographic models describing locust population 

dynamics within agroecosystems under different man-
agement scenarios [11,41,42,57]. These models provided 
rules of thumb for managers, such as maintaining viable 
populations of predators along with applying treatments  
[42]. Yet, those models were often calibrated and vali-
dated on small datasets. 

On the contrary, with the compilation of large datasets 
and the use of ML, nowadays, modelers tend to forget 
about the population dynamics processes and focus on 
prediction errors. Hence, two challenges need to be 
addressed in the complexity of locust outbreaks. First, 
scientists have to understand how time-lagged effects of 
weather and hierarchal effects of habitats can drive mi-
gration, concentration, multiplication, and gregarization 
of different locust species [29,58,59]. Second, they need 
to assess how these processes respond to management 
actions [27,60,61] to determine which of the risk factors 
are the key levers for effective management. The use of 
uncertainty and sensitivity analyses in models may help 
in this second challenge. 

A further limitation currently overlooked by modelers is 
the data quality within the large datasets. As good 
forecasting is impossible without good ground survey 
data, training and awareness of the data collectors need 
to be maintained through time and particularly in re-
cession periods [61]. The sampling design and data 
heterogeneity are rarely considered. Ultimately, the rise 
of HMM (e.g. [27]) may be the solution to these chal-
lenges. 

As new statistical tools are being developed, validation 
with a part of the dataset is a common technique in re-
cent studies (e.g. [17,20]). However, there is a clear need 
to analyze forecasts made for decades and evaluate in the 
field the most recent ones. Rainey [62] identified early 
that there are higher chances of successful forecasts in 
changes in the spatial distribution of locusts than in 
changes in population size and density. Betts [63], in a 
rare evaluation of DLIS forecasts between 1961 and 
1965, found that low-probability forecasts are the least 
reliable. Nevertheless, further evaluation studies should 
be conducted to improve the systems and eventually 
confirm that forecasting experts need to have holistic 
knowledge more than big computers and artificial in-
telligence [48]. 

Future of locust forecasting 
With constant improvements in RS and the considera-
tion of other locust species than the three main ones (as 
advocated by [25]), the field of spatiotemporal locust risk 
forecasting is likely to improve greatly in the coming 
years. This is particularly important in the context of 
changing climate and the constant need to increase the 
efficiency of all preventive systems. 
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Pitfalls of giving too much weight to a single approach or 
‘black boxes’ of ML should be avoided. Learning from 
meteorological forecasting systems and other branches of 
ecology that use decision-support systems (e.g. [64,65]) 
should be encouraged. Locust forecasting would also 
need to evaluate the risks of using citizen or ‘less-trained 
officers’ data that are proposed with the emergence of 
smartphones and artificial intelligence [53]. Well-trained 
locust officers should not be replaced by machines. We 
believe that locust ecology and human monitoring ef-
forts should stay the central part of forecasting systems. 
As such, the methodological consideration of specific 
plant–insect interactions that exist for most locust spe-
cies [66] should improve greatly the accuracy of fore-
casts. Ultimately, locust risk forecasts shall also consider 
the impacts on biodiversity, which would complement 
the efforts of antilocust management to evaluate the 
treatment impacts a posteriori [67]. 

Data Availability 

No data were used for the research described in the ar-
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Èntomol 2013, 96:1274-1283. 

58. Despland E: Fractal index captures the role of vegetation 
clumping in locust swarming. Funct Ecol 2003, 17:315-322. 

59. Despland E, Rosenberg J, Simpson SJ: Landscape structure and 
locust swarming: a satellite's eye view. Ecography 2004, 
27:381-391. 

60. Liu DZ, Zhao SY, Yang XM, Wang R, Cang XZ, Zhang HW, Hu C, 
Wyckhuys KAG, Wu KM: Radar monitoring unveils migration 
dynamics of the yellow-spined bamboo locust (Orthoptera: 
Arcypteridae). Comput Electron Agric 2021, 187:106306. 

61. Gay P-E, Trumper E, Lecoq M, Piou C: Importance of human 
capital, field knowledge and experience to improve pest locust 
management. Pest Manag Sci 2021, 77:5463-5474. 

62. Rainey RC: Migration and Meteorology: Flight Behaviour and 
the Atmospheric Environment of Locusts and Other Migrant 
Pests. Clarendon Press; 1989. 

63. Betts E.: Forecasting infestations of tropical migrants pests: the 
Desert locust and the African Armyworm, in Insect flight. 7th 
Symposium of the Royal Entomological Society of London. Edited 
by Rainey RC. 1976:113–134. 

64. Hostetler JA, Chandler RB: Improved state-space models for 
inference about spatial and temporal variation in abundance 
from count data. Ecology 2015, 96:1713-1723. 

65. Vacik H, Lexer MJ: Application of a spatial decision support 
system in managing the protection forests of Vienna for 
sustained yield of water resources. Ecol Manag 2001, 143:65-76. 

66. Van der Werf W, Woldewahid G, Van Huis A, Butrous M, Sykora K: 
Plant communities can predict the distribution of solitarious 
desert locust Schistocerca gregaria. J Appl Ecol 2005, 
42:989-997. 

67. van der Valk H, Everts JW: Directives sur le Criquet Pèlerin 6: 
Précautions d′usage Pour la Santé Humaine et L′environnement 
vol. 6, FAO; 2003.  

Spatiotemporal locust risk forecasting Piou and Marescot 7 

www.sciencedirect.com Current Opinion in Insect Science 2023, 56:101024 

http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref49
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref49
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref49
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref49
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref50
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref50
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref50
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref51
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref51
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref51
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref51
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref52
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref52
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref52
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref53
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref53
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref53
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref53
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref54
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref54
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref54
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref54
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref54
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref55
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref55
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref56
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref56
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref56
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref57
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref57
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref57
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref57
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref58
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref58
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref58
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref59
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref59
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref59
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref60
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref60
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref60
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref61
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref61
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref61
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref62
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref62
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref62
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref62
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref63
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref63
http://refhub.elsevier.com/S2214-5745(23)00021-4/sbref63

	Spatiotemporal risk forecasting to improve locust management
	Introduction
	Definitions and objectives of spatiotemporal locust risk forecasting
	Current methodologies at different scales of forecasting
	Forecasting locust presence
	Forecasting reproduction events
	Forecasting gregarization areas
	Forecasting population outbreaks
	Forecasting impacts on agriculture

	Opportunities and challenges of locust forecasting
	Current methodological limitations
	Future of locust forecasting

	Data Availability
	Acknowledgements
	References and recommended reading




