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srnaMapper: an optimal mapping tool 
for sRNA‑Seq reads
Matthias Zytnicki* and Christine Gaspin 

Background
Eukaryotic small RNAs (sRNAs) are defined as <200-bp long, usually untranslated, 
RNAs. They have been shown to participate in many aspects of cell life [1, 2].

They are generally classified according to their specific size range, biogenesis, and 
functional pathway. Among them, microRNAs (miRNAs) are certainly the most stud-
ied [3], but many other small RNAs have been shown to have a key role in regulation: 
transfer RNA-derived small RNAs (tsRNAs) [4], small interfering RNAs (siRNAs) [5], 
and piwi-associated RNAs (piRNAs) [6], to name a few.

After the sequencing step, the first task is usually to map the reads to the genome, 
i.e. find the putative loci which may have produced the reads. Many mapping tools have 
been created so far, but none has been developed especially for sRNAs. Users then resort 
to DNA mapping tools such as bowtie [7], bowtie2 [8], bwa [9], or messenger RNA map-
ping tools such as HISAT  2 [10], or STAR [11], with tuned parameters. Downstream 
tools may then be applied to filter the results.

Here, we present a new tool, srnaMapper, which addresses all the particularities of 
sRNA mapping.

Abstract 

Background:  Sequencing is the key method to study the impact of short RNAs, which 
include micro RNAs, tRNA-derived RNAs, and piwi-interacting RNA, among others. 
The first step to make use of these reads is to map them to a genome. Existing map-
ping tools have been developed for long RNAs in mind, and, so far, no tool has been 
conceived for short RNAs. However, short RNAs have several distinctive features which 
make them different from messenger RNAs: they are shorter, they are often redundant, 
they can be produced by duplicated loci, and they may be edited at their ends.

Results:  In this work, we present a new tool, srnaMapper, that exhaustively maps 
these reads with all these features in mind, and is most efficient when applied to reads 
no longer than 50 base pairs. We show, on several datasets, that srnaMapper is very 
efficient considering computation time and edition error handling: it retrieves all the 
hits, with arbitrary number of errors, in time comparable with non-exhaustive tools.
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First, sRNA-producing loci are often duplicated. This is particularly true for miRNA 
families, which generate highly similar or identical RNAs. Likewise, piRNAs are pro-
duced in interaction with transposable elements, which are known to be duplicated. 
When a read maps several loci, the default mode of most mapping tools is to report 
only one random hit. This obviously provides only part of the answer to the mapping 
problem. Most mapping tools thus also implement exhaustive search modes, but they 
are admittedly very slow. Some specialized exhaustive mapping tools, such as Yara 
[12], exist. However, they are rarely used in practice since they are not adapted to small 
RNAs: they usually rely on q-gram filtering, which is not efficient when the reads are 
small (about 20bp long), with, possibly, several errors. Our tool provides all the best hits 
(up to a maximum number of errors given by the user) for each read.

Second, some sRNAs, such as miRNAs, undergo RNA edition at their ends [13]. Both 
the 5′ or the 3′ can be shrunk, extended with a template, or both. It is thus crucial to be 
able to consider errors everywhere in the read, and especially in the ends. For instance, 
bwa-aln and bowtie 1 use so-called seed regions located at the extremities of the reads, 
where the number of errors is limited. They are thus expected to miss hits of edited 
reads. Moreover, it is crucial to be able to mention a maximum number of errors (which 
can be mismatches or indels), and not a percentage, since the RNA edition is, as far as 
we know, not dependent of the size of the read.

Third, sRNAs are short, usually <35bp long, and they are highly abundant (the same 
sRNA may be sequenced thousands times). As a result, it can be useful to store reads in a 
dedicated data structure, so that identical reads are mapped only once.

Last, our experience in sRNA-Seq showed us that the users usually want all the hits 
that map with the lowest number of errors, following parsimonious assumptions. This 
feature is usually implemented with the option –best –strata in bowtie 1, but is not 
available in all mapping tools.

Results
We compared our approach with several different tools, including bwa, bowtie  1 and 
2, HISAT  2, segemehl, STAR, and Yara. Several parameters were adjusted, as recom-
mended by an exhaustive review which compares several mapping tools applied to 
miRNAs [14]. We used two different datasets: human [15], and Arabidopsis  thaliana 
[16]. We also added a synthetic dataset, developed by [14] for their miRNA mapping 
tool benchmark. This dataset contains known, mature miRNAs, to be found in the 
Oryza sativa genome.

srnaMapper maps more sequences than other tools

Figure 1 (left panel) provides, in blue, the number of sequences that are missed by the 
compared tools, but mapped by srnaMapper. We chose, here, to compare the different 
sequences, and not the reads, so that the same RNA, which could be sequenced sev-
eral times, is counted only once. The aim here is not to bias the benchmark towards 
highly expressed RNAs. srnaMapper maps almost all the sequences that the other tools 
map, the only exception being the few (less than 100) low-complexity sequences which 
map more than 1000 times on the genome (a feature that can be changed by the user). 
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Of note, we discarded the “bowtie2.vs.mult” recipe on the human dataset, because it 
required more than one week to complete, with 10 threads.

Our data show that bowtie 1 and bwa are among the tools that miss the least number 
of sequences, confirming the benchmark produced by [14]. Yara, which was not included 
in the benchmark, performs also very well.

On the opposite, the option “vsl” in bowtie  2 tends to over-estimate the number of 
errors, because the ends of the sequences are simply soft-clipped as soon as one error 
(mutation or sequencing error) is present.

Our results also show that discarding multi-mapping reads significantly decreases 
the number of mapped reads. bowtie 1, for instance, maps less reads in the H. sapiens 

Fig. 1  Number of sequences that are mapped by srnaMapper, but are not mapped exhaustively by other 
tools. The number of sequences that do not map is in blue (“missed”). Among the sequences that map, we 
provided the number of sequences that do not map with the minimum number of errors (e.g. a tool mapped 
a sequence with 2 errors, whereas a hit with 1 error exists) in green (“nonoptimal”). Among the sequences 
that map optimally, we provided the number of sequences such that hits were missed in magenta (“fewer 
hits”). These numbers are not provied for non-exhaustive recipes, which are expected to miss all but one 
hit for multi-mapping sequences. The “bowtie2.vs.mult” recipe was omitted from the H. sapiens benchmark, 
because the tool required more than one week to complete, with 10 threads. The left panel provides the 
results when soft clipped nucleotides are considered as errors. The right panel provides similar results for 
tools that implement soft clipping, when soft clipping is not considered as error. In this context, other tools 
may map more reads, with fewer errors, or at more locations than srnaMapper. We provided the number of 
such reads in negative y values
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dataset when used with -m 1 option, which discards all the reads which map more than 
once. The -a option, however, keeps all the reads, and misses much less reads.

srnaMapper maps with fewer errors

We then selected the sequences that were mapped by srnaMapper and each other 
tool. We compared the number of errors (mismatches, insertions, deletions) that were 
reported for each mapped sequence by srnaMapper and the compared tool. Figure  1 
(left panel) shows, in green, the number of sequences that are mapped with less errors by 
srnaMapper. We found that srnaMapper could map many sequences with fewer errors 
than other tools. Indeed, some mapping tools do require a limited number of errors in 
the “seed” regions of a read (for bowtie 1 and bwa-aln, they are located in the first, or 
last, part of the read). STAR also misses many hits with minimum number of errors.

These results have two direct implications. First, the locus may be correctly predicted, 
but the alignment is not optimal. This could bias the analysis of the prediction of the 
RNA edition. Second, the locus may be wrong. In this case, the whole downstream anal-
ysis is impacted.

srnaMapper finds more hits per sequence

We also selected the sequences that were mapped with the same number of errors by 
srnaMapper, and each other tool. We compared the number of hits that were reported 
for each of these sequences. Figure 1 (left panel) provides, in magenta, the number of 
sequences that are mapped by srnaMapper at more locations. These counts are only pro-
vided for multi-mapping tools. We found that srnaMapper could retrieve more hits per 
read, whereas “bowtie1.mult.beststrata”, which achieved very good results shown in the 
two previous sections, clearly misses some hits.

Finding all the hits for the reads may be crucial for an exhaustive analysis of the reads. 
Many miRNAs, for instance, are known to cluster into families. The members of the 
families, which share a common function, may be highly duplicated in the genomes. 
tsRNA are also highly duplicated, since they are part of tRNAs. Likewise, piRNA, which 
are produced with the help of transcribed transposable elements, are expected to maps 
numerous times.

Comparison on a synthetic dataset

We benchmarked our tool on two controlled datasets, produced from known miRNAs 
of O. sativa (see Fig. 2). Here, we stated that a read was correctly mapped if at least one 
hit overlapped with the miRNA that was used to create the synthetic read. The first data-
set, named “osativa”, contains 21bp long, errorless reads. The second dataset, named 
“osativa-mm”, contains 16–25bp long reads, with possible errors.

Our tool ranks best, along with Yara, bowtie 1 and 2 (with the appropriate parame-
ters), and finds all the correct locations in both datasets. Of note, bowtie 2, with the “vsl” 
option, could not map the reads of the first dataset, for unknown reasons.

Time complexity

Figure 3 shows the time spent by each tool to map a file, using up to 20 threads. The 
left panel presents tools that provide at most one hit per read, whereas the right panel 
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presents the other tools. We discarded the recipes that took more than one day to map a 
dataset with one thread: bowtie2.vs.mult, and hisat2.mult for the H. sapiens dataset.

The fastest recipes (bowtie1.beststrata.m1, bowtie2.vs, bowtie2.vsl) only retrieve at 
most one hit per read. srnaMapper is on par with some tools that only retrieve one hit 
per read (HISAT 2, segemehl, STAR), and with one (almost) exhaustive tool (bowtie1.
mult.beststrata). It is faster than other tools used with an exhaustive search (HISAT 2, 
STAR, Yara).

Although srnaMapper is not the fastest tool, it offers an interesting compromise with 
respect to the number of mapped reads.

Space complexity

Figure 4 shows the memory used, in the conditions presented in the previous section. 
bwa and segemehl are the only tools with a constant memory usage. All the other tools 
need more memory when they use more threads. In the H. sapiens dataset, only bow-
tie2.vsl.mult requires much more memory when the number of threads increase. The 
other tools need slightly more memory for each added thread.

Fig. 2  Number of correctly and incorrectly mapped reads, for several tools, on two synthetic datasets. The 
top dataset includes 21bp long, errorless reads. The bottom dataset includes 16–25bp long reads, with 
possible errors. The “bowtie2.vs” recipes did not provide any solution for the first dataset, for unknown reasons
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Fig. 3  Comparison the time (in seconds) needed to map one file of the A. thaliana, or H. sapiens dataset, 
using one or more threads. The left panel presents tools that provide at most one hit per read, whereas the 
right panel presents the other tools. The y-axis is in log scale

Fig. 4  Comparison of the memory (in MB) needed to map one file of the A. thaliana, or H. sapiens dataset, 
using one or more threads. The y-axis is in log scale



Page 7 of 19Zytnicki and Gaspin ﻿BMC Bioinformatics          (2022) 23:495 	

srnaMapper requires more memory than most other tools in the A.  thaliana data-
set. This organism is quite small (about 120 millions base pairs), and the space needed 
to store the reads is greater than the space needed to store the genome. For a larger 
genome, such as the H. sapiens one (more than 3 billions base pairs), srnaMapper scales 
more favorably compared to other tools, because the space needed to store the reads 
is negligible when compared to the space needed to store the genome. In comparison, 
STAR requires significantly more memory than srnaMapper. Besides, srnaMapper needs 
more space for each thread because the data structure that stores the hits do need to be 
duplicated, although the genome suffix array and the reads trees are shared between the 
threads.

Impact of low‑complexity trimming

We wanted to assess the impact of low-complexity reads. Figure  5 shows the time 
spent, as well as the number of reads mapped, for various low-complexity thresholds. 
srnaMapper first counts the number of occurrences of each triplet (AAA​, AAC​, etc.), akin 
to the DUST module developed for BLAST [17]. These triplets may overlap, so that AAA​ 
is counted twice in the sequence AAAA​. A complexity threshold of 4, for instance, dis-
cards all the reads that contain a triplet which is found at least 4 times in a given read. 

Fig. 5  Impact of the low complexity filtering on the mapping. We run srnaMapper with several low 
complexity thresholds (from 4 to 15) on the A. thaliana and the H. sapiens datasets. For each low complexity 
threshold, we provide the number of reads mapped by srnaMapper on the top figure. The bottom figure 
gives the time spent by srnaMapper to map the filtered reads (in seconds)
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For the A. thaliana dataset, there are few reads with a complexity above 7. The plateau is 
reached at value 5 for the human dataset.

Let us first focus on the leftmost part of the curves, where the number of reads still 
does not reach the plateau. We can notice that the time spent by srnaMapper increases 
when the complexity threshold increases. This is expected, since the number of reads 
also increases significantly. If we focus now on the other instances, we can also observe 
that the time spent also increases, at least for the A. thaliana dataset. This means that 
few low-complexity reads require a significant amount of time to be mapped. This con-
firms previous results: low-complexity reads, which map many times with errors, take 
much time to be handled, even though they do not add much information to the analy-
sis. This observation confirms that low-complexity trimming is a useful step.

Impact of the number of errors allowed

We wanted to assess the impact of the number of errors (mismatches, insertions, or 
deletions) allowed in the mapping. We used each tool with 0, 1, or 2 errors allowed. Note 
that bowtie 2, HISAT 2, segemehl, and Yara have no parameter linked to the number of 
errors. Some, like bowtie 2 or segemehl, only control the number of errors (0, or 1 for 
bowtie 2) in a “seed region.” We did not include these tool in this benchmark.

Figure 6 shows the number of mapped reads, specifying at most 0, 1, or 2 errors. We 
can first observe that STAR does not seem to properly use the parameter –outFil-
terMismatchNmax. This tool maps the same number of reads, whatever the number 
of errors given. It performs very well for the A. thaliana dataset, but misses many hits in 
the H. sapiens dataset.

bowtie 1, in general, maps much less reads.
bwa and srnaMapper give the same number of mapped reads, when 0 mismatches are 

allowed. However, srnaMapper does map more reads when 1, or 2 errors are allowed. 
This confirms the fact that srnaMapper is an exhaustive tool, whereas bwa is not.

Adding one error do add a significant number of mapped reads. The increase is mod-
est for 2 errors, and the increase is not expected to be significant for 3 errors.

Detection of RNA edition

The SAM file produced by the mapping tool can help understanding where sequence 
edition takes place. For each mapping tool, we counted the number of substitutions, 
deletions, or insertions, and classified them in 5′ edition if they are located at the 5′ 
end, 3′ edition, or interior edition otherwise. The number of RNA editions is provided 
in Fig. 7. These results show that 3′ edition is slightly more frequent than 5′ edition in 
A. thaliana, whereas we observe the opposite for the human dataset.

The figure shows that, in some cases, other tools find more RNA editions than 
srnaMapper, which seemingly contradicts previous results. The first reason is that a 
given read may be mapped in several ways, with the same number of errors. The second 
reason is that some of the edited reads map several times. Mapping tools that choose a 
random location may suggest an RNA edition, which may or may not be observed on 
other (unreported) hits. When tools reported several hits, we classified as “ambiguous” 
the RNA editions that were not consistent for each hit (see the “amb.” column of Fig. 7).



Page 9 of 19Zytnicki and Gaspin ﻿BMC Bioinformatics          (2022) 23:495 	

Quantification of known miRNAs

We wanted to quantify the expression of known miRNAs in the A. thaliana dataset. This 
quantification step is not straightforward, since many reads map several times. We used 
a dedicated quantification tool, mmquant [18], which does handle multi-mapping reads. 
Informally, mmquant groups two miRNAs if some reads map at two different loci, each 
one overlapping the two miRNAs.

Figure 8 shows the quantification of the expression of the 6 most expressed miRNA 
families. For instance, MIR165 contains 2 members, and MIR166 contains 18 members. 
Both miRNAs are grouped by mmquant, because they actually belong to the same fam-
ily (called MIR166), and mature miRNAs are almost identical. We confirmed that all the 
multi-mapping tools do map many reads either the MIR165 loci, or to the MIR166 loci. 
Note that the groups are actually formed with no prior information, simply because hits 
of the same read colocalize with several members of a given family.

Likewise, MIR159 and MIR319 are known to belong to the same family. However, 
MIR158 and MIR393 belong to two distinct families, and are not related to the MIR159–
MIR319 family. They were grouped by mmquant because STAR multi-mapped some 

Fig. 6  Number of reads mapped when 0, 1, or 2 errors (mismatches, insertions, or deletions) are allowed, in 
the A. thaliana, or H. sapiens dataset. Tools which do not control the maximum number of errors have not 
been included in this analysis
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Fig. 7  Number of errors or unmapped nucleotides (in case of soft-clipping) found at the 5′ end of the reads 
(left panel), at the 3’ end of the reads, or located elsewhere in the reads (the “int.” panel). For a given read, 
with a given number of mapping errors, each hit may be aligned in its own way. For instance, a hit could 
have the first nucleotide unmapped, whereas another hit could have the last nucleotide unmapped. In this 
configuration, it is not possible to assign a sequence to a 5′ or 3′ RNA edition. These ambiguous reads are 
listed in the “amb.” column (right panel)

Fig. 8  Quantification of the expression of the most expressed miRNAs families, using different recipes. 
Micro-RNAs were grouped into pseudo-families, using mmquant [18]
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reads to the loci of MIR158, MIR159, and MIR393. It was the only tool to do so. Actually, 
these reads were aligned in a “local mode,” which is enabled by default. The first ∼ 20 
nucleotides of these reads were soft-clipped during the mapping procedure. As a conse-
quence, they map to unexpected loci.

This observation is confirmed by the number of reads mapped by STAR for the 
MIR158–MIR159–MIR319–MIR393 pseudo-group, which is slightly greater than any 
other tool. Indeed, several reads were soft-clipped in order to map, and were assigned 
to this family. Although soft clipping could be useful, we show here that it may produce 
unexpected results.

srnaMapper then ranks favorably, being on par with Yara, but mapping more reads 
than the remaining tools. bowtie 2, run in local mode (the “vsl” recipes) misses, however, 
a significant number of reads.

Altogether, this analysis shows that srnaMapper does map more reads, but still 
excludes the hits that are most likely erroneously due to the local mode of STAR. It con-
firms that srnaMapper provides a more accurate description of the small RNA repertoire 
which is sequenced.

Conclusion
srnaMapper is an exhaustive mapper for small RNA reads. It implements a novel algo-
rithm that leverages the characteristics of small RNA sequencing, such as short size and 
repetitiveness. It performs best on short sequences, which include micro RNAs, but also 
Piwi-interacting RNAs, small interfering RNAs, etc. Although srnaMapper can be used 
on longer reads (greater than 100bp), it is expected to require significantly more time 
than other methods. This is clearly a limitation, and this is why srnaMapper does not 
support paired-ends reads.

Concerning results, it maps more reads, with fewer mismatches or indels, at more 
locations, than other widely used tools. Regarding time, srnaMapper is slower than tools 
which report much less hits, but on par, or faster than almost exhaustive tools.

We believe that srnaMapper could be the tool of choice for short-RNA reads, and will 
help exploring the “dark matter” of the small RNA.

Methods and materials
General description

In our implementation, the genome is indexed using the bwa suite, which creates a suffix 
array, together with the BW transform and the FM index. Since we will manipulate this 
structure like a tree, for the clarity of the discussion, we will refer to this structure as the 
genome tree, even though it is, stricto sensu, an array. The tool then stores the reads into 
a radix tree, where each path from the root to a terminal node stores a read.

Given a threshold k and a terminal node in the reads tree, the aim is then to find all the 
“best” corresponding nodes in the genome tree, with cost less than k. If k = 0 , the prob-
lem reduces to finding the common sub-tree of the genome tree and the reads tree. If 
k ≥ 1 , the problem could be described as an “approximate” sub-tree search. To the best 
of our knowledge, this problem has never been described so far.

In order to map the reads, we first map the reads root node to the genome tree with at 
most k errors. We thus have a list of corresponding genome nodes. Then, we recursively 
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add a nucleotide from the reads tree: we find the new corresponding genome nodes 
using the previously computed list. We explore the whole reads tree, find all the match-
ing genome nodes, and report the results when we find a terminal node.

The reads tree

The reads tree stores all the reads in a tree (see Fig. 9). Each path from the root node to 
an accepting node represents one, or several reads. Each accepting node is labelled with 
the corresponding number of reads, the read names, and a quality. The quality is the 
base-wise maximum of the qualities of the bases (see read CG in the example).

At first glance, changing the base quality may seem drastic. However, sequencing the 
same sequence several times increases the confidence that the bases called are correctly 
read.

In our implementation, we first store the reads into a suffix tree, where each node is 
labelled with exactly one nucleotide, and contains exactly (possibly empty) four children. 
Then, the tree is transferred to a space efficient radix tree, where each node is labelled 
with a sequence of 1 to n nucleotides, and has zero to four non-empty children.

Each terminal node of the reads tree contains several pointers to external data, which 
include the counts (for each input file), the base qualities, and the read names.

The mapping algorithm

Although the genome is stored in a suffix array, we will consider here that it is a stand-
ard suffix tree. The only difference is that the suffix array is read from right to left. As a 
result, in our implementation, the reads are reversed before being stored in the tree. In 
the rest of the presentation, for the sake of simplicity, we will consider that the reads are 
not reversed, and the genome is stored in a suffix tree.

In this context, mapping the reads with at most k errors reduces to, for each accept-
ing reads node, finding all the nodes of the genome tree with minimum distance. To do 
so, for each reads node, and for each i ∈ [0 . . . k] , we compute the set of nodes of the 
genome tree with distance i.

@read1
A
+
H
@read2
CG
+
HI
@read3
CG
+
IH

@read4
CGA
+
HHI
@read5
CGC
+
IIH
@read6
CT
+
II

ε

A C

G

A C

T

1
H

read1

2
II

read2,read3

1
HHI

read4

1
IIH

read5

1
II

read6

Fig. 9  A toy example of a fastq file (left), with 6 reads, and its representation as a tree (right). The read CGA​ is 
seen once, with quality HHI. The corresponding label in the reads tree is thus 1, HHI. The read GC is seen 
twice, with qualities HI and IH. The base-wise maximum of the qualities is kept: II, since I (quality 40) > H 
(quality 39). The read names are also stored in an external data structure
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Let us name R the reads tree, and G, the genome tree. We will consider that a tree 
T is a set of nodes, which contains a special node, the root: εT  . The path path(n) of 
a node n is the list of the nucleotides from the root to n. The distance dist(n, n′) is 
the Levenshtein distance between path(n) and path(n′) . Our aim is to fill a table t, 
which takes a reads node, and stores all the genome nodes such that the Levenshtein 
distance between the reads node and the genome nodes is not greater than the user 
threshold. More formally, t(r, i) = {g ∈ G, dist(r, g) = i} , for each r ∈ R , and i ∈ [0..k].

The base case is simple: for i ≤ k , the corresponding nodes of the root of the reads 
tree is the list of i insertions. Alternatively, it can be described as the set of paths of 
length i. More formally, t(εR, i) = {g ∈ G, |g | = i }, where |n| is the number of nucleo-
tides in path(n).

Given r ∈ R , let us suppose that we computed t(r, i), for all i ≤ k . We will now com-
pute t(r′, i) , where r′ is the child of r labelled with nucleotide c, noted ch(r,  c). As 
usual, there are several cases for filling recursively t: match, mismatch, insertion, and 
deletion. The match case adds the new nucleotide, c, to the previously computed list:

The mismatch case add all the other nucleotides, c′ �= c , to the previously computed list:

The insertion case (i.e. the nucleotide c is not matched to any nucleotide of the genome 
tree) simply is the previously computed list:

The deletion case adds a new nucleotide to the previously computed list:

where ch(g) is the set of all children of g.
Since the deletion case fills t(r′, i + 1) using the information collected by t(r′, i) , it is 

compulsory to fill t(r′, .) by increasing i.

Optimizations

We implemented several optimizations, which significantly accelerate the mapping.

Storing the reads tree as a list of trees

We found that, up to 8 nucleotides, the reads tree is almost complete. Moreover, map-
ping reads with size less than 8 is meaningless. So, in our implementation, in order to 
save space, we do not store the 8 first nucleotides of the reads tree. Instead, we use a 
vector of 48 trees, labelled AAA​AAA​AA, AAA​AAA​AC, etc. (see Fig. 10).

t(r′, i) =

g∈t(r,i)

ch(g , c)

t(r′, i + 1) =
⋃

g∈t(r,i),c′ �=c

ch(g , c′)

t(r′, i + 1) = tr(r′, i + 1) ∪ tr(r, i)

t(r′, i + 1) = tr(r′, i + 1)
⋃

g∈t(r′,i)

ch(g)
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Expecting a minimum number of errors first

In our implementation, we do not compute tr(.,  i) for all i ≤ k . We first try with no 
error. For instance, we suppose that we have mapped nodes r0 = εR, r1, . . . , rj−1 with 
no error. If, at node rj , we realize that t(rj , 0) = ∅ (i.e. rj does not match with no error), 
we backtrack and compute tr(rℓ, 1) for ℓ ≤ j . If it still fails, we proceed with 1, 2, ... 
errors.

It is likely that, at some point in the search, there exists a rℓ , with 0 < ℓ < j , such 
that t(rℓ, i) has been previously computed. In this configuration, we do not need to 
backtrack before rℓ to compute t(rj , i).

Storing several reads trees into a common one

When several fastq files are provided, they are merged into a unique tree, which keeps 
the counts of each read in every file. The whole tree is mapped, then several output 
SAM files are produced.

Parallelization

This problem is an embarrassingly parallel one, as long as each search starts from the 
root node. When several threads are allocated, each thread explores a unique part of 
the reads tree.

When several fastq files are provided, the threads can also build the reads trees in 
parallel, and merge them in parallel too.

Removing low complexity reads

Before mapping, we scan the reads tree, and compute the number of occurrences of 
each triplet (AAA​, AAC​, etc.). If the number of occurrences of a triplet (i.e. the num-
ber of times a triplet is found in the read) exceeds a user-given threshold, the read is 
removed.

Benchmarking

Tools used

We first selected the tools that gave the best results, according to a dedicated review 
[14]. The list included bowtie [7], bowtie 2 [8], bwa [9], and segemehl [19]. The review 
also included several optimized parameters, which we used in this benchmark, except 

AAA G

A

C

AAC T

Fig. 10  A toy example of a reads tree that stores AAAGA​, AAAGC​, and AACT​. There are as many (different) 
sequences as accepting nodes. The first read, AAAGA​, starts from the first element of the array, indexed by 0, 
which maps to AAA​ (using the usual encoding: A = 0, C = 1, etc.). In order to complete the read, we follow 
the arrow to node G, then accepting node A 
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that we set the maximum number of mismatches at 2. We will call here recipe the 
choice of tool, together with the choice of optimized parameters. In the review, the 
best recipes were:

•	 bwa.ng: with the -o 0 parameter, which forbids gaps;
•	 bowtie1.beststrata.m1: with the -k 1 -m 1 –best –strata parameters, which 

discards reads that map at different locations with the best score;
•	 bowtie1.mult.beststrata: with the -k 100 –best –strata parameters, which 

reports the 100 best hits;
•	 bowtie2.vs: with the –very-sensitive parameter, which maximizes the chances 

to find hits, at the expense of speed;
•	 bowtie2.vsl: with the –very-sensitive-local parameter, which does not try 

to map the whole reads, but only the longest part of it;
•	 segemehl: with default parameters.

We also added other mapping tools, which were not available at the time of the review, 
such as STAR [11], and HISAT  2 [10]. We used the parameters suggested by the 
ENCODE consortium for STAR, and parameters similar to bowtie2.vs (which gave good 
results) for HISAT 2, since HISAT 2 is a successor of bowtie 2. The new recipes are thus:

•	 STAR: –outFilterScoreMinOverLread 0 –outFilterMatchNminO-

verLread 0 –alignIntronMax 1, which suppresses filtering thresholds that 
are not adapted to sRNAs, as well as spliced alignment;

•	 HISAT  2: –very-sensitive –no-spliced-alignment, which discards 
spliced alignment.

Since srnaMapper aims at finding all loci for each read, we also wanted to compare to the 
multi-mapping flavors of the previous recipes. We added:

•	 bowtie2.vs.mult, bowtie2.vsl.mult and HISAT2.mult: we added the -a parameter;
•	 STAR.mult: we added the –outFilterMultimapNmax 100 parameter.

We also tried several “all mapper”, such as Yara [12], which are tools designed to quickly 
retrieve all hits. Other all mappers, such as FEM [20], Hobbes [21], and BitMapper2 
[22], based on q-gram filtering, could not be used here, since 21bp long miRNAs, with 2 
errors, should be split into q-grams that are too short to be useful.

The list of the recipes can be found in Additional file 1.

Data used

The Arabidopsis thaliana dataset was first published in [16]. It contains 6 samples, 
with 13 to 16 millions reads (see Fig. 11) of size 101 before trimming. All the tools were 
launched on trimmed reads, where the 3′-adapters were removed. After trimming, we 
observe the usual size profile (see Fig. 12), with peaks at 24bp (siRNAs), 21bp (miRNAs), 
16bp (shorter tRNA fragments), and 31bp (longer tRNA fragments). The reads were 
mapped on the TAIR10 genome assembly [23].



Page 16 of 19Zytnicki and Gaspin ﻿BMC Bioinformatics          (2022) 23:495 

The Homo sapiens dataset was first published in [15]. It contains 12 samples, with 6 
to 33 millions reads of size 51 before trimming. Similarly to the previous datasets, the 
peaks correspond to known sRNA classes, such as tRNA fragments and miRNAs. The 
reads were mapped to the GRCh38 genome assembly [24].

The datasets were downloaded from SRA, adapters were trimmed, and reads shorter 
than 15bp were discarded, as follows:

We also used two synthetic datasets, produced by [14]. Briefly, the authors first gener-
ated exact 21bp long reads, from known mature miRNAs of O. sativa. Second, they gen-
erated reads of size 16 to 25, commonly observed while sequencing mature miRNAs, 
and introduced errors, following the error distribution also observed in real-life data. 
The two datasets are called “osativa” and “osativa-mm” respectively. We noticed that 
some miRNAs (in miRBase v.21 [25]) did not correspond to any genome locus. In order 
to exclude these erroneous miRNAs, we mapped the reads with Yara, assumed that 
unmapped read were uncorrect (since Yara is an exhaustive tool), and discarded them.

fasterq-dump -e 6 -p accession_number

fastx_clipper -Q33 -a adapter -l 15 -i file.fastq > file_trim.fastq

Fig. 11  Number of reads per dataset
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We stated that a reads was correctly mapped if at least one hit overlapped with the 
miRNA that was used to create the read.

Analysis

For each tool, and each real-life dataset, we computed the number of reads mapped. We 
also computed the best hits, which are the loci which mapped with the minimum num-
ber of errors (mismatches and indels).

Some of the tools, such as bowtie  2, segemehl, Yara, and HISAT  2, do not have a 
parameter that controls the maximum number of mismatches. We thus applied a filter 
on the output SAM file, so that hits with more than 2 errors were removed from this 
analysis.

Evaluating bowtie 2 or HISAT 2 in “local mode” is not straightforward. In this configu-
ration, the mapping tool does not try to map the whole read, but a significant part of it. 
The unmapped part is flagged as “soft clipped” in the SAM file. We considered the soft 
clipped nucleotides as errors. For the sake of completeness, we provided a benchmark 
when soft clipping is not considered as errors in Fig. 1 (right panel). In this configura-
tion, other tools can map reads with less errors, since potential edition, or sequencing 
errors, located at the ends of the reads, are soft clipped. The number of reads that are 

Fig. 12  Distribution of the sizes of the reads after adapter trimming
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mapped by other tools, and not srnaMapper, in this context, is given in negative values 
in the right panel. Similarly, the number of reads which are not optimally mapped, or the 
hits that are missed by srnaMapper, is also provided in this panel.

Moreover, Yara does not make it possible to specify a fixed edit distance. Instead, the 
user can specify an error rate, which is the percentage of errors, given the read size. This 
is not well-adapted for sRNAs. We choose an error rate of 10 (which is two errors at 
most for a read or size 20), and discarded reads with more than 2 errors.

We also analyzed the presence of errors (mismatches and indels) in the alignments. 
Each error was then classified to “5′ ”, “interior”, or “3’ ”, depending on its localization on 
the read. To do so, we parsed the SAM file produced by the mapping tool. However, Yara 
does not indicate the substitutions in the CIGAR format, and does not fill the MD tag. 
Yara can thus not be used for finding possible editions, and have been excluded from this 
analysis.
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