

Sequencing, annotation, and pangenomics in wheat Frédéric Choulet

▶ To cite this version:

Frédéric Choulet. Sequencing, annotation, and pangenomics in wheat. Webinaire de l'AFBV, Association Française des Biotechnologies Végétales, May 2022, Clermont-Ferrand, France. hal-04090082

HAL Id: hal-04090082 https://hal.inrae.fr/hal-04090082v1

Submitted on 5 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

AFBV webinar, May 10th 2022

Sequencing, annotation, and pangenomics in wheat

Frédéric Choulet GDEC, Clermont-Ferrand, France

1. Introduction

- Wheat/*Triticeae*
- Pangenomics

Complex genome

- o 15 Gb
- Hexaploid AA-BB-DD
- 85% TEs
- Ref cultivar: Chinese Spring

Assembly (v1) 21 chromosomes (14.5 Gb)

Annotation (v1.1) o 107k genes

• 4 million TEs

IWGSC 2018

RQAs: Reference-Quality Assemblies of Triticeae genomes

*T. aestivum:*Chinese Spring + **17** accessions

• **SNP** genotyping of **4500** accessions representing world-wide diversity

Tettelin et al. PNAS 2005 8 genomes of *S. agalactiae*

Structural Variations (SVs)

1

core

N

organisms

Koonin and Wolf NAR 2008 \geq bacteria, archea (~700 genomes)

De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits

Ying-hui Li^{1-3,11}, Guangyu Zhou^{4,10,11}, Jianxin Ma^{5,11}, Wenkai Jiang^{4,11}, Long-guo Jin¹⁻³, Zhouhao Zhang⁴, Yong Guo¹⁻³, Jinbo Zhang⁴, Yi Sui¹⁻³, Liangtao Zheng⁴, Shan-shan Zhang¹⁻³, Qiyang Zuo⁴, Xue-hui Shi¹⁻³, Yan-fei Li¹⁻³, Wan-ke Zhang⁶, Yiyao Hu⁴, Guanyi Kong⁴, Hui-long Hong¹⁻³, Bing Tan¹⁻³, Jian Song¹⁻³, Zhang-xiong Liu¹⁻³, Yaoshen Wang⁴, Hang Ruan⁴, Carol K L Yeung⁴, Jian Liu⁴, Hailong Wang⁴, Li-juan Zhang¹⁻³, Rong-xia Guan¹⁻³, Ke-jing Wang¹⁻³, Wen-bin Li⁷, Shou-yi Chen⁶, Ru-zhen Chang¹⁻³, Zhi Jiang⁴, Scott A Jackson⁸, Ruiqiang Li^{4,9} & Li-juan Qiu¹⁻³

NATURE BIOTECHNOLOGY VOLUME 32 NUMBER 10 OCTOBER 2014

7 genomes of *Glycine soja* dispensable: ~20% genes

Extensive gene content variation in the *Brachypodium distachyon* pan-genome correlates with population structure

Sean P. Gordon¹, Bruno Contreras-Moreira ^{2,3,4}, Daniel P. Woods^{5,6}, David L. Des Marais ^{7,17}, Diane Burgess⁸, Shengqiang Shu¹, Christoph Stritt⁹, Anne C. Roulin⁹, Wendy Schackwitz¹, Ludmila Tyler¹⁰, Joel Martin ¹⁰, Anna Lipzen¹, Niklas Dochy ¹¹, Jeremy Phillips¹, Kerrie Barry¹, Koen Geuten ¹¹, Hikmet Budak ¹², Thomas E. Juenger¹³, Richard Amasino ^{5,6}, Ana L. Caicedo ¹⁰, David Goodstein ¹, Patrick Davidson¹, Luis A. J. Mur ¹⁴, Melania Figueroa ¹⁵, Michael Freeling⁸, Pilar Catalan ^{4,16} & John P. Vogel ¹⁸

NATURE COMMUNICATIONS | 8:2184 | DOI: 10.1038/s41467-017-02292-8 | www.nature.com/naturecommunications 2017

54 genomes of Brachypodium distachyon

The pangenome of an agronomically important crop plant *Brassica oleracea*

Agnieszka A. Golicz¹, Philipp E. Bayer², Guy C. Barker³, Patrick P. Edger⁴, HyeRan Kim⁵, Paula A. Martinez¹, Chon Kit Kenneth Chan², Anita Severn-Ellis², W. Richard McCombie⁶, Isobel A.P. Parkin⁷, Andrew H. Paterson⁸, J. Chris Pires⁹, Andrew G. Sharpe¹⁰, Haibao Tang¹¹, Graham R. Teakle³, Christopher D. Town¹², Jacqueline Batley² & David Edwards²

NATURE COMMUNICATIONS | 7:13390 | DOI: 10.1038/ncomms13390 | www.nature.com/naturecommunications 2016

9 genomes of *Brassica oleracea* dispensable: ~20% genes

Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice

Qiang Zhao¹, Qi Feng¹, Hengyun Lu¹, Yan Li¹, Ahong Wang¹, Qilin Tian¹, Qilin Zhan¹, Yiqi Lu¹, Lei Zhang¹, Tao Huang¹, Yongchun Wang¹, Danlin Fan¹, Yan Zhao¹, Ziqun Wang¹, Congcong Zhou¹, Jiaying Chen¹, Chuanrang Zhu¹, Wenjun Li¹, Qijun Weng¹, Qun Xu², Zi-Xuan Wang¹, Xinghua Wei², Bin Han¹ and Xuehui Huang^{13*}

NATURE GENETICS | VOL 50 | FEBRUARY 2018 | 278-284 | www.nature.com/naturegenetics

67 genomes of *Oryza sativa* + *rufipogon* ~20% genes

Core 26k Dispensable 16k

The Plant Cell, Vol. 26: 121-135, January 2014, www.plantcell.org © 2014.

Insights into the Maize Pan-Genome and Pan-Transcriptome^{MOPEN}

Candice N. Hirsch,^{a,b,1} Jillian M. Foerster,^{c,2} James M. Johnson,^{c,3} Rajandeep S. Sekhon,^{c,d} German Muttoni,^{c,4} Brieanne Vaillancourt,^{a,b} Francisco Peñagaricano,^e Erika Lindquist,[†] Mary Ann Pedraza,^f Kerrie Barry,[†] Natalia de Leon,^{c,d} Shawn M. Kaeppler,^{c,d} and C. Robin Buell^{a,b,5}

503 maize accessions (RNASeq) => ~8700 novel transcripts

Darracq et al. BMC Genomics (2018) 19:119 DOI 10.1186/s12864-018-4490-7

Sequence analysis of European maize inbred line F2 provides new insights into molecular and chromosomal characteristics of presence/absence variants

Aude Darracq^{1†}, Clémentine Vitte^{1†}, Stéphane Nicolas¹, Jorge Duarte², Jean-Philippe Pichon², Tristan Mary-Huard^{1,3}, Céline Chevalier¹, Aurélie Bérard⁴, Marie-Christine Le Paslier⁴, Peter Rogowsky⁵, Alain Charcosset¹ and Johann Joets^{1*}[•]

(CrossMark

Dispensable vs core genes:

- shorter, fewer introns
- less expressed, fewer conditions
- evolve more rapidly
- enriched in functions related to adaptation, response to env

High-resolution genetic mapping of maize pan-genome sequence anchors

Fei Lu¹, Maria C. Romay¹, Jeffrey C. Glaubitz¹, Peter J. Bradbury², Robert J. Elshire¹, Tianyu Wang³, Yu Li³, Yongxiang Li³, Kassa Semagn⁴, Xuecai Zhang⁵, Alvaro G. Hernandez⁶, Mark A. Mikel^{6,7}, Ilya Soifer⁸, Omer Barad⁸ & Edward S. Buckler^{1,2}

NATURE COMMUNICATIONS | 6:6914 | DOI: 10.1038/ncomms7914 | www.nature.com/naturecommunications 2015

=> "PAV SNPs exhibit enriched associations with traits"

The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor

Lei Gao [©]^{1,10}, Itay Gonda^{1,2,10}, Honghe Sun¹, Qiyue Ma¹, Kan Bao¹, Denise M. Tieman³, Elizabeth A. Burzynski-Chang⁴, Tara L. Fish⁵, Kaitlin A. Stromberg¹, Gavin L. Sacks[©]⁴, Theodore W. Thannhauser⁵, Majid R. Foolad⁶, Maria Jose Diez⁷, Jose Blanca⁷, Joaquin Canizares⁷, Yimin Xu¹, Esther van der Knaap⁸, Sanwen Huang[®]⁹, Harry J. Klee³, James J. Giovannoni[©]^{1,5*} and Zhangjun Fei[©]^{1,5*}

NATURE GENETICS | VOL 51 | JUNE 2019 | 1044-1051 | www.nature.com/naturegenetics

725 genomes of *Solanum cultivated* + *3 wild species* core: **74%** genes

"The most striking feature of the tomato pan-genome was its **high core** gene content (74.2%), as compared with those of <u>Arabidopsis thaliana</u> (70%), <u>Brassica napus</u> (62%), <u>bread</u> wheat (64%), <u>rice</u> (54%), wild <u>soybean</u> (49%) and <u>Brachypodium</u> <u>distachyon</u> (35%)"

The pangenome of hexaploid bread wheat

Juan D. Montenegro^{1,†}, Agnieszka A. Golicz^{1,2,†,‡}, Philipp E. Bayer^{2,†}, Bhavna Hurgobin^{1,2}, HueyTyng Lee^{1,2}, Chon-Kit Kenneth Chan², Paul Visendi¹, Kaitao Lai³, Jaroslav Doležel⁴, Jacqueline Batley^{1,2,5} and David Edwards^{1,2,5,}*

The Plant Journal (2017) 90, 1007-1013

16 Australian wheat cultivars (Illumina reseq) dispensable: ~35% of genes

15 wheat genomes assembled

- "12% of genes showed PAVs"
- "26% of the projected genes were found in tandem duplications, indicating that CNV is a strong contributor of genetic variation in wheat"

Multiple wheat genomes reveal global variation in modern breeding

https://doi.org/10.1038/s41586-020-2961-x

Sean Walkowiak^{1,2,41}, Liangliang Gao^{3,41}, Cecile Monat^{4,41}, Georg Haberer⁵, Mulualem T. Kassa⁶, Jemima Brinton⁷, Ricardo H. Ramirez-Gonzalez⁷, Markus C. Kolodziej⁸ Emily Delorean³, Dinushika Thambugala⁹, Valentyna Klymiuk¹, Brook Byrns¹, Heidrun Gundlach⁵, Venkat Bandi¹⁰, Jorge Nunez Siri¹⁰, Kirby Nilsen¹¹¹, Catharine Aquino¹², Axel Himmelbach⁴, Dario Copetti^{13,14}, Tomohiro Ban¹⁵, Luca Venturini¹⁶, Michael Bevan⁷, Bernardo Clavijo17, Dal-Hoe Koo3, Jennifer Ens1, Krystalee Wiebe1, Amidou N'Diaye1, Allen K. Fritz³, Carl Gutwin¹⁰, Anne Fiebig⁴, Christine Fosker¹⁷, Bin Xiao Fu², Gonzalo Garcia Accinelli¹⁷, Keith A. Gardner¹⁸, Nick Fradgley¹⁸, Juan Gutierrez-Gonzalez¹⁹, Gwyneth Halstead-Nussloch¹³, Masaomi Hatakeyama^{12,13}, Chu Shin Koh²⁰, Jasline Deek²¹, Alejandro C. Costamagna²², Pierre Fobert⁶, Darren Heavens¹⁷, Hiroyuki Kanamori²³, Kanako Kawaura¹⁵, Fuminori Kobayashi²³, Ksenia Krasileva¹⁷, Tony Kuo^{24,25}, Neil McKenzie⁷ Kazuki Murata²⁶, Yusuke Nabeka²⁶, Timothy Paape¹³, Sudharsan Padmarasu⁴, Lawrence Percival-Alwyn¹⁸, Sateesh Kagale⁶, Uwe Scholz⁴, Jun Sese^{25,27}, Philomin Juliana²⁸, Ravi Singh²⁸, Rie Shimizu-Inatsugi¹³, David Swarbreck¹⁷, James Cockram¹⁸, Hikmet Budak²⁹, Toshiaki Tameshige¹⁵, Tsuyoshi Tanaka²³, Hiroyuki Tsuji¹⁵, Jonathan Wright¹⁷, Jianzhong Wu²³, Burkhard Steuernagel⁷, Ian Small³⁰, Sylvie Cloutier³¹, Gabriel Keeble-Gagnère³², Gary Muehlbauer¹⁹, Josquin Tibbets³², Shuhei Nasuda²⁶, Joanna Melonek³⁰, Pierre J. Hucl¹, Andrew G. Sharpe²⁰, Matthew Clark¹⁶, Erik Legg³³, Arvind Bharti³³, Peter Langridge³⁴, Anthony Hall¹⁷, Cristobal Uauy⁷, Martin Mascher^{4,35}, Simon G. Krattinger^{8,36}, Hirokazu Handa^{23,37}, Kentaro K. Shimizu^{13,15}, Assaf Distelfeld³⁸, Ken Chalmers³⁴, Beat Keller⁸, Klaus F. X. Mayer^{5,39}, Jesse Poland³, Nils Stein^{4,40}, Curt A. McCartney⁹, Manuel Spannagl⁵, Thomas Wicker⁸ & Curtis J. Pozniak¹

Build and visualize pangenomes

GenomicusPlants - database version: 49.01 / Web-code version: 2021-08-15 - Dyogen Team

Gautereau et al. Plos Comput. Biol. 2020

pangenome graph of ~3000 Acinetobacter PPanGGOLiN

• Practical Haplotype Graph

 A sorghum practical haplotype graph facilitates genome-wide imputation and cost-effective genomic prediction

 Sarah E. Jensen¹ | Jean Rigaud Charles² | Kebede Muleta³ |

 Peter J. Bradbury^{4,6} | Terry Casstevens⁴ | Santosh P. Deshpande⁵ |

 Michael A. Gore¹ | Rajeev Gupta⁵ | Daniel C. Ilut¹ | Lynn Johnson⁴ |

 Roberto Lozano¹ | Zachary Miller⁴ | Punna Ramu⁴ | Abhishek Rathore⁵ |

 M. Cinta Romay⁴ | Hari D. Upadhyaya⁵ | Rajeev K. Varshney⁵ |

 Geoffrey P. Morris³ | Gael Pressoir² | Edward S. Buckler^{1,4,6} |

 Guillaume P. Ramstein⁴ |

(a) (b) Reference Taxon 1 Taxon 2 Taxon 3 Taxon 4 Taxon 5 Taxon 6 Taxon 7 Taxon 8 Taxon 9 Taxon 10 (c) (d) Reference Consensus 1 Consensus 3 (c) (d) Reference Consensus 2 Consensus 3 Consensus 4 Consensus 4 Consensus 5 Consensus 4 Consensus 4 Consensus 5 Consensus 4 Consensus 5 Consensus 5 Consensus 4 Consensus 5 Consensus 5 Consensus 5 Consensus 5 Consensus 6 Consensus 6 Consensus 7 Consensus

- for breeding programs
- based on a limited number of founder lines
- 0.01x skim-seq ->call SNPs with 5% errors

Development of the Wheat Practical Haplotype Graph database as a resource for genotyping data storage and genotype imputation

Katherine W. Jordan (D), ^{1,2,†} Peter J. Bradbury (D), ³ Zachary R. Miller,⁴ Moses Nyine (D), ¹ Fei He,¹ Max Fraser,⁵ Jim Anderson,⁵ Esten Mason,⁶ Andrew Katz,⁶ Stephen Pearce (D), ⁶ Arron H. Carter,⁷ Samuel Prather,⁷ Michael Pumphrey,⁷ Jianli Chen,⁸ Jason Cook,⁹ Shuyu Liu, ¹⁰ Jackie C. Rudd, ¹⁰ Zhen Wang,¹⁰ Chenggen Chu (D), ¹⁰ Amir M. H. Ibrahim, ¹⁰ Jonathan Turkus, ¹¹ Eric Olson,¹¹ Ragupathi Nagarajan,¹² Brett Carver,¹² Liuling Yan,¹² Ellie Taagen,⁴ Mark Sorrells,⁴ Brian Ward,¹³ Jie Ren,^{1,14} Alina Akhunova, ^{1,14} Guihua Bai,² Robert Bowden,² Jason Fiedler,¹⁵ Justin Faris (D), ¹⁵ Jorge Dubcovsky (D), ¹⁶ Mary Guttieri,² Gina Brown-Guedira,¹³ Ed Buckler,³ Jean-Luc Jannink (D), ³ and Eduard D. Akhunov (D), ^{1,*}

G3, 2022, 12(2), jkab390

- 65 wheat lines, exome capture
- 0.01x -> imputations with 8% errors

2. Wheat genome sequencing, annotation, A-B-D comparative genomics

Shifting the limits in wheat research and breeding using a fully annotated reference genome

International Wheat Genome Sequencing Consortium (IWGSC)*

Science 361, 661 (2018) 17 August 2018

\circ $\,$ Predicting genes is still NOT routine

GDEC Clermont, France – *Rimbert Leroy Choulet et al.* **PGSB** Munich, Germany – *Spannagl Twardziok et al.* **EI** Norwich, UK – *Swarbreck Venturini et al.*

IWGSC RefSeq (Chinese Spring)

• 107,891 genes

⊗ HighConfidenceGenesv1.1 (GOMAP annotation available)	
Sorghum bicolor	•
Hordeum vulgare var. distichum	
🔇 Aegilops tauschii	
S Triticum urartu	
⊗ Brachypodium distachyon	
S Oryza barthii	
S Zea mays +	
⊗ Triticum aestivum RNA-Seq (Pingault et al. 2014)	
S EMBL EST of Triticeae	+
S FgeneSH predictions	

- Impact of annotation methods on knowledge
- ➢ in 2017: 3 versions of Chinese Spring chr3B

chr3B BAC-by-BAC

Choulet et al. Science 2014

TGAC_v1

Clavijo et al. Genom Biol 2017

Chr. Survey Seq

IWGSC Science 2014

7264 genes

5728 genes -> (**26**% identical) 5862 genes (**12**% identical)

39k homeologous groups [including 29k LC genes]

[27% of genes are duplicates] ex: 207 PPRs

Polyploidy + single gene duplications

3. A-B-D Comparative Analysis of **TEs**

Micker et al. Genome Biology (2018) 19:03 https://doi.org/10.1186/s13059-018-1479-0 RESEARCH Open Access Impact of transposable elements on genome structure and evolution in bread wheat Thomas Wicker¹⁺, Heidrun Gundlach²⁺, Manuel Spannagl², Cristobal Uauy³, Philippa Borrill³, Ricardo H. Ramírez-González³, Romain De Oliveira⁴, International Wheat Genome Sequencing Consortium⁵, Klaus F. X. Mayer²⁶, Etienne Paux⁴ and Frédéric Choulet^{4*}

$\circ\,$ TE modeling with CLARI-TE and ClariTeRep

https://github.com/jdaron/CLARI-TE

Daron et al. Genom Biol 2015

Near-complete **TE turnover** since A-B-D divergence

o % TEs

Families

- Abundant families are the same on A-B-D
- > **0** family specific to 1 subgenome
- 76% of the fam. account for similar % on A-B-D (<2 fold-change)</p>

\circ TE trees

Independent TE evolution in the diploids AA, BB, DD

Some rare cases of TE amplif in the tetraploid AABB

$_{\odot}\,$ TE content around genes

\circ TE dynamics

A-B-D last common ancestor

- Most families were active
- Equilibrium
- -> Hypothesis of a structural role of TEs likely under selection pressure?

4. Structural Variations in *Triticum* using resequencing data

PhD Romain De Oliveira

Frontiers in Genetics | www.frontiersin.org

August 2020 | Volume 11 | Article 891

Structural Variations Affecting Genes and Transposable Elements of Chromosome 3B in Wheats

Romain De Oliveira¹, Hélène Rimbert¹, François Balfourier¹, Jonathan Kitt¹, Emeric Dynomant¹, Jan Vrána², Jaroslav Doležel², Federica Cattonaro³, Etienne Paux¹ and Frédéric Choulet^{1*}

Illumina reseq ~30x

De Oliveira et al. Front. Genet. 2020

Chinese Spring chr3B **~500** TE families

\circ TE CNVs

TE% = **84%** in all 45 accessions

No major difference of the number of TE copies for each superfamily

\circ TE CNVs

0 fam with log2ratio > 2
➤ At the family level: globally extremely conserved proportions

RESULTS for 45 *Triticum* accessions:

- from 7% to 19% TE-PAVs
- cumulated variable: 60% ISBPs

• TE PAVs – distribution of polymorphisms

5. Genomic variability affecting **TEs** in wheat **using assembled genomes**

PhD Nathan Papon (2019-2022)

- *Methodology for comparative genomics of complex genomes with Gbps of repeats*
- Extent of genomic variability?
- Active families? Amount of transposition events?
- Did polyploidization trigger a TE burst?

Multiple RefSeq now available

Ling et al. 2018

Results:

- Variable regions represent (pairwise):
 - inter-specific: 8-34% of the sequences
 - intra-specific: 4-6% of the sequences

Extent of variability due to recent insertions?

- $\sim \frac{5k-10k}{10k}$ transposition events / subgenome (<1% of the genome)
- 238 active families

Impact of polyploidy?

➢ none

			Recent TE insertions		
	Top	10 families	T. aestivum AABBDD	T. durum AABB	
RLC_famc1	А	B D	3032	3239	
DTC_famc2			177	191	
RLG_famc2			118	133	
RLG_famc1			259	228	
RLG_famc7			521	537	
RLG_famc5			67	66	
RLG_famc3			2312	2515	
RLG_famc4			36	27	
RLG_famc11			157	168	
RLG_famc10			104	106	

> Equilibrium

6. Sequencing the Renan genome

GigaScience, 2022, 11, 1–18 DOI: 10.1093/gigascience/giac034

RESEARCH

Long-read and chromosome-scale assembly of the hexaploid wheat genome achieves high resolution for research and breeding

Jean-Marc Aury ¹, Stefan Engelen ¹, Benjamin Istace ¹, Cécile Monat ², Pauline Lasserre-Zuber², Caroline Belser ¹, Corinne Cruaud ³, Hélène Rimbert ², Philippe Leroy ², Sandrine Arribat ⁴, Isabelle Dufau⁴, Arnaud Bellec ⁴, David Grimbichler ⁵, Nathan Papon², Etienne Paux ², Marion Ranoux², Adriana Alberti ³, Patrick Wincker ¹ and Frédéric Choulet ²,*

G. Doussinault, J. Jahier, M. Bernard et al. (1980's 90's 00's)

Genome Assembly

\circ Annotation of genes

107k HC genes Chinese Spring

~12% ambiguous mapping

- *denovo* gene annotation would generate to many differences
- gene mapping from a reference is NOT satisfying
 - Develop MAGATT

□ MAGATT (Marker-Assisted Gene Annotation Transfer for Triticeae)

□ Introgressions

• Conclusions

- Wheat has reached the pangenomic area
- Annotation matters
- Perspectives
- Build a wheat pangenome based on 8-12 founder lines
 - IWGSC/NSF proposal under review
 - GDEC, IPS2

Balfourier et al. 2018

Acknowledgments

o GDEC, INRAE, UCA, Clermont-Fd

Nathan Papon Romain De Oliveira Cécile Monat Caroline Juery Josquin Daron **Emeric Dynomant** Hélène Rimbert Philippe Leroy Pauline Lasserre-Zuber Jonathan Kitt Marion Ranoux Florence Exbrayat François Balfourier Etienne Paux Pierre Sourdille Sophie Bouchet

Collaborators

Jean-Marc Aury's team (Genoscope) Arnaud Bellec (INRAE CNRGV) Michael Alaux (INRAE URGI) Thomas Wicker (U Zurich) Heidrun Gundlach (PGSB Munich) Manuel Spannagl (PGSB Munich) Jan Vrana (IEB Olomouc) Jaroslav Dolezel (IEB Olomouc) Federica Cattonaro (IGA, Udine)

o IWGSC

K. Eversole, et al.

