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ABSTRACT

The aim of this study is built in two phases: to quantify the ability of novel milk metabolites to measure
between-animal variability in response and recovery profiles to a short-term nutritional challenge, then
to derive a resilience index from the relationship between these individual variations. At two different
stages of lactation, sixteen lactating dairy goats were exposed to a 2-d underfeeding challenge. The first
challenge was in late lactation, and the second was carried out on the same goats early in the following lac-
tation. During the entire experiment period, samples were taken at each milking for milk metabolite mea-
sures. For each metabolite, the response profile of each goat was characterised using a piecewise model for
describing the dynamic pattern of response and recovery profiles after the challenge relative to the start of
the nutritional challenge. Cluster Analysis identified three types of response/recovery profiles per metabo-
lite. Using cluster membership, multiple correspondence analyses (MCAs) were performed to further char-
acterise response profile types across animals and metabolites. This MCA analysis identified three groups of
animals. Further, discriminant path analysis was able to separate these groups of multivariate response/re-
covery profile type based on threshold levels of three milk metabolites: B-hydroxybutyrate, free glucose
and uric acid. Further analyses were done to explore the possibility of developing an index of resilience from
milk metabolite measures. Different types of performance response to short-term nutritional challenge can
be distinguished using multivariate analyses of a panel of milk metabolites.
© 2023 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Implications

security, livestock systems will be increasingly exposed to environ-
mental perturbations. Thus, there is a need for livestock with

This study proposes a non-invasive methodology to combine
and characterise the different milk metabolite responses into the
nutritional challenges and identify a gradient of animal behaviour.
Detection and analysis of these patterns can help reveal the resili-
ence of the animal and assessing the effects of a nutritional chal-
lenge on milk metabolites could provide parameters for
quantifying and understanding how animals cope with their envi-
ronment and thus better manage them.

Introduction

As a consequence of climate change, the scarcity of feed
resources and the concomitant pressures of achieving global food

* Corresponding author at: INRA UMR 791, Modélisation Systémique Appliquée
aux Ruminants (MoSAR), Paris, France.
E-mail address: benabdelkrim.ahmed@gmail.com (A.B. Abdelkrim).
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improved resilience, i.e. the capacity of an animal to adapt favour-
ably to environmental disturbances (Knap and Doeschl-Wilson,
2020; Friggens et al., 2021). In this context, resilience (not to be
confused with animal robustness that combines high production
potential with resilience to external stressors (Berghof et al.
2019)), here described as the pattern of response to and recovery
from a perturbation, is an increasingly important characteristic
on farmed animal (Friggens et al., 2017). Indeed, recent studies
have shown that there is a correlation between the degree of per-
turbation of milk yield curves through lactation (expressed as the
variability of milk yield) and frequencies of health events such as
mastitis and ketosis, as well as with productive longevity (Poppe
et al., 2020).

However, resilience is difficult to measure. This is in part because
it involves capturing dynamic features, such as rates of response and
recovery from a perturbation, and that requires high-frequency
repeated measures (Ben Abdelkrim et al., 2021). It is also in large

1751-7311/© 2023 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium.
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part because the full response to a perturbation is expressed across
multiple measures and thus requires a multivariate approach to bet-
ter characterise resilience. Sadoul et al. (2015 and 2017), clearly
showed the multivariate nature of resilience across physiological
and behavioural responses in rainbow trout. They also showed that
there was variability between animals in the relative weight of the
different components within the overall response to perturbation.
Similar results have been found in ruminants (Friggens et al.,
2016; Billa et al., 2020), which has led to the notion of multivariate
indexes for describing animal health status (Bramley et al., 2008;
Foldager et al., 2020). However, to date, appropriate methodologies
for sequentially filtering, combining, and then extracting the key
information from multiple measures of response/recovery remain
to be clearly described in the livestock domain.

Milk metabolite measures are attractive candidates for an
improved phenotyping of resilience as the requisite samples can
be readily obtained on-farm, are non-invasive, and could be inte-
grated into automated on-farm biomarker systems, examples of
which have been commercialised (e.g., Herd Navigator System™,
Delaval International, Tumba, Sweden & Lattec I/S, Hillered, Den-
mark). Accordingly, the aim of this study was to quantify the abil-
ity of milk metabolite measures to capture variability in the
response and recovery profiles to a short-term nutritional chal-
lenge by applying multivariate statistical methods to profile
shapes. Finally, this study explores the possibility of developing
an index of resilience from milk metabolite measures.

Material and methods
Animals and challenge design

At two different stages of lactation, sixteen primiparous lactat-
ing dairy goats were exposed to an underfeeding challenge consist-
ing of: a 7-d control phase on a standard total mixed ration (TMR)
fed ad libitum, followed by 2 d of straw-only feeding, and a 10-d
recovery phase on the TMR fed ad libitum. Prior to the start of each
challenge period, the goats had received the standard TMR for at
least 15 d. The first challenge was in late lactation (mean of days
in milk (DIM) = 249), and the second was carried out on the same
goats early in the following lactation (mean DIM = 28). The TMR
(20% chopped hay, 30% chopped dried alfalfa, 30% sugar beet pulp,
and 20% commercial dairy concentrate) and straw were distributed
twice daily, shortly after milking (at 0700 a.m. and at 0300 p.m.).
The goats were housed in individual pens. The experiment is
described in greater detail, together with the performance and
blood metabolite results in Friggens et al. (2016).

All procedures were conducted in accordance with the French
legislation on controlling experiments/procedures of live animals
and the European Convention for the protection of vertebrates
used for experimental purposes or for other scientific purposes
(European Directive 86/609).

Milk metabolite sampling analyses

Throughout the experiment, proportional milk samples were
taken individually at each morning and afternoon milking. In addi-
tion to standard analysis for milk fat (MFC) and milk protein (MPC)
(Fossomatic, Hillerad, Denmark), AM and PM milk were analysed
separately for pB-hydroxybutyrate (BHB), glucose-6-phosphate
(G6P), galactose (GAL), free glucose (F_G), uric acid (UA), lactate
dehydrogenase (LDH), triacylglycerol (TAG), isocitrate (Isocit),
cholesterol (Chol) and urea (U). Milk urea was analysed using flow
injection analysis (Nielsen et al., 2005) using a FIAstar 5000 Ana-
lyzer (Foss Tecator AB, Ho6gands, Sweden). Enzymatic-
fluorometric methods were used to analyse TAG and minor milk
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constituents: BHB (Larsen and Nielsen, 2005), LDH activity
(Larsen, 2005), UA (Larsen and Moyes, 2010), TAG (Larsen et al.,
2011), Chol (Larsen, 2012), Isocit (Larsen, 2014), F.G and G6P
(Larsen, 2015). GAL in milk was analysed by an analogous proce-
dure to Isocit, using b-galactose dehydrogenase (EC 1.1.1.48) to
start the fluorometric determination.

Statistical analyses

All statistical analyses were performed using R (RCore team, R
Foundation for Statistical computing, 2018, R: A language and
environment Statistical Computing, Version 3.14.0, Vienna, Austria,
http://www.r-project.org).

For statistical analysis, daily metabolite concentrations in milk
were calculated with am and pm values weighted according to
milk yield at those milking. During each challenge sequence
(pre-, during, and postchallenge) and for each goat, the individual
response profiles of the different milk metabolites were charac-
terised over the whole period. To describe the relationship
between the prechallenge, response to challenge and postchal-
lenge, a piecewise model with four parameters was used as
described by (Friggens et al., 2016). Briefly, this model consisted
of two steps. In the first step, for each milk metabolite and each
lactation stage, the time-series measures were characterised sepa-
rately using the following model:

Y= V] *I[SO + Vz * T*I(0<[§2) + (V3 * T 4 V4 * €% 2) *I(2<[§4)
+ Vs x o0y + E;

where y, is the milk metabolite measured at time ¢ (the start of the
challenge was designated to be t=0).Vq, V3, V3,V, and Vs corre-
spond at the prechallenge level, the linear slope of the response
during challenge, the linear component of the recovery, the quadra-
tic component of the recovery and the postchallenge level, respec-
tively. It must be emphasised that the Vs results from the
combination of V;toV,4. To compute and process these coefficients,
a dummy variable I is used with value 1 if the time condition is true
and 0 otherwise. E; is the error term and assumed to be Gaussian
and independent. In a second step, within the lactation stage, clus-
tering analysis was carried out based on the parameters Vy, ..., Vs
to identify the goats with a similar response profile in milk using
the expectation maximisation algorithm (Dempster et al., 1977)
and a fixed cluster number of 3 (see (Friggens et al., 2016). These
metabolite response profiles presented a fairly large variability,
not only at the level of these three clusters but also at the level of
the three phases of challenges. Within each lactation stage, the con-
struction of a matrix where the average time-courses of the differ-
ent milk metabolites during the prechallenge, challenge and
postchallenge phases were replaced by qualitative variables indi-
cating the concentration profiles. For example, H.M.L. represent
the individuals with the highest concentration profile for a given
metabolite during the prechallenge, the medium concentration pro-
file during the challenge and the lower concentration profile during
postchallenge phase. Multiple correspondence analyses (MCAs),
which is an extension of Correspondence Analysis (CA, Benzécri,
1973) for more than two variables (Greenacre and Blasius, 2006),
were performed on this matrix. This used all milk metabolites listed
above except TAG, which was considered to be an alternative mea-
sure of MFC. The MCA provides a way to visualise, across the full
panel of metabolite, associations between different response-
recovery profile shapes. It also allows visualisation of the position
of the different goats within these multivariate associations.
Visualisation of the relationships among metabolite profiles in
the first and second axes resulting from the MCA (which accounted
for the greatest proportion of variance) highlighted a grouping of
the different goats studied (see results). To confirm this grouping,
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a Gower distance matrix (Pavoine et al., 2009) was calculated, and
the partition around medoids clustering algorithm (Kaufman and
Rousseeuw, 2005) was performed to find the optimal number of
clusters. Intrinsic clustering quality was analysed using the silhou-
ette coefficient as suggested in Rousseeuw (1987) and Pollard and
van der Laan (2002). On the basis of the results obtained from the
clustering analysis, a decision tree was constructed by using the
classification and regression trees method (Struyf and DZeroski,
2005). The objective was to predict which metabolites were most
involved in the discrimination between goats in the different iden-
tified groups. The trees were pruned to minimise the cross-
validated error. This decision tree procedure was also carried out
on the following quantitative variables from the piecewise model;
V1 which characterises the prechallenge metabolite concentra-
tions, and V, which characterises the amplitude of the response
to the challenge.

In order to explore the extent to which the variation in milk
metabolite profiles may be linked to variation in performance,
the above analyses approaches were also conducted on the follow-
ing panel of performance measures: DM intake, milk yield, TAG
and milk protein content reported by Friggens et al. (2016). This
allowed characterisation of the relation between milk metabolite
profiles and overall performance profiles using the same approach
basis. Then, Partial Least Square regression (Wold et al., 2001) was
carried out in order to determine a relation between predictor vari-
ables (milk metabolites) and the performance variables. This pro-
cedure consists of generating linear combinations of predictors,
via principal component rotation, in order to best explain variance
in the dependent variable (Carrascal et al., 2009). A combined per-
formance variable was created by fitting the overall trend of the
relationship between the first two axes of the MCA on DMI, MY,
TAG, and MPC profiles, using a cubic spline. The cubic spline (that
best represents animal performance) was chosen as the ‘x’ variable,
and the five first MCA dimensions of the milk metabolite values
were selected as individual ‘y’ variables. Pearson’s correlation coef-
ficients between the predicted values and the observed values
were also calculated, to determine the predictive ability of the
model.

Response profiles index

Exploratory analysis to construct a response profiles index was
carried out using as a basis the two first dimensions of the MCA,
from the milk metabolite profiles. This index combines the multi-
variate responses of the different milk metabolites into one mea-
sure. The first step was to fit the overall trend of the relationship
between the first two axes using a cubic spline. Thereafter, the
response profiles index was calculated by multiplying the fitted
values obtained by the smoothing spline and the eigenvalues per-
centage of variance of each axis. In order to simplify the scale, and
for convenience, it was linearly transformed into a 0-10 range. To
be able to interpret this index, the performance profile categories
were projected in the same planes as supplementary variables.

Results and discussion
General milk metabolite responses to the nutritional challenge

The average time-courses of the different milk metabolites,
reflecting different facets of energy metabolism, during the
prechallenge, challenge and postchallenge phases are shown in
Fig. 1 and Table 1, for both the late- and the early-lactation chal-
lenge periods. Similar results have been reported in dairy cows.
Indeed, Billa et al. (2020) recently reported similar time trends of
milk concentration of G6P, F_G and Isocit when 18 cows
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underwent 6 d of feed restriction. Increased milk Isocit and G6P,
and decreased milk Glucose, concentrations during feed restriction
are coherent with previous observations in starved goats
(Chaiyabutr et al., 1981).

The rapid mobilisation of body fat induces a reduction of fatty
acid synthesis (Peaker et al.,, 1981) and could explain increased
isocitrate during the challenge. Indeed, the increase in Isocit con-
centration is strongly correlated with decreased synthesis of fatty
acids (Garnsworthy et al., 2006). The increase in milk G6P content,
which is used for galactose synthesis and NADPH and ATP produc-
tion, may reflect a change in this pathway in mammary epithelial
cells during challenge, or alternatively a decrease in plasma insulin
and low de novo FA synthesis (Billa et al., 2020).

The UA increase we observed may be due to the marked drop in
dietary protein intake during the challenge. The straw-only feeding
shifts the balance of dietary protein towards microbial protein syn-
thesis. It is also possible that milk UA may reflect the intra-rumen
changes due to the dietary perturbation since it has been suggested
as an indicator of microbial protein synthesis (Larsen and Moyes,
2010).

BHB in milk generally reflects dietary energy shortfalls coupled
with increased lipid mobilisation associated with glucose shortage
to oxidise NEFA (Klein et al., 2013). However, experimental feed
restrictions in literature show quite contrasted results for effects
on milk BHB. Billa et al. (2020) found a significant decrease in
BHB followed by an increase after refeeding in late lactation but
found an increase in early lactation during the feed restriction.
Bjerre-Harpoth et al. (2012) also reported an increase in early-lac-
tation cows after 96 h of feed restriction. Thus, the net changes in
milk BHB will be affected both by the impact of diet on BHB and
the effects of lipid mobilisation on metabolism. Increase in BHB
in challenge conditions may also reflect body lipid mobilisation
associated with lower glucose (see Friggens et al.,, 2016; Leduc
et al., 2021).

Milk LDH concentrations are generally related to mammary
infections (Larsen, 2005; Chagunda et al., 2006; Nyman et al.,
2014). In goats, LDH is a reliable biomarker of udder inflammatory
processes but parity and lactation stage might influence its concen-
tration (Stuhr et al., 2013). As the challenge applied in the present
study was nutritional, it was not expected to impact udder health
status directly. However, Foldager et al. (2020) also found an
increased LDH milk concentration in cows with physiological
imbalance. Two scenarios are possible: the first is a local upregula-
tion of LDH synthesis in order to increase ATP flux from Glucose as
LDH is a common enzyme found in all glycolytic pathways. The
second is that feed restriction induced increases in permeability
of mammary cell junctions allowing more plasmatic LDH to flow
to mammary gland.

Bjerre-Harpoth et al. (2012) found an increase in plasma choles-
terol during feed restriction. Gross et al. (2015) found that choles-
terol milk concentration was not affected by a 3 weeks of feed
restriction starting at 100 DIM whereas plasma concentration
was increased. One hypothesis is that the milk concentration of
cholesterol was not affected during feed restriction because it
occurred in mid-lactation. Indeed, this study concluded that
cholesterol metabolism was impacted by the stage of lactation.

Descriptive analysis of response-recovery profiles using univariate
clustering

One of the aims of this paper is to present a sequential method-
ology for moving from univariate description of each milk metabo-
lite separately, to a multivariate description. This allows an
improved description of variation between animals in their overall
ability to cope with perturbations. The first step in this sequence
was to characterise individual profile shapes into clusters. For each
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Fig. 1. The average time trends of the different goat milk metabolites analysed through the prechallenge (before day 0), challenge (day 0-2), and postchallenge (day > 2)
phases in both late (solid line) and the following early-lactation (dashed line) periods. GAL: galactose, G6P: glucose-6-phosphate, F_G: free glucose, UA: uric acid, BHB: B-
hydroxybutyrate, LDH: lactate dehydrogenase, U: urea, Chol: cholesterol, TAG: triacylglycerol, and Isocit: isocitrate.

Table 1

Average amplitudes of response (i.e. the change relative to the prechallenge level) of goat milk metabolites to a short-term nutritional challenge in late lactation and in the
following early lactation. Average levels pre- and postchallenge are also given (SD in parentheses).

Item

Late

Early

Prechallenge

Amplitude of response

Postchallenge

Prechallenge

Amplitude of response

Postchallenge

GAL (mmol/L)
G6P (mmol/L)
F_G (mmol/L)
UA (umol/L)
BHB (pmol/L)
LDH (U/l)

U (mmol/L)
Chol (pmol/L)
TAG (mmol/L)
Isocit (mmol/L)

0.10 (0.01)
0.17 (0.01)
0.08 (0.002)
56.10 (6.69)
68.55 (4.00)
5.88 (0.59)
3.82 (0.08)
308.41 (50.86)
32.07 (7.01)
0.12 (0.01)

0.24
0.31
0.15
120.18
229.23
89.67
10.59
886.83
61.86
0.22

0.113 (0.02)
0.157 (0.01)
0.100 (0.04)
81.48 (16.88)
79.33 (6.29)
13.03 (4.17)
2.684 (0.37)
380.59 (54.65)
35.36 (7.91)
0.107 (0.01)

0.06 (0.003)
0.12 (0.002)
0.12 (0.008)
88.95 (1.10)
91.57 (6.14)
6.23 (0.97)
3.87 (0.53)
160.76 (11.83)
37.63 (3.38)
0.15 (0.01)

0.18
0.37
0.15
126.29
227.12
64.01
11.00
398.87
61.29
0.33

0.07 (0.005)
0.12 (0.004)
0.13 (0.001)
97.47 (15.10)
61.01 (6.61)
5.63 (1.48)
2.33 (0.51)
21229 (33.21)
38.72 (3.16)
0.13 (0.02)

Abbreviations: GAL = galactose, G6P = glucose-6-phosphate, F_G = free glucose, UA = uric acid, BHB = B-hydroxybutyrate, LDH = lactate dehydrogenase, U = urea, Chol = c-
holesterol, TAG = triacylglycerol, and Isoci = isocitrate.

milk metabolite, clustering was carried out to identify types of
response-recovery profile within each lactation stage. Because a
preliminary clustering with no limit on the number of clusters
showed that the most frequent number of clusters identified for

each metabolite was 3, the number of clusters was then fixed at
three for all metabolites to facilitate subsequent analyses (the
results of clustering with no fixed cluster number are shown in
Supplementary Table S1). Examples of response-recovery profile
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types are shown in Fig. 2 (all the types of response-recovery pro-
files for all metabolites are shown in Supplementary Fig. S1a-c).

This permitted analysis of the extent to which cluster type was
reproducible for individual goats between late lactation and early
lactation. Within metabolite, each of the three profiles was coded
using the 3-letter nomenclature of each profile type (e.g. Fig. 2c).
As shown in Table 2, 22 different profiles were noted (10 profiles
present in both periods, four present only in late-lactation and
eight present only in early-lactation).

This increased individual variation in response profiles to nutri-
tional challenges in early lactation has been reported by Friggens
et al. (2007), Moyes et al. (2009) and Bjerre-Harpoth et al. (2012)
and reflects the diversity of response pathways that are fully
expressed when facing the severe physiological imbalance that
occurs during early lactation.

Multivariate analysis of response-recovery clusters
To characterise integrated response profile types across

metabolites, we used MCA on the cluster classes for all the traits
(Fig. 3; for further details concerning the correlations between
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variables and axis and contribution of the variable categories for
the construction of the axes, see Supplementary Figs. S2 and S3).

The simultaneous projection of individuals and of the different
response profiles onto the first two dimensions of the MCA
explained 47.9 and 36.5% of the total variability in late (Fig. 3a)
and early lactation (Fig. 3b), respectively. Visual inspection of the
MCA for the late-lactation response/recovery profiles showed the
presence of three groups of individuals. These three groups were
separated principally by the variables F_G, LDH, BHB, UA and
G6P. The MCA biplot concerning the early-lactation challenge also
showed three groups but less well separated. The variables which
contributed to the separation between these early-lactation groups
were F_G, LDH, Isocit and BHB.

F_G and LDH appear to be the most discriminant metabolites for
determining the membership of all clusters. That agrees with the
results of Foldager et al. (2020) who found that F_G and LDH were
the most important metabolites to distinguish physiologically
imbalanced cows from normal ones at 35 DIM of second lactation.
Different F_G profiles may reflect different challenge intensities
(for lower vs higher milk yield levels) but also different abilities
to buffer the challenge via the mobilisation of body reserves.

a) b)
Late Early
0.5 0.5 =
- 0.3 0.3 —
S
2
01 4 J\,_ 0.1
o - o -
| | | | | | |
-4 0 4 -5 0 5 10
Days from start of challenge Days from start of challenge
©) Late Early
2 >
Cluster Cluster
H-H-H 1= = = > H-M-H
3 : 5
0 .
o B |
c2a
Cluster |_ . Cluster
M-M-M A== 2 == 3> L.L-M
8 —_ 8
1 - . _l
) .
Cluster | — . cl
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L-L-L HEh kiam e > M-H-L
5 31 ; 3
(M= | -

Fig. 2. Classes of response-recovery profile for Isocitrate (Isocit) in (a) late and following (b) early lactation and (c) visualisation of numbers of goats shifting between the
three predefined clusters (arrow) with H: high, M: medium and L: low, which indicates the concentration level of the metabolite at each phase (prechallenge, challenge,

postchallenge) of the challenge.
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Table 2
The different response profiles detected in goats in late and in following early lactation (in parentheses the number of goats who expressed this kind of profiles for a given
metabolite).
LPreC! LC? LPostC> PN* Late Early
H H H H.H.H. 14 (5: UA; 3: Isocit; 4: GAL; 2: G6P) 4 (UA)
H H M H.H.M. 0 0
H H L HHL 0 1 (TAG)
H M H H.M.H. 10 (5: LDH; 4: F_G; 1: Chol) 22 (3: U; 5: Isocit; 2: GAL; 9: G6P; 3: Chol)
H M M H.M.M. 3 (1: U; 2: TAG) 5 (BHB)
H M L H.M.L. 0 5 (LDH)
H L H H.L.H. 0 1 (F.G)
H L M H.LM. 9 (BHB) 0
H L L H.L.L 0 0
M H H M.M.H. 5 (BHB) 0
M H M M.M.M. 20 (5: UA; 8: Isocit; GAL: 7) 5 (F_G)
M H L M.L.M. 0 20 (4: UA; 9: LDH; 7: Chol)
M M H M.HM. 7 (1: TAG; 6: Chol) 10 (3: U; 1: GAL; 6: G6P)
M M M M.H.L. 0 3 (Isocit)
M M L M.H.H. 10 (2: U; 8: TAG) 8 (BHB)
M L H M.L.H. 0 0
M L M M.L.M. 0 0
M L L M.L.L. 24 (9: LDH; 5: G6P; 10: F_G) 0
L H H LHH. 0 2 (LDH)
L H M LHM. 2 (LDH) 0
L H L LH.L. 2 (BHB) 16 (10: F_G; 6: Chol)
L M H LM.H. 2 (F.G) 12 (TAG)
L M M LM.M. 9 (G6P) 3 (TAG)
L M L LM.L. 0 8 (UA)
L L H LLH. 0 0
L L M LLM. 0 8 (Isocit)
L L L LLL 43 (13: U; 6: UA; 5: GAL; 5: TAG; 5: Isocit; 9: Chol) 27 (10: U; 13: GAL; 1: G6P; 3: BHB)

Abbreviations: H = high, M = Medium, L=_Low, GAL = galactose, G6P = glucose-6-phosphate, F_G = free glucose, UA = uric acid, BHB = B-hydroxybutyrate, LDH = lactate

dehydrogenase, U = urea, Chol = cholesterol, TAG = triacylglycerol, and Isoci = isocitrate.

T Levels of metabolite concentration during the prechallenge.

Levels of metabolite concentration during the challenge.
Levels of metabolite concentration during the postchallenge.

2
3
4 Profiles name.

When considered from the perspective of finding candidate
biomarkers of different response types, it is of interest to know
which panel of the milk metabolites are key for distinguishing
the groupings of integrated response-recovery types. Accordingly,
a classification tree was constructed using the information from
the MCA on which metabolites accounted for most of the variation
between groups. In late lactation, only two metabolites (BHB and
F_G) were necessary to correctly assign goats to the appropriate
cluster (Fig. 4a). Likewise, in early lactation, only two metabolites
were needed, these were LDH and F_G (Fig. 4b). Whilst it would
be unwise to give too much importance to these decision tree
results, given that they are based on only 16 individuals, if these
findings hold when tested on a larger population, they would sug-
gest that it should be possible to phenotype metabolic response
types using a limited set of non-invasive milk measures.

Relation between milk metabolite profiles and performance profiles

In order to frame these results in the context of differences in
resilience, these findings need to be related to performance and
recognised indicators of resilience. Accordingly, and given recent
literature showing a relationship between milk yield responses
and indicators of resilience (Adriaens et al., 2020; Poppe et al.,
2020), we examined the relationship between the multivariate
measures of milk metabolite profiles and the performance
responses of the same goats. The aforementioned literature sug-
gests that animals with the greatest responses in milk (and intake)
would be the least resilient. In order to establish the link between
milk metabolites and animal performance using a comparable per-
formance dataset, the above multivariate clustering analyses were
repeated on the MY, DMI, MPC and MFC. The plots for the first and
the second dimension are shown in supplementary Fig. S4. In late

lactation, these plots showed a performance gradient in the first
dimension. This gradient was also noted in early lactation but less
markedly. Focusing on the two extremes of these dimensions, it is
possible to establish links between groups determined separately
by the MCA on metabolites and the MCA on the performance. This
was further explored by capturing the overall trend in the milk
measures MCA using a cubic spline (Fig. 5).

The spline curve was used in order to summarise into one con-
tinuous variable the information of the two first components of the
milk metabolites MCA. The magnitude of correlations between Par-
tial Least Square predicted values and the “observed” values of the
performance spline (Supplementary Fig. S5) was 0.78 for the late
period and 0.70 for the early period. These correlations clearly
show the link between the model to summarise animal perfor-
mance and the variation in metabolite profiles. The underlying
interpretation is that there is a continuum of metabolic pathways
that can be linked to a continuous value of resilience. It should
be noted that the term “resilience” is used here specifically to
mean “resilience in performance to a nutritional challenge”.

A response profiles index was then calculated from the milk
metabolites. Interestingly, the shape of this index allows two dis-
tinct points in the multivariate space representing the distribution
of milk metabolite profiles, in other words, two supposed sets of
metabolic pathways, to get the same “resilience value”. Conceptu-
ally, it is generally considered that a given level of resilience can be
achieved by different combinations of its underlying component
mechanisms (Kitano, 2004; Bateson and Gluckman, 2012).

The response profiles index was then projected on the same
plane as the MCA for the performance data in order to check to
what extent the proposed response profiles index fits with the per-
formance profiles (Fig. 5). The response profiles index was created
solely from the milk metabolites MCA. Fig. 5 shows the numerical
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Fig. 3. Biplot of the first two dimensions of multiple correspondence analyses of profile classes across all measures carried out on goats in late lactation (a) and in early
lactation (b) with H = high, M = medium and L = low, GAL = galactose, G6P = glucose-6-phosphate, F_G = free glucose, UA = uric acid, BHB = p-hydroxybutyrate, LDH = lactate
dehydrogenase, U = urea, Chol = cholesterol, TAG = triacylglycerol, and Isocit = isocitrate.
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Fig. 5. The smoothed trend in goat milk metabolite profiles (R -index) overlayed on the multiple correspondence analyses (MCAs) for performance measure profiles, with

value for these profiles indicate as measure-profile code (e.g. TAG-HHL) with H = high, M = medium and L =
DM intake, MY = milk yield, MPC = milk protein content and TAG = triacylglycerol.

is shown as asterisks shaded according to their R-index. DMI =

relation between the response profiles index, which describes the
variation of metabolites profiles of goats using the two first dimen-
sions of the MCA, and the MCA-score for the performance
variables.

Comparing the distribution of goats, metabolite profiles, perfor-
mance profiles and the representation of the response profiles
index on the same plane highlights a relationship between milk
metabolites derived response profiles index and the performance
profiles. During the late-lactation period, the horizontal element
of the response profiles index trend is strongly associated with
milk yield and DMI response-recovery profiles, with decreasing
performance levels from left to right. The vertical element of the
response profiles index was more associated with the different
profiles in milk protein and milk fat. The goats forming the first
group (most to the left) take response profiles index values ranging
from 2.06 to 4.22, with values ranging from 8.80 to 9.32 for the sec-
ond group, and from 3.32 to 5.41 for the third group. The results

low. Individual goat position in positions in the performance MCA

shown in Fig. 5 for late lactation suggest a link between profiles
of milk metabolites during a nutritional challenge and the ability
of the goat to deal with the challenge.

The associations between the response profiles index and the
performance profiles were not so clear in the early-lactation per-
iod. In the early-lactation period, relative differences in response
between profiles in both milk yield and DMI were less than in
late lactation, which perhaps explains the weaker link between
these performance measures and the R-index in early lactation.
Conversely, differences in milk fat content were greater in early
than late lactation, and this is reflected in the stronger associa-
tion of the milk composition measures with changing R-index
in early lactation. The differences between early and late lacta-
tion in the relationship between the R-index and performance
profiles are in line with what would be expected from consider-
ations of the homeorhetic changes in nutritional physiology
through lactation.
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This step, projecting the milk metabolite index onto the perfor-
mance MCA, allows us to interpret the value of the index created,
relative to the overall performance profile, both in qualitative
terms (what are the biological underlying mechanism?) and in
quantitative terms (whether a high, medium, or low index should
be preferred in term of resilience). It suggests that there is informa-
tion on animal adaptation mechanisms that can be obtained from
non-invasive milk measures. Supporting this idea, Grelet et al.
(2019) and Foldager et al. (2020) concluded that a set of milk
metabolites and enzymes close to the one used in the present
study was predictive for the physiological imbalance of the cows.
In addition, several studies have focused on the characterisation
of lactation curves in order to index the resilience value of individ-
ual animals (Berghof et al., 2019; Poppe et al., 2020). Our results
strongly support the assumption of considering milk profiles as a
potential index of resilience (Adriaens et al., 2020;Poppe et al,,
2020).

Conclusions

This study proposes a combination of methodology (nutritional
challenge x statistical approach of animal data) to extract from a
non-invasive approach (milk), different patterns of aggregated
response to build a response index in goats. Although the number
of animals was small, the use of multivariate tools made it possible
to appreciate the diversity of the forms of responses to this chal-
lenge. Through the use of MCA and clustering methods, the identi-
fication of an expression gradient of these reactions which define
themselves in three groups has been possible. These methodolo-
gies also allowed the identification of non-invasive biomarkers
from milk, which makes it possible to differentiate the three
groups of profiles. Based on these data, a response index has been
developed which may be used as an indicator of resilience.
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Supplementary material to this article can be found online at
https://doi.org/10.1016/j.animal.2023.100727.
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