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Abstract: Canine inflammatory bowel diseases (IBD) are of increasing interest in veterinary medicine.
They refer to complex and debilitating conditions of dogs’ gastrointestinal tract. Although little
evidence for causal inferences is currently available, it is believed that IBD pathophysiology entails
intricate interactions between environmental factors, the intestinal immune system, and the microbial
communities that colonize the gut. To better understand the mechanisms underlying these disorders,
leveraging factors associated with the development of these diseases is imperative. Of these factors,
emerging evidence supports the role of dietary patterns as key players influencing the composition
and function of gut microbes, with subsequent effects on health and disease. In this review, we partic-
ularly focus on addressing IBD in dogs and discuss how specific nutrients may elicit or relieve gut
inflammation. Gaining mechanistic insights into such interplay and the underpinning mechanisms is
key to inferring dietary recommendations, and setting up new and promising therapeutics.

Keywords: canine inflammatory bowel disease (IBD); diet; gut microbiota; holobiont

1. Introduction

As we continue to place increasing focus on our health and wellbeing, this mindset
is reflected in our pets’ lives. Inflammatory bowel diseases (IBD) are multifactorial and
debilitating diseases featuring a chronic immune response, the disruption of intestinal
homeostasis, and the altered composition and function of the gut microbiota, referred to as
dysbiosis [1,2]. Evidence has shown that even short-term dietary changes may influence
gut microbiota composition. Bacterial shifts are likely to be observed in humans within
1–3 days of extreme dietary changes, such as switching from an all-meat to an all-plant diet,
being introduced [2]. A few similar studies have been performed to explore the effects of
dietary interventions on canine gut microbiota composition and function [3–7]. Most of
these studies in dogs only assess the microbial composition changes after a diet adaptation
period of 10 days on average, preventing the detection of earlier changes. As dysbiosis has
been linked to chronic intestinal inflammation in dogs [8–11], evidence suggests the role of
diet in managing the disease. The usefulness of dietetics has been known for a long time
in the treatment of IBD in dogs, particularly for the modulation of digestibility and the
control of immune reactions [12]. Epidemiological data in humans and pets, and studies in
rodent models have shown that low-fiber diets and food additives are likely to compromise
the intestinal barrier function and contribute to a myriad of metabolic or inflammatory
disorders, including inflammatory bowel diseases (IBD) [13–16]. Recently, the pet food
industry has seen significant shifts and growth [17]. Indeed, the global pet food market
value is expected to reach 118.83 billion United States Dollar (USD) in 2025, growing by
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5.4% in the period of 2021 to 2025 [17]. Notable trends include the emergence of high-
protein diets based on new protein sources, high insoluble fiber diets, raw meat diets, as
well as insect-based pet food products that have made their way into the market [18]. Such
schemes have been shown to impact gut motility and shape the gut microbiota, thereby
influencing the overall health of the host [19–21]. Gut microbiota is factually known to play
key roles in maintaining gut physiology [22,23]; it comprises a highly complex community
that evolves and adapts to its host over the life course, and shows remarkable plasticity to
environmental changes, particularly to diet [24,25].

Diet may act as a risk factor when unbalanced or highly processed, but also as a disease
management strategy for gastrointestinal (GI), renal or dermatological diseases [26,27].
More recently, the relationship between diet, microbiota, and gastrointestinal inflammation
has emerged as a challenging area of research. Therefore, we aim in this review to discuss
dietary interventions in dogs, with a scope focused on a better understanding of the
dietary-microbiota interplay in IBD.

2. Gut Microbiota in Canine IBD

Growing evidence suggests that bacteria present in a dog’s gut may play an essential
role in its health and disease [28]. The gut microbiota of healthy dogs is known to comprise
three main phyla: Fusobacterium, Bacteroidetes, and Firmicutes [29]. Within this core
bacterial community, several taxa are members of the phylum Firmicutes, including bacilli
and clostridia, most of which are short-chain fatty acid (SCFA) producers, such as Faecal-
ibacterium spp. [30,31]. Bacteroidetes is another prominent phylum and includes the genera
Bacteroides and Prevotella [32]. Similarly, the phylum Fusobacterium has been commonly
associated with health in dogs [32].

Key roles of the gut microbiota include protecting against pathogens, shaping the
immune system, and providing beneficial metabolites to host epithelial cells through
fermentative reactions [28]. Microbial metabolites may influence host health, gut microbes,
and multiple interacting communities, thereby maintaining the holobiont symbiosis [33].
They provide other beneficial effects, notably, immunomodulatory, anti-diarrheal and
regulatory effects of GI motility [34]. Gut microbiota is also involved in the metabolism of
bile acids (BA) as potential mediators linking gut bacteria to metabolic and inflammatory
disorders [28].

Links between gut microbiota composition/function and a myriad of diseases have
been widely reported. In fact, it was demonstrated in mice that gut microbiota causes
several pathologies, including obesity and dyslipidemia [35,36]. Evidence suggests that
microbial ecosystem imbalance or dysbiosis has been correlated with several inflamma-
tory diseases in dogs, such as IBD [37]. Intestinal dysbiosis in dogs with IBD is often
characterized by a decrease in bacterial richness and diversity [30]. Metagenomic analy-
ses have highlighted a lower abundance of Firmicutes, while Proteobacteria increases in
dogs with IBD compared to dogs with a healthy status [38]. The abundance of Faecalibac-
terium spp. and Fusobacterium spp. were also significantly decreased in dogs with IBD
relative to healthy controls [39]. In addition, higher abundances of adherent and invasive
Escherichia coli (AIEC) were noted in colonic biopsies from dogs with granulomatous colitis,
thus highlighting a potential link with gut inflammation [40]. Metabolic alterations have
also been reported, including impaired short chain fatty acids (SCFAs) and tryptophan
metabolites production, which may influence intestinal homeostasis and immunological
tolerance [41,42]. SCFAs (i.e., acetate, propionate and butyrate) are the main end products
of intestinal bacterial fermentation of non-digestible food components, such as dietary fiber.
Lower levels of acetate and propionate were detected in fecal samples from dogs with IBD
compared to healthy subjects [43]. These SCFAs are known to hold therapeutic promises in
IBD as they improve epithelial barrier integrity and alleviate gut inflammation in vivo. In
addition to SCFAs deficiency, an altered BA metabolism has been demonstrated in canine
IBD [44]. The conversion of primary BA to secondary BA is largely known to be achieved
by gut microbes. BA play key roles in the emulsification and absorption of dietary lipids
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and serve as potent signaling molecules that act through the farnesoid X receptor (FXR)
and Takeda G-protein-coupled receptor 5 (TGR5). By activating FXR and TGR5, BA can
influence a variety of processes, including inflammation and lipid, glucose and energy
metabolism. Accordingly, changes in gut bacterial populations have been suggested to in-
fluence inflammatory parameters and pathways through changes in BA metabolism [28,45].
In dogs with IBD, the decrease in the abundance of Clostridium hiranonis, a potent BA
converter, is correlated with the alteration of the BA metabolism. Conversely, treatment of
intestinal inflammation is accompanied by an increase in the abundance of C. hiranonis and
a normalization of the BA metabolism [39]. The links between dietary interventions, SCFAs,
BA metabolism and canine inflammation are yet to be explored. Similarly, the relevance
of BA as potential therapeutic targets in dogs would need to be thoroughly addressed as
investigations related to this field are still in their infancy.

3. Diet-Microbiota Interactions in Canine IBD
3.1. Dietary Proteins

Diets with high protein levels were associated with a modification of the gut micro-
biota composition in healthy beagles, mainly characterized by an increase in the genus
Lactobacillus abundance. This change was linked to high concentrations of butyrate in dogs
that were fed a high-protein diet [46]. Furthermore, a high protein diet has been shown to
promote the growth of Clostridium perfringens and to reduce the abundance of Clostridium
cluster XIVa (also known as the Clostridium coccoides group) in a similar population of
healthy dogs [47]. Although the findings from these studies suggest that high-protein diets
exert significant effects on the canine gut community, as they elicit the growth of select
Clostridium species, a major limitation of such trials is the relatively small size of the studied
cohort, limited to only twelve and nine Beagles, respectively [46,47]. Other significant differ-
ences were observed in the microbiota composition, with a higher Firmicutes:Bacteroidetes
ratio in response to a high protein-low carbohydrate (HPLC) diet when compared with a
low protein-high carbohydrate (LPHC) diet. Several taxa became detectable in response to
diet, such as Lactobacillus ruminis, which was detected in 59% of LPHC-fed dogs [48]. In
another study, the fecal microbiota of dogs fed a HPLC diet showed an increased abundance
of Bacteroidetes in addition to an enrichment in the phylum Firmicutes [49].

In addition to the protein content of food, the protein type (origin, quality) also
deserves to be evaluated. To date, few studies have addressed this question. Analysis
of the impact of a hydrolyzed soy protein diet combined with oral prednisone on the
gut microbiota of dogs with IBD reveals an increase in lactobacilli, Bifidobacterium spp.,
Faecalibacterium spp. and Streptococcus spp. abundance. This modification of the microbial
communities is associated with an enhancement of the intestinal barrier function by increas-
ing mucosal epithelial apical junction protein (AJP) expression [50]. Further studies are
required in order to evaluate the role of dietary proteins (content, type, quality) in modeling
the gut microbiota, as well as their effect on dog’s health, particularly in the context of IBD.

3.2. Dietary Tryptophan and Indole Derivatives

In humans with IBD, reduced availability of tryptophan or tryptophan metabolites
has been suggested to contribute to the disease [51,52]. Tryptophan represents a precur-
sor of several microbial and host metabolites, including serotonin and vitamin B3 [53].
Tryptophan metabolites are known as one of the most important endogenous ligands of
the aryl hydrocarbon receptor (AhR), a nuclear protein involved in the regulation of gene
expression and in maintaining intestinal homeostasis [54]. Microbial metabolites or dietary
factors may influence this pathway.

Dogs with IBD and dogs with protein losing enteropathy have also been shown to
exhibit lower plasma tryptophan levels than healthy dogs [55,56]. While these studies
highlight a potential role of tryptophan in dogs with IBD and protein losing enteropathy,
the small cohort size (10 dogs) in the IBD study and the retrospective study design for
the protein losing enteropathy pathology represent major limitations. Further prospective
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studies with larger cohorts are needed. Further analysis of dog’s gut microbiota would be
beneficial to such studies as the link between the decrease in the plasma concentration of
tryptophan and dysbiosis is not yet established. In addition to the functional abnormality
of the intestinal microbiota, an absorption defect linked to intestinal inflammation could
also be involved.

3.3. Dietary Fibers and SCFAs

Fibers can be defined as non-digestible carbohydrates that come from plants. They can
be classified according to their solubility or fermentability. Soluble or fermentable fibers,
such as pectin, gum Arabic, and fructooligosaccharides, support normal GI microflora
growth and provide fuel for colonocytes. Several human studies showed that they also
delay gastric emptying and inhibit absorption in the small intestine [33]. Insoluble fibers,
such as cellulose and oat fiber, were shown to increase the volume and water content of
stools, to absorb toxins and to normalize colonic motility [33]. SCFAs, including butyrate,
acetate and propionate, are well-studied microbial metabolites primarily produced by
the bacterial fermentation of non-digestible dietary fibers. Thus far, most human clinical
trials investigating the anti-inflammatory effects of dietary fibers have been linked with a
higher luminal production of SCFAs following the intake of high-fiber foods [57,58]. It is
well demonstrated that SCFAs not only contribute to the regulation of the mucosal barrier
function but also provide immune regulatory functions [33]. In addition, their production
provides an acidic luminal environment that inhibits the proliferation of pH-sensitive
pathogenic bacteria such as Enterobacteriaceae [59]. Furthermore, in human studies, SCFAs
are likely to modulate inflammation by increasing the production of anti-inflammatory
cytokines, decreasing pro-inflammatory cytokines, and activating the transcription factor
Foxp3 [60]. Studies applied to dogs in this regard are still in their infancy and few reports
have explored the role of fiber-enriched diets in canine IBD. Interestingly, the intake of
high-fiber diets has recently been shown to alleviate acute large-bowel diarrhea and to
exhibit significant clinical benefits in dogs [61] (Figure 1). However, the use of antibiotic and
antiparasitic treatments and the absence of microbiota analysis are important limitations
in this study. More controlled studies are therefore required to confirm these effects.
Further metagenomic analysis of dogs’ gut microbiomes would shed light on the functional
potential of this community, and provide mechanistic knowledge linking dietary fiber, gut
microbiota, and the treatment of canine IBD.

The characterization of fecal fatty acids in dogs with IBD has highlighted alterations in
SCFAs profiles as well as in gut microbiota composition [34]. A significant decrease in the
fecal concentrations of acetate and propionate is demonstrated in the IBD group compared
to the control group. A correlation between the decrease in these SCFAs and the abundance
of the Bacteroidetes, Fusobacterium spp., Faecalibacterium spp., C. hiranonis, Blautia spp.,
Streptococcus spp., Ruminococcaceae, Bifidobacterium spp., C. perfringens, and E. coli is
reported by authors [34]. Most of these bacteria are known for their fermentation capacities
and as primary (Bacteroidetes) or secondary (Blautia spp., Faecalibacterium spp.) fermenters
of carbohydrate. Mechanistic studies that link changes in gut bacteria composition, SCFAs
production and canine intestinal inflammation have yet to be performed.

3.4. Dietary Fat and Bile Acids

Given their direct relationship with intestinal microbiota, BA are promising therapeu-
tic targets in dogs with IBD. Primary BA are synthesized by the liver from cholesterol and
conjugated to the amino-acids glycine or taurine. They are further subjected to deconju-
gation by gut microbes via bile salt hydroxylase (BSH) enzymes and dehydroxylation to
yield secondary BA [28]. Higher fecal levels of primary BA were detected in dogs with
IBD and correlated with a lower expression of apical sodium-dependent BA transporter
proteins (ASBT) in the ileum [62]. This impaired absorption of primary BA due to ASBT
downregulation was further suggested to directly contribute to diarrhea in dogs with
IBD [62]. The gut microbiota is the sole metabolic pathway for BA metabolism. Thus,
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intestinal dysbiosis with a decrease in bacteria bearing BSH activity may imply lower BA
deconjugation and dehydroxylation. In dogs, a significant decrease in the fecal abundance
of C. hiranonis is reported during chronic inflammatory enteropathy. Known for its ability
to convert primary BA into secondary BA, C. hiranonis may illustrate the link between
dysbiosis and intestinal inflammation [63].
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Interestingly, fat can be considered a nutrient of concern in some dogs with IBD. Fat
malabsorption or reduced fat digestion may lead to an increased passage of fat into the
colon, which can be associated with dysbiosis as well as increased intestinal permeabil-
ity [64].

3.5. Vitamins

Reduced serum concentrations of several vitamins, including folate and cobalamin,
have been reported in dogs with IBD. Vitamins are known to play a pivotal role in several
cellular processes, such as GI epithelial cell turnover and repair [65]. Folate and cobalamin
(also referred to as vitamin B12) are both essential water-soluble vitamins for dogs. Vitamin
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B12 is a component of coenzymes and is essential for cell biosynthesis and metabolism
in vivo. Vitamin B12 is primarily absorbed in the terminal ileum. Most commercial pet
foods are supplemented with cobalamin; nevertheless, dietary cobalamin levels vary among
diets [66]. Lower serum levels of cobalamin have been reported in canine IBD as well as in
exocrine pancreatic insufficiency and ileal malabsorption [67,68]. Previous reports have
linked reduced serum vitamin B12 concentrations with a higher abundance of E. coli and
enterococci, which gave rise to one of its clinical uses, highlighting it as a marker of
dysbiosis [67,69]. In addition, hypocobalaminemia is a negative prognostic factor in dogs
with IBD [70]. Folate is primarily absorbed in the duodenum and proximal jejunum and is
synthetized by a variety of commensal bacteria. Folate may be increased in the serum of
dogs with IBD. It is believed to be the consequence of the proliferation of folate-producing
bacteria and to reflect dysbiosis [69]. However, more comprehensive metabolomic studies
are needed to elucidate their contribution to the disease.

Interestingly, serum 25-hydroxyvitamin D is a liposoluble vitamin whose concentration
is decreased in humans and dogs with IBD for several reasons, including impaired ab-
sorption, fat malabsorption, restricted dietary intake, or reduced sunlight exposure [65,71].
Vitamin D supplementation has shown the ability to regulate gut microbiome and to de-
crease the intensity of intestinal inflammatory lesions in rodent models of IBD [72]. The
effects of vitamin D on the gut microbiome appear to be mediated by the expression of the
gene encoding cathelicidin antimicrobial peptide (CAMP) by epithelial cells and immune
cells [73]. New research aiming at deciphering the effects of dietary vitamin D intake on
the function of the microbiota and the possible beneficial effects on the evolution of IBD
must be undertaken.

4. The Impact of Nutritional Interventions in Canine IBD

Approximately 50% of dogs with chronic inflammation are responsive to dietary
changes and are considered to have Food Responsive Enteropathy (FRE) [74]. FRE is one
of the most common forms of chronic inflammatory enteropathy in dogs and includes
those with adverse food reactions (i.e., food allergy and food intolerance) and those with
intestinal inflammation that benefits from properties of a different diet. Several nutritional
interventions are being used to alleviate clinical signs. Highly digestible or hypoallergenic
diets and industrial or home-prepared diets are promising candidates [75]. Prevailing
large bowel diseases can also be managed with high-fiber diets [76]. Disorders comprising
significant lymphangiectasia may be addressed with hyperdigestible low-fat diets [77].

4.1. Hypoallergenic Diets

Commercial hypoallergenic foods may have a role in managing canine IBD. Industrial
hypoallergenic foods find their protein in plant sources (most often soybeans), insects, or
bird feathers. Animal protein-free diets were shown to increase fecal bacterial richness and
diversity in dogs with FRE compared to the control subjects. The fecal microbiota index, a
PCR-based assay aiming at assessing the fecal microbiome by quantifying the abundance
of predefined bacterial taxa, was significantly higher in dogs with FRE than in healthy
controls. No significant differences in the composition of the gut microbiota were detected
after the dietary trial [78]. Interestingly, a hydrolyzed protein diet with a probiotic strain
Enterococcus faecium was associated with a significant increase in bacterial richness and
improvement in clinical signs in dogs suffering from FRE [79]. Additionally, the intake
of a novel protein diet with cod and rice was associated with significant changes in the
abundance of several bacterial taxa, including higher abundances of the genera Gemella
and Peptococcus, in dogs with FRE [80]. The evaluation of the effects of these diets seems
to reveal a contribution to the modulation of the dysbiotic canine gut microbiota. Further
studies are needed to evaluate and better understand the potential positive effects of such
interventions in these dogs.
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4.2. Fiber-Enriched Diets/Prebiotics

Prebiotics are defined as non-digestible food ingredients able to promote the growth
of beneficial intestinal microorganisms. Fructooligosaccharides (FOS) were demonstrated
to affect the gut microbiota in dogs with primary dysbiosis [81]. A diet supplemented with
a prebiotic-rich fiber mixture composed of rice bran, banana flakes and deactivated yeasts
was shown to be associated with lower abundances of sulfate-reducing bacteria from the
order Desulfovibrionales and an increase in Clostridium clusters I and II in the fecal samples
of dogs with IBD [82]. The addition of resistant starch, β-glucans, mannan oligosaccharides,
and chondroitin sulfate to a hydrolyzed diet did not significantly improve the disease
activity in dogs with IBD. However, the post-treatment histological score was significantly
lower solely in dogs receiving fibers. From a functional perspective, dietary supplements
were demonstrated to increase serum paraoxonase-1, total antioxidant capacity and choles-
terol, despite the absence of significant differences between the fecal microbiota of dogs
with and without fiber enrichment [83]. A metabolomic study underlined additional ben-
eficial effects of prebiotics and glycosaminoglycans on lipid metabolism, and thereby on
intestinal membrane integrity in dogs with IBD [84]. Alternatively, supplementation of a
hydrolyzed diet with a brown seaweed (Ascophyllum nodosum) rich in fermentable fibers
drove an increased abundance of the Ruminococcaceae and Rikenellaceae families and
higher concentrations of acetate in the feces of dogs with IBD, without improving clinical
signs [85]. Overall, these studies suggest that fiber-enriched diets/prebiotics may modulate
the gut microbiota and ameliorate oxidative status in canine IBD (Figure 1). To date, no
studies are available regarding the effects of highly digestible and low-fat industrial diets
and homemade regimens on the gut microbiota of dogs with IBD.

4.3. Industrial or Home-Prepared Diets

Veterinarians and dog owners need to weigh up the available evidence when decid-
ing whether to feed dogs with IBD a commercial or personalized home-prepared diet.
According to equivalent macro-nutritional analysis, industrial kibble food differs from
home-made diets by the incompressible starch content necessary for the extrusion process.
While the authors agree that dog domestication was accompanied by a selection of genes
encoding for proteins involved in starch digestion (pancreatic α-amylase 2B-AMY2B), there
is still a debate on the individual variation of their expression and on the capabilities
to digest starch [86,87]. Resistant starch escapes digestion and substantially impacts the
composition of the gut microbiota, depending on the structure of the starches reaching
the colon [88]. Many experimental rodent models of IBD document a reduction in in-
flammatory lesions during moderate starch supplementation compared to the animals fed
a starch-free diet [89,90]. While the beneficial effects in humans are generally linked to
enhanced butyrate production by bacterial fermentation, significant individual variations
are observed. Therefore, it advocates for a personalized approach to starch intake origin,
the host’s digestive abilities, and microbiome profile [91,92].

5. Conclusions

The pathogenesis of IBD in dogs is poorly characterized; however, recent evidence
points to the interplay between diet and gut microbiota. Dietary interventions are likely
to play a key role in the management of these diseases. Significant shifts in macronu-
trient composition, such as high-protein or high-fiber diets, have been associated with
changes in the composition and function of the gut microbiota. Dietary fiber, starch, and
protein content are known to contribute to such changes in microbiota and metabolome
composition. A better understanding of the different dietary strategies available for dogs
with IBD would help ensure the selection of the most appropriate diet. Therefore, con-
siderable efforts should be applied to improving our knowledge of diet-microbiota–host
molecular interactions. Similarly, further functional studies are required in order to gain
mechanistic insights into this intricate loop in health and disease. This will help implement
targeted and effective dietary interventions as a means to restoring health and mitigating
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microbiota-associated disorders, such as IBD. These evidence-based recommendations are
increasingly imperative as the burden of inflammatory disorders increases in dogs. The
prospect of designing such dietary interventions targeted specifically at increasing key
bacterial metabolites to improve inflammatory status would be of interest, considering that
formal dietary guidelines are lacking for subjects with IBD.
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