Introduction of the 2nd Phase of the Integrated Hydrologic Model Intercomparison Project
Stefan Kollet, Reed Maxwell, Cécile Dagès, Emmanuel Mouche, Claude Mugler, Claudio Paniconi, Young-Jin Park, Mario Putti, Chaopeng Shen, Simon Stisen, et al.

To cite this version:
Stefan Kollet, Reed Maxwell, Cécile Dagès, Emmanuel Mouche, Claude Mugler, et al.. Introduction of the 2nd Phase of the Integrated Hydrologic Model Intercomparison Project. European Geosciences Union General Assembly, Apr 2015, Vienna (Austria), Austria. hal-04092963

HAL Id: hal-04092963
https://hal.inrae.fr/hal-04092963
Submitted on 17 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Introduction of the 2nd Phase of the Integrated Hydrologic Model Intercomparison Project

Stefan Kollet (1,2), Reed Maxwell (3), Cecile Dages (4), Emmanuel Mouche (5), Claude Mugler (5), Claudio Paniconi (6), Young-Jin Park (7), Mario Putti (8), Chaopeng Shen (9), Simon Stisen (10), Edward Sudicky (7), Mauro Sulis (11), and Xinye Ji (9)


The 2nd Phase of the Integrated Hydrologic Model Intercomparison Project commenced in June 2013 with a workshop at Bonn University funded by the German Science Foundation and US National Science Foundation. Three test cases were defined and compared that are available online at www.hpsc-terrsys.de including a tilted v-catchment case; a case called superslab based on multiple slab-heterogeneities in the hydraulic conductivity along a hillslope; and the Borden site case, based on a published field experiment. The goal of this phase is to further interrogate the coupling of surface-subsurface flow implemented in various integrated hydrologic models; and to understand and quantify the impact of differences in the conceptual and technical implementations on the simulation results, which may constitute an additional source of uncertainty. The focus has been broadened considerably including e.g. saturated and unsaturated subsurface storages, saturated surface area, ponded surface storage in addition to discharge, and pressure/saturation profiles and cross-sections. Here, first results are presented and discussed demonstrating the conceptual and technical challenges in implementing essentially the same governing equations describing highly non-linear moisture redistribution processes and surface-groundwater interactions.