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Abstract

Motivation: Efficient resource allocation can contribute to an organism’s fitness and can improve evolutionary suc-
cess. Resource Balance Analysis (RBA) is a computational framework that models an organism’s growth-optimal
proteome configurations in various environments. RBA software enables the construction of RBA models on gen-
ome scale and the calculation of medium-specific, growth-optimal cell states including metabolic fluxes and the
abundance of macromolecular machines. However, existing software lacks a simple programming interface for non-
expert users, easy to use and interoperable with other software.

Results: The python package RBAtools provides convenient access to RBA models. As a flexible programming inter-
face, it enables the implementation of custom workflows and the modification of existing genome-scale RBA mod-
els. Its high-level functions comprise simulation, model fitting, parameter screens, sensitivity analysis, variability
analysis and the construction of Pareto fronts. Models and data are represented as structured tables and can be
exported to common data formats for fluxomics and proteomics visualization.

Availability and implementation: RBAtools documentation, installation instructions and tutorials are available
at https://sysbioinra.github.io/rbatools/. General information about RBA and related software can be found at rba.
inrae.fr.

Contact: wolfram.liebermeister@inrae.fr or anne.goelzer@inrae.fr

1 Introduction

How can we understand and anticipate the impact of genomic modi-
fications and environmental perturbations on microbial cells? A
guiding idea is that organisms efficiently allocate their resources
to succeed within their ecological niche (Goelzer et al., 2011;
Molenaar et al., 2009; Scott et al., 2010). Resource Balance Analysis
(RBA) is a conceptual and computational framework that imple-
ments this principle as a constraint-based modelling method (Varma
and Palsson, 1994) predicting growth-optimal cell states (Goelzer
et al., 2011, 2015). RBA can simulate responses to genomic (e.g.
gene-knockouts and the addition of heterologous metabolic path-
ways) and environmental perturbations (e.g. nutrient limitation).
Due to its formulation as a linear optimization problem (LP), it can
handle cell models at genome scale.

The basic structure of RBA models is shown in Figure 1. An
RBA model extends a genome-scale metabolic model and describes
production processes and molecular machines in a cell (metabolic

enzymes and machines catalysing macromolecular processes such as
protein translation, folding or transport). It may contain hundreds
or thousands of model parameters, specifying enzyme and machine
efficiencies, compartment volumes and known target concentra-
tions. Mathematically, the search for feasible cell states takes place
at a given cell growth rate. At high growth rates, the problem
becomes unsolvable, thus defining a maximal feasible grow rate and
a corresponding optimal state. Typical simulation scenarios include
maximizing growth or optimizing metabolic objectives at a given
sub-maximal growth rate, for instance, the production of valuable
compounds.

The existing software RBApy (Bulovi�c et al., 2019) supports the
construction of genome-scale RBA models as well as the basic pre-
diction of maximal growth rates and corresponding cellular states. It
has been used to develop RBA models for several bacterial organ-
isms (Bulovi�c et al., 2019; Goelzer et al., 2015), encoded in a stand-
ard XML format. However, RBApy lacks functionality for
convenient model editing, for exploring resource allocation beyond
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growth-optimal states, and for implementing custom workflows for
model simulation and analysis.

2 RBAtools

RBAtools is a programming interface for RBA models that covers
some functionality of RBApy and adds functions for exploring and
modifying a model or for performing different types of simulations
and analyses. RBAtools provides basic functions for setting parame-
ters or manipulating and solving the LP problem, as well as conveni-
ent methods for altering model architectures and defining growth
environments. Basic simulations based on growth-rate maximization
can be run programmatically or via the command line. RBAtools
also offers high-level functions for typical simulation and analysis
tasks occurring in resource allocation modelling. Based on these
built-in procedures, users can implement their own custom algo-
rithms and workflows for simulation and analysis. RBAtools gives
programmatic access to model components and their relationships
and can export models and simulation results into formats such as
SBtab (Lubitz et al., 2016) or CSV. For visualizing predicted fluxes
and protein levels, it can export data files for Escher maps (King
et al., 2015) and Proteomaps (Liebermeister et al., 2014). Instructive
tutorials and a Bacillus subtilis cell model are included. Below we
present example results, showcasing some high-level functions for
model simulation and analysis from the RBAtools tutorial.

2.1 Prediction of cell phenotypes for biotechnology
RBAtools provides various modelling methods for biotechnology,
for example to simulate the production of added-value compounds.
Models can be edited to simulate gene knock-outs, enzyme inhib-
ition, enzyme overexpression or underexpression, changes in cell
dry-mass composition or the insertion of heterologous metabolic
pathways. Known cell characteristics such as metabolite exchange
fluxes or macromolecular machine abundances can be imposed as
target constraints and the resulting phenotype (maximum growth
rate, metabolic fluxes and quantitative proteome) can be predicted.
It is possible to compute Monod curves and the associated medium
exchange rates (Fig. 2a) and to infer the minimum concentration of
a limiting substrate at which given growth rate can be reached (to
model, for example, chemostat experiments).

2.2 Sensitivity to model parameters
To study the effects of parameter variation and uncertainty,
RBAtools provides different types of sensitivity analyses. (i) In a glo-
bal variability analysis, the effects of variable or uncertain enzyme
efficiencies on fluxes or other state variables can be assessed by

random sampling (Fig. 2b). (ii) By screening single parameter values
and predicting cellular states, effects on the phenotype can be
assessed, as exemplified by the ribosomal translation efficiency
curve in Figure 2c. (iii) Local growth sensitivities, defined as scaled
derivatives between growth rate and a parameter value, can be com-
puted for all model parameters (sensitivities to enzyme efficiencies
shown in Fig. 2d).

2.3 Variability analysis and cellular trade-offs
Bioengineering has to deal with trade-offs between compound pro-
duction and a cell’s own objectives such as cell growth or the cap-
acity to respond to stress. Compound production redirects resources
such as energy, precursors or available cell space towards non-native
processes, which puts a burden on cells and slows down cell growth.
In engineered microbes, slower growth can lead to the emergence of
non-producing, fast-growing mutants. To anticipate and avoid this,
we may simulate trade-offs between growth and objectives such as
protein or ATP production. In RBA, growth-optimal states usually
do not leave any space for variations, so there is no extra capacity
for other processes. At sub-maximal growth rates, cells can deviate
from the growth-optimal phenotype, and since this tolerance tends
to increase with decreasing cell growth, there can be a trade-off be-
tween growth and other objectives. RBAtools provides methods to
study such trade-offs.

Resource Variability Analysis (RVA) resembles Flux Variability
Analysis (Mahadevan and Schilling, 2003), but is applied to RBA
models. It assumes a predefined, sub-maximal growth rate and
determines feasible ranges of metabolic fluxes and machinery con-
centrations. A large tolerance range around a growth-optimal
phenotype can indicate biological variability (at almost no growth
deficit) or prediction uncertainties. If we plot these ranges as a func-
tion of growth rate (Fig. 3a), trade-offs between growth and produc-
tion/consumption capabilities become visible. The feasible range of
a cell variable is bounded from above and below by two converging
curves, and if our variable is a maximisation objective, the upper
curve can be seen as a Pareto front. Figure 3a shows a typical case:
near the maximal growth rate, the two fronts converge in one point,
which marks the optimal state. Below this point, there is a trade-off:
higher tolerances require slower cell growth. However, the picture
can change if we change the external glucose concentration. At the
critical glucose concentration of 0.25 mM, respiration and overflow
become equally beneficial (Fig. 3b) and a wide range of mixed strat-
egies (with different glucose and oxygen uptake rates) can exist very
close to the maximal growth rate. Even a tiny side benefit (e.g. for
lower glucose uptake) would suffice to move the cell state from the
exact growth maximum to the kink of the Pareto front. Figure 3c,
similarly, shows the feasible ranges of two machine concentrations
at the critical glucose concentration: while the fronts for the

Fig. 1. Resource Balance Analysis models. (a) Model structure. An RBA model describes production and consumption processes in an entire cell, catalysed by molecular

machines. Fluxes and machine concentrations must be chosen to realize a balanced growth state in which all cell components are reproduced to balance dilution. The cell con-

figuration may be optimized for maximal growth or for maximizing a side objective at a given, sub-maximal growth rate. Unlike Flux Balance Analysis (FBA), RBA contains a

detailed description of anabolic processes such as protein synthesis, folding and transport, and instead of assuming a predefined biomass composition, it returns an optimal cell

composition as a result. Background information on RBA, including literature references and more details about model structure, parameters and file formats, can be found at

rba.inrae.fr. (b) In RBA, the model variables (metabolic fluxes, amounts of molecular machines and maybe other variables) must respect four types of constraints: mass balance

constraints ensuring a balanced growth state; catalytic capacity constraints relating fluxes to catalyst concentrations; density constraints limiting the compound concentrations

in cells; and target constraints representing empirical knowledge, for instance about concentrations of macromolecules without a specified function. Most constraints come

with individual parameters such as catalyst efficiencies (apparent kcat values) of enzymes and process machines, the available space in cell compartments, and empirical concen-

trations and fluxes for target constraints

2 O.Bodeit et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/advance-article/doi/10.1093/bioadv/vbad056/7136629 by guest on 10 M
ay 2023

https://rba.inrae.fr


ribosome concentration almost converge, the front for ATP synthase
shows a visible kink.

Plotting the compromise between growth and an extra metabolic
capacity (for product production, energy production or stress response)
as a Pareto front resembles phenotypic phase-plane analysis in FBA
(Edwards et al., 2002). But instead of trading metabolic objectives
against growth, we can also define a sub-maximal growth rate and
consider trade-offs between different metabolic tasks. The following
panels in Figure 3 show this for an ATP-consuming maintenance reac-
tion and for the expression of additional proteins (chaperones or pre-
emptively expressed metabolic enzymes). Each of the two capacities

can be traded individually against growth (Fig. 3d), but they can also
be traded against each (Fig. 3e). At high growth rates, the resulting
Pareto front resembles a straight line, indicating growth-neutral
exchanges between the objectives at a constant ‘price’. At low growth
rates, where large extra capacity is available, the front becomes strong-
ly curved, showing a knee in which both objectives are close to their
maximal values, possible indicating an optimal compromise.

Figure 3f shows the growth deficit caused by producing a com-
pound of interest, vitamin B1, and how it depends on glucose con-
centrations in the medium. When plotting relative growth as
‘fitness’ against vitamin B1 secretion, we obtain fronts that are

Fig. 2. Cell phenotypes and parameter sensitivities computed with RBAtools. The plots show results for the genome-scale B.subtilis cell model, taken from the RBAtools tutor-

ial. (a) Monod curve depicting the glucose-dependent cell growth rate. In the model with glucose as the only carbon source, Monod curve and corresponding exchange fluxes

of glucose, oxygen and acetate were computed by screening the external glucose concentration and optimizing for maximal growth. At a glucose concentration of 0.025 mM,

cells switch from respiration to overflow metabolism. This concentration serves as a reference condition for subsequent analyses (dashed black lines). (b) Global sensitivity ana-

lysis. The plots show the variability of maximal growth rates and associated oxygen uptake rates in a model ensemble with enzyme efficiencies sampled at random. Each en-

zyme efficiency in the model is multiplied by a random scaling factor x, where lnðxÞ is drawn from a normal distribution with mean 0 and standard deviation lnð1:1Þ. The

histograms of maximal growth rates and optimal oxygen uptake rates represent an ensemble of 1000 models. In the distribution of oxygen uptake rates, the two modes corres-

pond to respiration and overflow metabolism, metabolic strategies that the cells would respectively use at lower or higher glucose concentrations. At the reference concentra-

tion of 0.25 mM (critical concentration in the model with standard parameters), the two strategies are equally profitable and small variations of enzyme efficiencies can be a

scale-tipping factor. (c) Parameter screen. The predicted optimal growth rate (y-axis) depends on ribosome efficiency (x-axis) and on the external glucose concentration.

Curves for different glucose concentrations are shown. Ribosomal efficiencies were screened by applying a scaling factor between 0.01 and 100. (d) Local parameter sensitiv-

ities. In the optimal state, active enzymes (with enzyme efficiency kapp) have a positive control over the maximum growth rate lmax, where control is quantified by unitless

scaled parameter sensitivities dlnðlmaxÞ=dlnðkappÞ. Among the 587 metabolic enzymes, 245 enzymes show non-zero sensitivities (shown as a histogram, some prominent

enzymes are marked by lines). The growth/efficiency sensitivities of enzymes and transporters located in membranes are especially high

Fig. 3. Cellular trade-offs in the B. subtilis model analysed with RBAtools. (a) Resource Variability Analysis (RVA). Feasible ranges of glucose and oxygen uptake (y-axis) de-

pend on cell growth (x-axis shows growth rates normalized to maximal growth as ‘relative fitness’). Above the maximal growth rate (dashed line) there is no solution. At the

maximum growth rate, the feasible region collapses to a single optimal point (dots). Panel (a) shows results at low glucose (0.0125 mM), where respiration takes place. (b)

RVA results at medium glucose concentration (0.025 mM, the onset of overflow metabolism): here respiration and overflow are equally profitable, the cell configuration is

highly flexible, and even slightly sub-maximal growth rates allow for large feasible ranges. (c) RVA of machine amounts (ribosome and ATP synthase) at medium glucose con-

centration (onset of overflow). Ribosome ranges increase at lower growth rates, indicating a trade-off between ribosome amount and cell growth. (d) Trade-off between

growth rate and two metabolic objectives. At sub-maximal growth, cells may allocate resources to additional ATP expenditure or non-native protein expression. Figure (d)

depicts the trade-off between relative growth rate and extra protein production (as a fraction of the total proteome) or an extra ATP-turnover flux. The curves are upper edges

of feasible regions as shown in (a–c). Points marked by symbols correspond to extremal Pareto-efficient trade-offs shown in panel (e). (e) Pareto-efficient trade-offs between

investments in non-native cytosolic protein or in ATP turnover at various fractions of the maximal growth rate (lmax). Lines represent Pareto fronts at different growth rates.

Marked points correspond to the points in (d). (f) Trade-off between cellular fitness (growth rate as a fraction of maximal growth rate) and metabolite production in a biotech-

nological application. The maximum production of vitamin B1 is plotted against cell fitness at different glucose concentrations in the growth medium
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almost straight lines: vitamin production can be traded for cell
growth at an almost constant, glucose-dependent ‘price’.

3 Conclusion

RBAtools is a convenient programming interface for RBA models,
enabling a deep exploration of cell behaviour on genome scale. It is
more flexible and user-friendly than existing RBA tools, leveraging
the idea of cellular resource allocation to model cell physiology by
combining biochemical facts, optimality considerations and
organism-specific empirical knowledge. While RBApy remains the
main tool for building RBA models, RBAtools with its simpler inter-
face and broader functionality makes it easy to simulate the impact
of genomic or environmental perturbations on cell phenotypes.
Thereby, it supports a wide range of applications in synthetic biol-
ogy, metabolic engineering or white biotechnology.
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