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Abstract

Multiblock component methods aim to study the relationships between several sets of vari-
ables. Regularized Generalized Canonical Correlation Analysis (RGCCA) is a unified and flexi-
ble framework that gathers fifty years of multiblock component methods. RGCCA offers a unified
implementation strategy for all these methods. This implementation is made available within the
RGCCA package. In addition, the RGCCA package produces graphical outputs and statistics
to assess the robustness/significance of the analysis. The usefulness of the RGCCA package is
illustrated in this paper on two real datasets. The RGCCA package is freely available on the
ComprehensiveR Archive Network (CRAN) http://www.r-project.org/ and GitHub
https://github.com/rgcca-factory/RGCCA.

Keywords: Multiblock component methods, RGCCA, data integration.

1. Introduction

A challenging problem in multivariate statistics is to study relationships between several sets of vari-
ables measured on the same set of individuals. This paradigm is referred to by several names, includ-
ing “learning from multimodal data”, “data integration”, “multiview data”, “multisource data”, “data
fusion” or “multiblock data analysis”. Despite the availability of various statistical methods and ded-
icated software for multiblock data analysis, handling multiple highly multivariate datasets remains a
critical issue for effective analysis and knowledge discovery.
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2 Regularized Generalized Canonical Correlation Analysis

For the statistical computing environment R R Core Team (2022), various R packages are available
for multiblock data analysis. Four mainstream references are mixOmics Rohart, Gautier, Singh, and
Lê Cao (2017), multiblock Liland (2022), ade4 (Dray and Dufour (2007)), and FactoMineR Lê,
Josse, and Husson (2008). Each package uses its own way of specifying multiblock models and
storing the results.

Regularized Generalized Canonical Correlation Analysis (RGCCA) is a unified statistical framework
that subsumes, as special cases, an astonishingly large number of multiblock component methods.
RGCCA relies on a single optimization problem with immediate practical consequences for a unified
statistical analysis and implementation strategy. In this paper, we introduce an R package called
RGCCA (Girka et al, 2023), which implements the RGCCA framework.

Within the RGCCA package, all implemented methods share the same function interface and a clear
class structure. In addition, RGCCA package relies on the single rgcca() function for specifying the
multiblock models. It also provides several utility functions for data preprocessing and several plots
for diagnostics or visualization of the results from multiblock analysis.
In addition, the package includes several built-in datasets and examples to help users get started
quickly. Package RGCCA is available from the Comprehensive R Archive Network (CRAN), at https:
//CRAN.R-project.org/package=RGCCA and can be installed from the R console with the
following command:

R> install.packages("RGCCA")

In this paper, we present an overview of the RGCCA framework’s theoretical foundations, summarize
the optimization problem under which all the algorithms were designed, and provide code examples
to illustrate the package’s usefulness and versatility. We believe that our package provides a valu-
able contribution to the field of multiblock data analysis and will enable researchers to conduct more
effective analyses and gain new insights into complex datasets.

The paper’s remaining sections are organized as follows: Section 2 presents the general optimization
problem. Section 3 summarizes the theoretical foundations of the RGCCA framework Tenenhaus
and Tenenhaus (2011, 2014); Tenenhaus, Philippe, and Frouin (2015); Tenenhaus, Tenenhaus, and
Groenen (2017). Sections 4 and 5 provide code examples to illustrate the package’s capabilities.
Finally, we conclude the paper in Section 6.

2. Optimization background

This section presents the optimization framework under which all the algorithms proposed in the
RGCCA framework were designed. The RGCCA framework gathers several methods already pre-
sented in Tenenhaus and Tenenhaus (2011, 2014); Tenenhaus et al. (2015, 2017). It is recalled here
for a broader class of constraints.

The RGCCA framework relies on a master algorithm for maximizing a continuously differentiable
multi-convex function f(a1, . . . , aJ) : Rp1 × . . . × R

pJ −→ R (i.e. for each j, f is a convex function
of aj while all the other ak are fixed) under the constraint that each aj belongs to a compact set
Ωj ⊂ R

pj . This general optimization problem can be formulated as follows:

max
a1,...,aJ

f(a1, . . . , aJ) s.t. aj ∈ Ωj , j = 1, . . . , J. (1)

https://CRAN.R-project.org/package=RGCCA
https://CRAN.R-project.org/package=RGCCA
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For such a function defined over a set of parameter vectors (a1, . . . , aJ), we make no difference

between the notations f(a1, . . . , aJ) and f(a), where a is the column vector a =
(
a⊤

1 , . . . , a⊤
J

)⊤

of size p =
∑J

j=1 pj . Moreover, the vertical concatenation of a column vector is denoted a =
(a1; . . . ; aJ) for the sake of simplification of notation.

2.1. Algorithm

A simple, monotonically, and globally convergent algorithm is presented for solving optimization
problem (1). The maximization of the function f defined over different parameter vectors (a1, . . . , aJ )
is approached by updating each of the parameter vectors in turn, keeping the others fixed. This update
rule was recommended in De Leeuw (1994) and is called Block Relaxation or cyclic Block Coordinate
Ascent (BCA).

Let ∇jf(a) be the partial gradient of f(a) with respect to aj . We assume ∇jf(a) ̸= 0 in this
manuscript. This assumption is not too binding as ∇jf(a) = 0 characterizes the global minimum of
f(a1, . . . , aJ) with respect to aj when the other vectors a1, . . . , aj−1, aj+1, . . . , aJ are fixed.

We want to find an update âj ∈ Ωj such that f(a) ≤ f(a1, ..., aj−1, âj , aj+1, ..., aJ). As f is a
continuously differentiable multi-convex function and considering that a convex function lies above
its linear approximation at aj for any ãj ∈ Ωj , the following inequality holds:

f(a1, ..., aj−1, ãj , aj+1, . . . , aJ) ≥ f(a) + ∇jf(a)⊤(ãj − aj). (2)

On the right-hand side of the inequality (2), only the term ∇jf(a)⊤ãj is relevant to ãj and the solu-
tion that maximizes the minorizing function over ãj ∈ Ωj is obtained by considering the following
optimization problem:

âj = argmax
ãj∈Ωj

∇jf(a)⊤ãj := rj(a). (3)

The entire algorithm is subsumed in Algorithm 1.

Algorithm 1 Algorithm for the maximization of a continuously differentiable multi-convex function

1: Result: as
1, . . . , as

J (approximate solution of (1))
2: Initialization: choose random vector a0

j ∈ Ωj , j = 1, . . . , J , ε;
3: s = 0 ;
4: repeat

5: for j = 1 to J do

6: as+1
j = rj

(
as+1

1 , . . . , as+1
j−1, as

j , . . . , as
J

)
. (4)

7: end for

8: s = s + 1 ;
9: until f(as+1

1 , . . . , as+1
J ) − f(as

1, . . . , as
J) < ε

We need to introduce some extra notations to present the convergence properties of Algorithm 1:
Ω = Ω1 × . . . × ΩJ , a = (a1; . . . ; aJ) ∈ Ω, cj : Ω 7→ Ω is an operator defined as cj(a) =
(a1; . . . ; aj−1; rj(a); aj+1; . . . ; aJ) with rj(a) introduced in equation (3) and c : Ω 7→ Ω is defined
as c = cJ ◦ cJ−1 ◦ ... ◦ c1, where ◦ stands for the composition operator. Using the operator c, the «for
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loop» inside Algorithm 1 can be replaced by the following recurrence relation: as+1 = c(as). The
convergence properties of Algorithm 1 are summarized in the following proposition:

Proposition 2.1. Let {as}∞

s=0 be any sequence generated by the recurrence relation as+1 = c(as)
with a0 ∈ Ω. Then, the following properties hold:

(a) The sequence {f(as)} is monotonically increasing and therefore convergent as f is bounded

on Ω. This result implies the monotonic convergence of Algorithm 1.

(b) If the infinite sequence {f(as)} involves a finite number of distinct terms, then the last distinct

point satisfies c(as) = as and therefore is a stationary point of problem 1.

(c) lim
s−→∞

f(as) = f(a), where a is a fixed point of c.

(d) The limit of any convergent subsequence of {as} is a fixed point of c.

(e) The sequence {as} is asymptotically regular: lim
s−→∞

∑J
j=1 ∥as+1

j − as
j∥ = 0. This result implies

that if the threshold ε for the stopping criterion in Algorithm 1 is made sufficiently small, the

output of Algorithm 1 will be as close as wanted to a stationary point of 1.

(f) If the equation a = c(a) has a finite number of solutions, then the sequence {as} converges to

one of them.

Proposition 2.1 gathers all the convergence properties of Algorithm 1. The three first points of Propo-
sition 2.1 concern the behavior of the sequence values {f(as)} of the objective function, whereas the
three last points are about the behavior of the sequence {as}. The full proof of these properties is
given in Tenenhaus et al. (2017).

3. The RGCCA framework

The theoretical foundations of the Regularized Generalized Canonical Correlation Analysis (RGCCA)
framework, previously published in Tenenhaus and Tenenhaus (2011, 2014); Tenenhaus et al. (2015,
2017), are briefly summarized.

3.1. Optimization problem

A random column vector x of p variables is assumed to exist with finite moments of at least order
two. The random vector x has zero mean and a covariance matrix Σ. The vector x is composed of J
subvectors xj = (xj1, . . . , xjpj

)⊤. The covariance matrix matrix Σ is composed of J2 submatrices

Σjk = E

[
xjx

⊤
k

]
. Let aj = (aj1, . . . , ajpj

)⊤ be a non-random pj-dimensional column vector. A

composite variable yj is defined as the linear combination of the elements of xj : yj = a⊤
j xj . There-

fore the covariance between two composite variables is a⊤
j Σjkak. The RGCCA framework aims to

extract the information shared by the J random composite variables, taking into account an undirected
graph of connections between them. The RGCCA framework is defined by the optimization problem
(5). It consists in maximizing the sum of convex functions of the covariances between “connected”
composites yj and yk subject to specific constraints on the weights aj for j ∈ {1, . . . , J}.

max
a1,a2,...,aJ

f(a1, . . . aJ) =
J∑

j,k=1

cjk g
(
a⊤

j Σjkak

)
s.t. aj ∈ Ωj , j = 1, . . . , J, (5)

where
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• each Ωj is a compact set.

• the function g is any continuously differentiable convex function. Typical choices of g are the
identity (horst scheme, leading to maximizing the sum of covariances between block compo-
nents), the absolute value1 (centroid scheme, yielding maximization of the sum of the absolute
values of the covariances), the square function (factorial scheme, thereby maximizing the sum
of squared covariances), or, more generally, for any even integer m, g(x) = xm (m-scheme,
maximizing the power of m of the sum of covariances). The horst scheme penalizes negative
structural correlation between block components, while the centroid scheme and the m-scheme
enable two components to be negatively correlated.

• the design matrix C = {cjk} is a symmetric J × J matrix of non-negative elements describing
the network of connections between blocks that the user wants to take into account. Usually,
cjk = 1 to two connected blocks and 0 otherwise.

When the diagonal of C is null, the convexity and the continuous differentiability of the function g
imply that the objective function f itself is multi-convex continuously differentiable. When at least
one element of the diagonal of C is different from 0, additional conditions have to be imposed on g
to keep the desired property on f . For example, when g is twice differentiable, a sufficient condition
is that ∀x ∈ R+, g′(x) ≥ 0. This condition guarantees that the second derivative of g

(
a⊤

j Σjjaj

)
is

positive definite:

∂2g
(
a⊤

j Σjjaj

)

∂aj∂a⊤
j

= 2
[
g′
(
a⊤

j Σjjaj

)
Σjj + 2g′′

(
a⊤

j Σjjaj

)
Σjjaja⊤

j Σjj

]
. (6)

All functions g considered in this paper satisfy this condition. Consequently, the optimization problem
(5) falls under the umbrella of the general optimization framework presented in Section 1.

3.2. Regularized Generalized Canonical Correlation Analysis (RGCCA)

Several instantiations of the RGCCA framework were proposed in Tenenhaus and Tenenhaus (2011);
Tenenhaus et al. (2015, 2017) with Ωj =

{
aj ∈ R

pj ; a⊤
j Mjaj = 1

}
where Mj is a symmetric posi-

tive definite matrix of order pj . The optimization problem (5) boils down to:

maximize
a1,...aJ

f(a1, . . . aJ) =
J∑

j,k=1

cjkg
(
a⊤

j Σjkak

)
s.t. a⊤

j Mjaj = 1, j = 1, . . . , J. (7)

Algorithm 1 can be used to solve the optimization problem (7). This is done by updating each pa-
rameter vector, in turn, keeping the others fixed. Hence, we want to find an update âj ∈ Ωj ={

aj ∈ R
pj ; a⊤

j Mjaj = 1
}

such that f(a) ≤ f(a1, . . . , aj−1, âj , aj+1, . . . , aJ). the RGCCA update
is obtained by considering the following optimization problem:

âj = argmax
ãj∈Ωj

∇jf(a)⊤ãj =
M−1

j ∇jf(a)

∥M
−1/2
j ∇jf(a)∥

:= rj(a), j = 1, . . . , J, (8)

1The scheme g(x) = |x| can be included in this class of functions because the case x = 0 never appears in practical
applications.
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where the partial gradient ∇jf(a) of f(a) with respect to aj is a pj-dimensional column vector is
given by:

∇jf(a) = 2
J∑

k=1

cjkg′
(
a⊤

j Σjkak

)
Σjkak. (9)

A sample-based optimization problem related to (7) is derived by considering a column partition X =
[X1, . . . , Xj , . . . , XJ ]. In this case, each n×pj data matrix Xj is called a block and represents a set of
pj variables observed on n individuals. The variables’ number and nature may differ from one block to
another, but the individuals must be the same across blocks. We assume that all variables are centered.
The most recent formulation of RGCCA (Tenenhaus et al. 2017) subsumes fifty years of multiblock
component methods. It provides improvements to the initial version of RGCCA (Tenenhaus and
Tenenhaus 2011) and is defined as the following optimization problem:

maximize
a1,...,aJ

J∑

j,k=1

cjkg
(
a⊤

j Σ̂jkak

)
s.t. a⊤

j Σ̂jjaj = 1, j = 1, . . . , J, (10)

where Σ̂jk = n−1X⊤
j Xk is an estimate of the inter-block covariance matrix Σjk = E[xjx

⊤
k ] and

Σ̂jj is an estimate of the intra-block covariance matrix Σjj = E[xjx
⊤
j ]. In cases involving multi-

collinearity within blocks or in high dimensional settings, one way of obtaining an estimate for the
true covariance matrix Σjj is to consider the class of linear convex combinations of the identity matrix
I and the sample covariance matrix Sjj = n−1X⊤

j Xj . We then consider a version of optimization

problem (10) with Σ̂jj = τjI + (1 − τj)Sjj with τj ∈ [0, 1] (shrinkage estimator of Σjj). This
plug-in approach leads to the RGCCA optimization problem (Tenenhaus and Tenenhaus 2011). It is
worth pointing out that for each block j, an appropriate shrinkage parameter τj can be obtained using
various analytical formulae (see Ledoit and Wolf 2004; Schäfer and Strimmer 2005; Chen, Wiesel,
and Hero 2011, for instance). As Mj must be positive definite, τj = 0 can only be selected for a full
rank data matrix Xj .

An equivalent formulation of optimization problem (10) is given hereafter and enables a better char-
acterization of the objective of RGCCA.

maximize
a1,a2,...,aJ

J∑

j,k=1

cjkg(cov(Xjaj , Xkak)) s.t. (1 − τj)var(Xjaj) + τj∥aj∥2 = 1, j = 1, . . . , J. (11)

Hence, the objective of RGCCA is to find block components yj = Xjaj , j = 1, . . . , J (where
aj is a block weight vector of size pj) summarizing the relevant information between and within
the blocks. The τjs are called shrinkage parameters ranging from 0 to 1 and interpolate smoothly
between maximizing the covariance and maximizing the correlation. Setting τj to 0 will force the
block components to unit variance (var(Xjaj) = 1), in which case the covariance criterion boils
down to the correlation. Setting τj to 1 will normalize the block weight vectors (a⊤

j aj = 1 ), which
applies the covariance criterion. A value between 0 and 1 will lead to a compromise between the
two first options and correspond to the following constraint (1 − τj)var(Xjaj) + τj∥aj∥2 = 1. We
can discuss the choice of shrinkage parameters by providing interpretations on the properties of the
resulting block components:
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• τj = 1 is recommended when the user wants a stable component (large variance) while simulta-
neously taking into account the correlations between blocks. The user must, however, be aware
that variance dominates over correlation.

• τj = 0 is recommended when the user wants to maximize correlations between connected
components. This option can yield unstable solutions in case of multi-collinearity and cannot
be used when a data block is rank deficient (e.g., n < pj).

• 0 < τj < 1 is a good compromise between variance and correlation: the block components are
simultaneously stable and as well correlated as possible with their connected block components.
This setting can be used when the data block is rank deficient.

In the RGCCA package, for each block, the determination of the shrinkage parameter can be made
fully automatic by using the analytical formula proposed by Schäfer and Strimmer (2005) or guided
by the context of an application by cross-validation or permutation.

From optimization problem (11), the term “generalized” in the acronym of RGCCA embraces at least
four notions. The first one relates to the generalization of two-block methods - including Canonical
Correlation Analysis (Hotelling 1936), Inter-battery Factor Analysis (Tucker 1958), and Redundancy
Analysis (Van den Wollenberg 1977) - to three or more sets of variables. The second one relates to the
ability to take into account some hypotheses on between-block connections: the user decides which
blocks are connected and which ones are not. The third one relies on the choices of the shrinkage
parameters allowing to capture of both correlation or covariance-based criteria. The fourth one relates
to the function g that enables considering different functions of the covariance. A triplet of parame-
ters embodies this generalization: (g, τj , C) and by the fact that an arbitrary number of blocks can be
handled. This triplet of parameters offers flexibility and allows RGCCA to encompass a large number
of multiblock component methods that have been published for fifty years. Table 1-3 gives the cor-
respondences between the triplet (g, τj , C) and the multiblock component methods. For a complete
overview, see Tenenhaus et al. (2017).

Special cases

Two families of methods have come to the fore in the field of multiblock data analysis. These methods
rely on correlation-based or covariance-based criteria. Canonical correlation analysis (Hotelling 1936)
is the seminal paper for the first family, and Tucker’s inter-battery factor analysis (Tucker 1958) for
the second one. These two methods have been extended to more than two blocks in many ways:

• Main contributions for generalized canonical correlation analysis (GCCA) are found in Horst
(1961); Carroll (1968a); Kettenring (1971); Wold (1982, 1985); Hanafi (2007).

• Main contributions for extending Tucker’s method to more than two blocks come from Carroll
(1968b); Chessel and Hanafi (1996); Hanafi and Kiers (2006); Hanafi, Kohler, and Qannari
(2010, 2011); Hanafi and Kiers (2006); Kramer (2007); Smilde, Westerhuis, and de Jong (2003);
ten Berge (1988); Van de Geer (1984); Westerhuis, Kourti, and MacGregor (1998); Wold (1982,
1985).

• Carroll (1968b) proposed the “mixed” correlation and covariance criterion. Van den Wollen-
berg (1977) combined correlation and variance for the two-block situation (redundancy analy-
sis). This method is extended to the multiblock situation in Tenenhaus and Tenenhaus (2011);
Tenenhaus et al. (2017).
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In the two block case, optimization problem (11) reduces to:

maximize
a1,a2

cov (X1a1, X2a2) s.t. τj∥aj∥2 + (1 − τj)var(Xjaj) = 1, j = 1, 2. (12)

This problem has been introduced under the name of Regularized Canonical Correlation Analysis
(Vinod 1976; Leurgans, Moyeed, and Silverman 1993; Shawe-Taylor and Cristianini 2004). For var-
ious extreme cases τ1 = 0 or 1 and τ2 = 0 or 1, optimization problem (12) covers a situation which
goes from Canonical Correlation Analysis (Hotelling 1933) to Tucker’s inter-battery factor analy-
sis (Tucker 1958), while passing through redundancy analysis (Van den Wollenberg 1977). This
framework corresponds exactly to the one proposed by Borga, Landelius, and Knutsson (1997) and
Burnham, Viveros, and MacGregor (1996) and is reported in Table 1.

Table 1: Two-block component methods.

Methods g(x) τj C

Canonical Correlation Analysis

(Hotelling 1936)
x τ1 = τ2 = 0 C1 =

(
0 1
1 0

)

Inter-battery Factor Analysis

(Tucker 1958) or PLS Regression

(Wold, Martens, and Wold 1983)

x τ1 = τ2 = 1 C1

Redundancy Analysis

(Van den Wollenberg 1977)
x τ1 = 1 ; τ2 = 0 C1

Regularized Redundancy

Analysis (Takane and Hwang
2007; Bougeard, Hanafi, and
Qannari 2008; Qannari and Hanafi
2005)

x 0 ≤ τ1 ≤ 1 ; τ2 = 0 C1

Regularized Canonical

Correlation Analysis (Vinod
1976; Leurgans et al. 1993;
Shawe-Taylor and Cristianini
2004)

x 0 ≤ τ1 ≤ 1 ;
0 ≤ τ2 ≤ 1

C1

In the multiblock data analysis literature, all blocks Xj , j = 1, . . . , J are assumed to be connected,
and many criteria were proposed to find block components satisfying some covariance or correlation-
based optimality. Most of them are special cases of optimization problem (11). These multiblock
component methods are listed in Table 2. PLS path modeling is also mentioned in this table. The
great flexibility of PLS path modeling lies in the possibility of taking into account certain hypotheses
on connections between blocks: the researcher decides which blocks are connected and which are not.
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Table 2: Multiblock component methods as special cases of RGCCA.

Methods g(x) τj C

SUMCOR (Horst 1961) x τj = 0, j = 1, . . . , J C2 =




1 1 · · · 1

1 1
. . .

...
...

. . . . . . 1
1 · · · 1 1




SSQCOR (Kettenring 1971) x2 τj = 0, j = 1, . . . , J C2

SABSCOR (Hanafi 2007) |x| τj = 0, j = 1, . . . , J C2

SUMCOV-1 (Van de Geer
1984)

x τj = 1, j = 1, . . . , J C2

SSQCOV-1 (Hanafi and Kiers
2006)

x2 τj = 1, j = 1, . . . , J C2

SABSCOV-1 (Tenenhaus and
Tenenhaus 2011; Kramer
2007)

|x| τj = 1, j = 1, . . . , J C2

SUMCOV-2 (Van de Geer
1984)

x τj = 1, j = 1, . . . , J C3 =




0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0




SSQCOV-2 (Hanafi and Kiers
2006)

x2 τj = 1, j = 1, . . . , J C3

PLS path modeling - mode B

(Wold 1982; Tenenhaus,
Vinzi, Chatelin, and Lauro
2005)

|x| τj = 0, j = 1, . . . , J cjk = 1 for two connected
block and cjk = 0

otherwise
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Many multiblock component methods aim to find block components and a global component simulta-
neously. For that purpose, we consider J blocks, X1, . . . , XJ connected to a (J + 1)th block defined
as the concatenation of the blocks, XJ+1 = [X1, X2, . . . , XJ ]. Several criteria were introduced in
the literature, and many are listed below.

Table 3: Multiblock component methods in a situation of J blocks: X1, . . . , XJ , connected to a
(J + 1)th block defined as the concatenation of the blocks: XJ+1 = [X1, X2, . . . , XJ ].

Methods g(x) τj C

Generalized CCA (Carroll
1968a)

x2 τj = 0, j = 1, . . . , J + 1 C4 =




0 · · · 0 1
...

. . .
...

...
0 · · · 0 1
1 · · · 1 0




Generalized CCA (Carroll
1968b)

x2 τj = 0, j = 1, . . . , J1 ;
τj = 1, j = J1 + 1, . . . , J

C4

Hierarchical PCA (Wold, S.
and Kettaneh, N. and Tjessem,
K. 1996)

x4 τj = 1, j = 1, . . . , J ;
τJ+1 = 0

C4

Multiple Co-Inertia Analysis

(Chessel and Hanafi 1996;
Westerhuis et al. 1998; Smilde
et al. 2003)

x2 τj = 1, j = 1, . . . , J ;
τJ+1 = 0

C4

Multiple Factor Analysis

(Escofier and Pages 1994)
x2 τj = 1, j = 1, . . . , J + 1 C4

The list of pre-specified multiblock component methods than can be used within the RGCCA package
are reported below:

R> RGCCA::available_methods()

[1] "rgcca" "sgcca" "pca" "spca" "pls" "spls"

[7] "cca" "ifa" "ra" "gcca" "maxvar" "maxvar-b"

[13] "maxvar-a" "mfa" "mcia" "mcoa" "cpca-1" "cpca-2"

[19] "cpca-4" "hpca" "maxbet-b" "maxbet" "maxdiff-b" "maxdiff"

[25] "sabscor" "ssqcor" "ssqcov-1" "ssqcov-2" "ssqcov" "sumcor"

[31] "sumcov-1" "sumcov-2" "sumcov" "sabscov-1" "sabscov-2"

It is quite remarkable that the single optimization problem (11) offers a framework for all the multi-
block component methods referenced in Table 1-3. From these perspectives, RGCCA provides a
general framework for exploratory data analysis of multiblock datasets with immediate practical con-
sequences for a unified statistical analysis and implementation strategy. The straightforward gradient-
based Algorithm 1 is monotonically convergent and hits at convergence a stationary point. Two nu-
merically equivalent approaches for solving the RGCCA optimization problem are available. A primal
formulation described in Tenenhaus and Tenenhaus (2011); Tenenhaus et al. (2017) requires the han-
dling of matrices of dimension pj × pj . A dual formulation described in Tenenhaus et al. (2015)
requires handling matrices of dimension n × n . Therefore, the primal formulation of the RGCCA
algorithm will be preferred when n > pj , and the dual form will be used when n ≤ pj . The rgcca()
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function of the RGCCA package implements these two formulations and automatically selects the
best one.

3.3. Sparse Generalized Canonical Correlation Analysis

RGCCA is a component-based approach that aims to study the relationships between several sets
of variables. The quality and interpretability of the RGCCA block components yj = Xjaj , j =
1, . . . , J are likely to be affected by the usefulness and relevance of the variables in each block.
Therefore, it is important to identify within each block which subsets of significant variables are active
in the relationships between blocks. For instance, biomedical data are known to be measurements
of intrinsically parsimonious processes. SGCCA extends RGCCA to address this issue of variable
selection (Tenenhaus, Philippe, Guillemot, Lê Cao, Grill, and Frouin 2014). The SGCCA optimization
problem is defined as follows:

maximize
a1,a2,...,aJ

J∑

j,k=1

cjkg(cov(Xjaj , Xkak)) s.t. ∥aj∥2 ≤ 1 and ∥aj∥1 ≤ sj , j = 1, . . . , J, (13)

where sj is a user-defined positive constant that determines the amount of sparsity for aj , j =
1, . . . , J . The smaller the sj , the larger the degree of sparsity for aj . The sparsity parameter sj is
usually set by cross-validation or permutation procedures. Alternatively, values of sj can be chosen
to result in desired amounts of sparsity.

SGCCA offers a sparse counterpart for all the covariance-based methods cited above.

The optimization problem (13) falls into the RGCCA framework with Ωj = {aj ∈ R
pj ; ∥aj∥2 ≤

1; ∥aj∥1 ≤ sl}. Ωj is defined as the intersection between the ℓ2-ball of radius 1 and the ℓ1-ball of
radius sl ∈ R

⋆
+ which are two compact sets. Hence, Ωj is a compact set. Therefore, we can consider

the following update for SGCCA:

âj = argmax
∥ãj∥2≤1;∥ãj∥1≤sj

∇jf(a)⊤ãj := rj(a). (14)

According to Witten, Tibshirani, and Hastie (2009), the solution of (14) satisfies:

rj(a) = âj =
S(∇jf(a), λj)

∥S(∇jf(a), λj)∥2
, where λj =

{
0 if ∥∇jf(a)∥1

∥∇jf(a)∥2
≤ sj

find λj such that ∥âj∥1 = sj

, (15)

where function S(., λ) is the soft-thresholding operator. When applied on a vector x ∈ R
p, this

operator is defined as:

u = S(x, λ) ⇔ uj =

{
sign(xj)(|xj | − λ), if |xj | > λ

0, if |xj | ≤ λ
, j = 1, . . . , p. (16)

We made the assumption that the ℓ2-ball of radius 1 is not included in the ℓ1-ball of radius sj and the
other way round. Otherwise, systematically, only one of the two constraints is active. This assumption
is true when the corresponding spheres intersect. This assumption can be translated into conditions
on sj .

The norm equivalence between ∥.∥1 and ∥.∥2 can be formulated as the following inequality:
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∀x ∈ R
pj , ∥x∥2 ≤ ∥x∥1 ≤ √

pj∥x∥2. (17)

This can be converted into a condition on sj : 1 ≤ sj ≤ √
pj . When such a condition is fulfilled,

the ℓ2-sphere of radius 1 and the ℓ1-sphere of radius sj necessarily intersect. Within the RGCCA
package, for consistency with the value of τj ∈ [0, 1], the level of sparsity for aj is controlled with
sj/pj ∈ [1/

√
pj , 1].

Several strategies, such as Binary Search or the Projection On Convex Set algorithm (POCS), also
known as the alternating projection method (Boyd, Dattorro et al. 2003), can be used to determine
the optimal λj verifying the ℓ1-norm constraint. Here, a much faster approach described in Gloaguen,
Guillemot, and Tenenhaus (2017) is implemented within the RGCCA package.

The SGCCA algorithm is similar to the RGCCA algorithm and keeps the same convergence proper-
ties. Empirically, we note that the S/RGCCA algorithm is found to be not sensitive to the starting
point and usually reaches convergence (tol= 10−16) within a few iterations.

3.4. Higher level RGCCA algorithm

In many applications, several components per block need to be identified. The traditional approach
consists of incorporating the single-unit RGCCA algorithm in a deflation scheme and sequentially
computing the desired number of components. More precisely, the RGCCA optimization problem
returns a set of J optimal block-weight vectors. denoted here a

(1)
j , j = 1, . . . , J . Let y

(1)
j =

Xja
(1)
j , j = 1, . . . , J be the corresponding block components. Two strategies to determine higher-

level weight vectors are presented. The first yields orthogonal block components, and the second
yields orthogonal weight vectors. Deflation is the most straightforward way to add orthogonality
constraints. This deflation procedure is sequential and consists in replacing within the RGCCA opti-
mization problem the data matrix Xj by X

(1)
j its projection onto either: (i) the orthogonal subspace

of y
(1)
j if orthogonal components are desired: X

(1)
j = Xj − y

(1)
j

(
y

(1)
j

⊤
y

(1)
j

)−1

y
(1)
j

⊤
Xj , or (ii) the

orthogonal subspace of a
(1)
j for orthogonal weight vectors X

(1)
j = Xj−Xja

(1)
j

(
a

(1)
j

⊤
a

(1)
j

)−1

a
(1)
j

⊤
.

The second level RGCCA optimization problem boils down to:

max
a1,...,aJ

J∑

j,k=1

cjk g
(

n−1a⊤
j X

(1)
j

⊤
X

(1)
k ak

)
s.t. aj ∈ Ωj . (18)

The optimization problem (18) is solved using Algorithm 1 and returns a set of optimal block-weight
vectors a

(2)
j and block components y

(2)
j = X

(1)
j a

(2)
j , for j = 1 . . . , J .

For orthogonal block weight vectors, y
(2)
j = X

(1)
j a

(2)
j = Xja

(2)
j naturally expresses as a linear

combination of the original variables. For orthogonal block component, as y
(1)
j = Xja

(1)
j , the range

space of X
(1)
j is included in the range space of Xj . Therefore any block component y

(2)
j belonging to

the range space of X
(1)
j can also be expressed in terms of the original block Xj : that is, it exists a

(2)⋆

j

such that y
(2)
j = X

(1)
j a

(2)
j = Xja

(2)⋆

j . It implies that the block components can always be expressed
in terms of the original data matrix, whatever the deflation mode.
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This deflation procedure can be iterated in a very flexible way. For instance, it is not necessary to
keep all the blocks in the procedure at all stages: the number of components per block can vary from
one block to another. This might be interesting in a supervised setting where we want to predict a
univariate block from other blocks. In that case, the deflation procedure applies to all blocks except
the one to predict.

To conclude this section, when the superblock option is used, various deflation strategies (what to
deflate and how) have been proposed in the literature. We propose, as the default option, to deflate
only the superblock with respect to its global components:

X
(1)
J+1 =

(
I − y

(1)
J+1

(
y

(1)
J+1

⊤
y

(1)
J+1

)−1

y
(1)
J+1

⊤
)

XJ+1 =
[
X

(1)
1 , . . . , X

(1)
J

]
.

The individual blocks X
(1)
j s are then retrieved from the deflated superblock. This strategy enables

recovering Multiple Factor Analysis (ade4::mfa()/FactoMineR::MFA()). Note that, in this case,
block components do not belong to their block space and are correlated. On the contrary, we follow the
deflation strategy described in Chessel and Hanafi (1996) (ade4::mcoa()) for Multiple Co-inertia
Analysis, which is one of the most popular and established methods of the multiblock literature.

3.5. Average Variance Explained

In this section, using the idea of average variance explained (AVE), the following indicators of model
quality are defined:

• The AVE for a given block component yj can be computed using the following formula:

AVE(Xj) =
1

∥Xj∥2

pj∑

h=1

var(xjh) × cor2(xjh, yj). (19)

• A global indicator of model quality can be obtained by considering a weighted sum of these
individual AVEs. This outer AVE is defined as:

AVE(outermodel) =


1/

∑

j

∥Xj∥2


∑

j

∥Xj∥2AVE(Xj). (20)

However, the previous quantities do not take into account the correlations between blocks. Therefore,
another indicator of model quality is the inner AVE, defined as follows:

AVE(innermodel) =


1/

∑

j<k

cjk


∑

j<k

cjkcor2(yj , yk). (21)

All these quantities vary between 0 and 1 and reflect important properties of the model.

Equation (19) is defined for a specific block component. The cumulative AVE is obtained by summing
these individual AVEs over the different components. However, this sum applies only to orthogonal
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block components. For correlated components, we follow the QR-orthogonalization procedure de-
scribed in Zou, Hastie, and Tibshirani (2006) to consider only the increase of AVE due to adding the
new components.

Guidelines describing R/SGCCA in practice are provided in Garali, Adanyeguh, Ichou, Perlbarg,
Seyer, Colsch, Moszer, Guillemot, Durr, Mochel, and Tenenhaus (2018). The usefulness and versatil-
ity of the RGCCA package are illustrated in the next section.

4. Practical session

We now present the functions implemented in the RGCCA package and give examples of how they
can be used. The list of functions can be found in Table 4.

Table 4: Functions implemented in the RGCCA package.

Function Description

rgcca Main entry point of the package, this function allows
fitting a R/SGCCA model on a multiblock dataset.

rgcca_transform Use a fitted R/SGCCA model to compute the block
components of unseen individuals.

rgcca_predict Train a caret model on the block components of a fitted
R/SGCCA model and predict values for unseen
individuals.

rgcca_cv Find the best set of parameters for a R/SGCCA model
using cross-validation.

rgcca_permutation Find the best set of parameters for a R/SGCCA model
using a permutation strategy.

rgcca_bootstrap Evaluate the significance of the block-weight vectors
produced by a R/SGCCA model using bootstrap.

rgcca_stability Select the most stable variables of a R/SGCCA model
using their VIPs.

print/plot Print and plot methods for outputs of functions rgcca,
rgcca_cv, rgcca_permutation,
rgcca_bootstrap, and rgcca_stability.

4.1. RGCCA for the Russett dataset.

In this section, we reproduce some of the results presented in Tenenhaus and Tenenhaus (2011) from
the Russett data. The Russett dataset is available within the RGCCA package. The Russett dataset
(Russett 1964) is studied in Gifi (1990). Russett collected this data to study relationships between
Agricultural Inequality, Industrial Development, and Political Instability.

R> library(RGCCA)

R> data(Russett)

R> colnames(Russett)

[1] "gini" "farm" "rent" "gnpr" "labo" "inst"

[7] "ecks" "death" "demostab" "demoinst" "dictator"
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The first step of the analysis is to define the blocks. Three blocks of variables have been defined for
47 countries. The variables that compose each block have been defined according to the nature of the
variables.

• The first block X1 = [gini, farm, rent] is related to “Agricultural Inequality”:

– gini = Inequality of land distribution,
– farm = % farmers that own half of the land (> 50),
– rent = % farmers that rent all their land.

• The second block X2 = [gnpr, labo] describes “Industrial Development”:

– gnpr = Gross national product per capita ($1955),
– labo = ‘% of labor force employed in agriculture.

• The third one X3 = [inst, ecks, death] measures “Political Instability”:

– inst = Instability of executive (45-61),
– ecks = Number of violent internal war incidents (46-61),
– death = Number of people killed as a result of civic group violence (50-62).
– demo = Political regime: stable democracy, unstable democracy or dictatorship. Due to

redundancy, the dummy variable “unstable democracy” has been left out.

The different blocks of variables X1, . . . , XJ are arranged in the list format.

R> A <- list(

+ Agric = Russett[, c("gini", "farm", "rent")],

+ Ind = Russett[, c("gnpr", "labo")],

+ Polit = Russett[, c("inst", "ecks", "death", "demostab", "dictator")])

R>

R> lab <- factor(

+ apply(Russett[, 9:11], 1, which.max),

+ labels = c("demost", "demoinst", "dict")

+ )

Preprocessing. In general, and especially for the covariance-based criterion, the data blocks might be
preprocessed to ensure comparability between variables and blocks. In order to ensure comparability
between variables, standardization is applied (zero mean and unit variance). Such preprocessing is
reached by setting the scale argument to TRUE (default value) in the rgcca() function. To make
blocks comparable, a possible strategy is to standardize the variables and divide each block by the
square root of its number of variables (Westerhuis et al. 1998). This two-step procedure leads to
tr(X⊤

j Xj) = n for each block (i.e. the sum of the eigenvalues of the covariance matrix of Xj is equal
to 1 whatever the block). Such a preprocessing is reached by setting the scale_block argument
to TRUE or "inertia" (default value) in the rgcca() function. If scale_block = "lambda1",
each block is divided by the square root of the highest eigenvalue of its empirical covariance ma-
trix. If standardization is applied (scale = TRUE), the block scaling is applied on the result of the
standardization.

Definition of the design matrix C. From Russett’s hypotheses, it is difficult for a country to escape
dictatorship when agricultural inequality is above average, and industrial development is below aver-
age. These hypotheses on the relationships between blocks are encoded through the design matrix C;
usually cjk = 1 for two connected blocks and 0 otherwise. Therefore, we have decided to connect
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Agricultural Inequality to Political Instability (c13 = 1), Industrial Development to Political Instabil-
ity (c23 = 1) and to not connect Agricultural Inequality to Industrial Development (c12 = 0). The
resulting design matrix C is:

R> #Define the design matrix C.

R> C <- matrix(c(0, 0, 1,

+ 0, 0, 1,

+ 1, 1, 0), 3, 3)

R>

R> C

[,1] [,2] [,3]

[1,] 0 0 1

[2,] 0 0 1

[3,] 1 1 0

Choice of the scheme function g. Typical choices of scheme functions are g(x) = x, x2, or |x|.
According to Van de Geer (1984), a fair model is a model where all blocks contribute equally to
the solution in opposition to a model dominated by only a few of the J sets. If fairness is a major
objective, the user must choose m = 1. m > 1 is preferable if the user wants to discriminate between
blocks. In practice, m is equal to 1, 2 or 4. The higher the value of m, the more the method acts as
block selector (Tenenhaus et al. 2017).

RGCCA using the pre-defined design matrix C, the factorial scheme (g(x) = x2), τ = 1 for all
blocks (full covariance criterion) and a number of (orthogonal) components equal to 2 for all blocks is
obtained by specifying appropriately the arguments connection, scheme, tau, ncomp, comp_orth
in rgcca(). verbose (default value = TRUE) indicates that the progress will be reported while
computing and that a plot illustrating the convergence of the algorithm will be displayed.

R> fit <- rgcca(blocks = A, connection = C,

+ tau = 1, ncomp = 2,

+ scheme = "factorial",

+ scale = TRUE,

+ scale_block = FALSE,

+ comp_orth = TRUE,

+ verbose = FALSE)

The print() function allows summarizing the RGCCA analysis.

R> print(fit)

Call: method=’rgcca’, superblock=FALSE, scale=TRUE, scale_block=FALSE, init=’svd’,

bias=TRUE, tol=1e-08, NA_method=’na.ignore’, ncomp=c(2,2,2), response=NULL,

comp_orth=TRUE

There are J = 3 blocks.

The design matrix is:

Agric Ind Polit

Agric 0 0 1

Ind 0 0 1

Polit 1 1 0

The factorial scheme is used.

Sum_{j,k} c_jk g(cov(X_j a_j, X_k a_k) = 7.9469

The regularization parameter used for Agric is: 1

The regularization parameter used for Ind is: 1

The regularization parameter used for Polit is: 1
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The block-weight vectors solution of the optimization problem (11) are available as output of the
rgcca() function in fit$a and correspond exactly to the weight vectors reported in Figure 5 of
Tenenhaus and Tenenhaus (2011). It is possible to display specific block-weight vector(s) (type = "weight")
block-loadings vector(s) (type = "loadings") using the generic plot() function and specifying

the arguments block and comp accordingly. The a
(k)
j

⋆
, mentioned in Section Higher level RGCCA

algorithm, are available in fit$astar.

R> plot(fit, type = "weight", block = 1:3, comp = 1,

+ display_order = FALSE, cex = 2)

dictator

demostab

death

ecks

inst

labo

gnpr

rent

farm

gini

−0.4 0.0 0.4 0.8

Block
Agric
Ind
Polit

Block−weight vector − comp1

Figure 1: Block-weight vectors of a fitted RGCCA model.

As a component-based method, the RGCCA package provides block components as output of the
rgcca() function in fit$Y and graphical representations, including factor plot (type = "sample"),
correlation circle (type = "cor_circle") or biplot (type = "biplot"). This graphical display
allows visualizing the sources of variability within blocks, the relationships between variables within
and between blocks, and the amount of correlation between blocks. The graphical display of the
countries obtained by crossing X1a1 = Agricultural Inequality and X2a2 = Industrial Development
and marked with their political regime in 1960 is shown below.

R> plot(fit, type = "sample",

+ block = 1:2, comp = 1,

+ resp = lab, repel = TRUE, cex = 2)
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Figure 2: Graphical display of the countries by drawing the block component of the first block against
the block component of the second block, colored according to their political regime.

Countries aggregate together when they share similarities. It may be noted that the lower right quad-
rant concentrates on dictatorships. It is difficult for a country to escape dictatorship when its industrial
development is below average, and its agricultural inequality is above average. It is worth pointing
out that some unstable democracies located in this quadrant (or close to it) became dictatorships for a
period of time after 1960: Greece (1967-1974), Brazil (1964-1985), Chili (1973-1990), and Argentina
(1966-1973).

The AVEs of the different blocks are reported in the axes of Figure 2. All AVEs (defined in 19-21) are
available as output of the rgcca() function in fit$AVE. These indicators of model quality can also
be visualized using the generic plot() function.

R> plot(fit, type = "ave", cex = 2)
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Component
1
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First outer AVE: 66.9% & 14.6%
Average Variance Explained

Figure 3: Average Variance Explained of the different blocks.
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The strength of the relations between each block component and each variable can be visualized using
correlation circles or biplot representations.

R> plot(fit, type = "cor_circle", block = 1, comp = 1:2,

+ display_blocks = 1:3, cex = 2)
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Figure 4: Correlation circle associated with the first two components of the Agriculture block.

By default, all the variables are displayed on the correlation circle. However, it is possible to choose
the block(s) to display (display_blocks) in the correlation_circle.

R> plot(fit, type = "biplot", block = 1,

+ comp = 1:2, repel = TRUE,

+ resp = lab, cex = 2,

+ show_arrow = TRUE)
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Figure 5: Biplot associated with the first two components ofthe Agriculture block.

As we will see in the next section, when the superblock option is considered (superblock = TRUE

or method set to a method that induces the use of superblock), global components can be derived.
The space spanned by the global components can be viewed as a consensus space that integrates all
the modalities and facilitates the visualization of the results and their interpretation.

Assessment of the reliability of parameter estimates. It is possible to use a bootstrap resampling
method to assess the reliability of parameter estimates (block-weight/loading vectors) obtained using
RGCCA. B = n_boot bootstrap samples of the same size as the original data are repeatedly sampled
with replacement from the original data. RGCCA is then applied to each bootstrap sample to obtain
the RGCCA estimates. We calculate the standard deviation of the estimates across the bootstrap
samples, from which we derive bootstrap confidence intervals, t-ratio (defined as the ratio of the
parameter estimate to its bootstrap estimate of the standard deviation), and p-value (the p-value is
computed by assuming that the ratio of the parameter estimate to its standard deviation follows the
standardized normal distribution), to indicate how reliably parameters were estimated. Since several
p-values are constructed simultaneously, FDR correction can be applied to control the False Discovery
Rate. This function is available using the rgcca_bootstrap() function of the RGCCA package.

R> boot_out <- rgcca_bootstrap(fit, n_boot = 500, n_cores = 1)

The bootstrap results are detailed using the print() function,

R> print(boot_out, block = 1:3, ncomp = 1)

Call: method=’rgcca’, superblock=FALSE, scale=TRUE, scale_block=FALSE, init=’svd’,

bias=TRUE, tol=1e-08, NA_method=’na.ignore’, ncomp=c(2,2,2), response=NULL,

comp_orth=TRUE

There are J = 3 blocks.

The design matrix is:

Agric Ind Polit

Agric 0 0 1



Journal of Statistical Software 21

Ind 0 0 1

Polit 1 1 0

The factorial scheme is used.

Extracted statistics from 500 bootstrap samples.

Block-weight vectors for component 1:

estimate mean sd lower_bound upper_bound bootstrap_ratio

gini 0.6602 0.6341 0.0804 0.4237 0.729 8.209

farm 0.7445 0.7279 0.0867 0.6297 0.846 8.588

rent 0.0994 0.0835 0.2173 -0.4070 0.439 0.458

gnpr 0.6891 0.6884 0.0301 0.6225 0.742 22.893

labo -0.7247 -0.7242 0.0282 -0.7826 -0.670 -25.710

inst 0.1692 0.1667 0.1110 -0.0668 0.375 1.525

ecks 0.4418 0.4355 0.0617 0.3016 0.542 7.162

death 0.4784 0.4720 0.0499 0.3669 0.565 9.588

demostab -0.5574 -0.5500 0.0496 -0.6389 -0.446 -11.230

dictator 0.4864 0.4832 0.0528 0.3785 0.581 9.214

pval adjust.pval

gini 0.00000 0.0000

farm 0.00402 0.0073

rent 0.44092 0.5187

gnpr 0.00000 0.0000

labo 0.00000 0.0000

inst 0.07991 0.1142

ecks 0.00000 0.0000

death 0.00000 0.0000

demostab 0.00000 0.0000

dictator 0.00000 0.0000

and displayed using the plot() function.

R> plot(boot_out, type = "weight",

+ block = 1:3, comp = 1,

+ display_order = FALSE, cex = 2,

+ show_stars = TRUE)
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Figure 6: Bootstrap confidence intervals for the block-weight vectors.

Each weight is shown along with its associated bootstrap confidence interval and stars (show_stars = TRUE)
reflecting the p-value of assigning a strictly positive or negative weight to this variable.

4.2. RGCCA with superblock

In this section, we consider Multiple Co-Inertia Analysis (Chessel and Hanafi 1996) (MCOA, also
called MCIA in Cantini, Zakeri, Hernandez, Naldi, Thieffry, Remy, and Baudot 2021) with 2 compo-
nents per block.

See available_methods() for a list of pre-specified multiblock component methods.

R> fit.mcoa <- rgcca(blocks = A, method = "mcoa", ncomp = 2)

Interestingly, the print() function reports the arguments implicitly specified to perform MCOA.

R> print(fit.mcoa)

Call: method=’mcoa’, superblock=TRUE, scale=TRUE, scale_block=’inertia’, init=’svd’,

bias=TRUE, tol=1e-08, NA_method=’na.ignore’, ncomp=c(2,2,2,2), response=NULL,

comp_orth=FALSE

There are J = 4 blocks.

The design matrix is:

Agric Ind Polit superblock

Agric 0 0 0 1

Ind 0 0 0 1

Polit 0 0 0 1

superblock 1 1 1 0

The factorial scheme is used.

Sum_{j,k} c_jk g(cov(X_j a_j, X_k a_k) = 3.578

The regularization parameter used for Agric is: 1
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The regularization parameter used for Ind is: 1

The regularization parameter used for Polit is: 1

The regularization parameter used for superblock is: 0

It is possible to display specific output as previously using the generic plot() function by specifying
the argument type accordingly. MCOA enables individuals to be represented in the space spanned by
the first global components. The biplot representation associated with this consensus space is given
below.

R> plot(fit.mcoa, type = "biplot",

+ block = 4, comp = 1:2,

+ response = lab,

+ repel = TRUE, cex = 2)
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Figure 7: Biplot of the countries obtained by crossing the two first components of the superblock.
Individuals are colored according to their political regime and variables according to their block mem-
bership.

As previously, this model can be easily bootstrapped using the rgcca_bootstrap() function, and
the bootstrap confidence intervals are still available using the print() and plot() functions.

4.3. Choice of the shrinkage parameters

Three fully automatic strategies are proposed to select the optimal shrinkage parameters:

The Schafer and Strimmer analytical formula. For each block j, an “optimal” shrinkage parameter
τj can be obtained using the Schafer and Strimmer analytical formula (Schäfer and Strimmer 2005)
by setting the tau argument of the rgcca() function to "optimal".

R> fit <- rgcca(blocks = A, connection = C,

+ tau = "optimal", scheme = "factorial")
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The optimal shrinkage parameters are given by:

R> fit$call$tau

[1] 0.08853216 0.02703256 0.08422566

This automatic estimation of the shrinkage parameters allows one to come closer to the correlation
criterion, even in the case of high multicollinearity or when the number of individuals is smaller than
the number of variables.

As previously, all the fitted RGCCA objects can be visualized/bootstrapped using the print(),
plot() and rgcca_bootstrap() functions.

Permutation strategy. A permutation-based strategy very similar to the one proposed in Witten et al.

(2009) has also been integrated within the RGCCA package through the rgcca_permutation()

function. This function is used to select the regularization parameters for R/SGCCA automatically.

For each set of regularization parameters (generally this will be a J-dimensional vector), the following
steps are performed:

• S/RGCCA is run on the original data X1, . . . , XJ , and we record the value of the objective
function, denoted t.

• n_perm times, the rows of X1, . . . , XJ are randomly permuted to obtained permuted data sets
X∗

1, . . . , X∗
J . S/RGCCA is then run on these permuted data sets, and we record the value of the

objective function, denoted t∗.

• The resulting p-value is given by the fraction of permuted t∗ that exceeds the t obtained from
the non-permuted blocks.

• The resulting zstat is defined as t−mean(t∗)
sd(t∗) .

The best set of tuning parameters is then the set that yields the highest zstat. This procedure is available
through the rgcca_permutation function.

R> set.seed(123)

R> perm_out <- rgcca_permutation(blocks = A, connection = C,

+ par_type = "tau",

+ par_length = 10,

+ n_cores = 1,

+ n_perms = 10)

By default, the rgcca_permutation function generates 10 sets of tuning parameters uniformly
between some minimal values (0 for RGCCA and 1/sqrt(ncol) for SGCCA) and 1. Results of the
permutation procedure are summarized using the generic print() function,

R> print(perm_out)

Call: method=’rgcca’, superblock=FALSE, scale=TRUE, scale_block=TRUE, init=’svd’,

bias=TRUE, tol=1e-08, NA_method=’na.ignore’, ncomp=c(1,1,1), response=NULL,

comp_orth=TRUE

There are J = 3 blocks.

The design matrix is:

Agric Ind Polit

Agric 0 0 1
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Ind 0 0 1

Polit 1 1 0

The factorial scheme is used.

Tuning parameters (tau) used:

Agric Ind Polit

1 1.000 1.000 1.000

2 0.889 0.889 0.889

3 0.778 0.778 0.778

4 0.667 0.667 0.667

5 0.556 0.556 0.556

6 0.444 0.444 0.444

7 0.333 0.333 0.333

8 0.222 0.222 0.222

9 0.111 0.111 0.111

10 0.000 0.000 0.000

Tuning parameters Criterion Permuted criterion sd zstat p-value

1 1.00/1.00/1.00 0.708 0.0583 0.0263 24.70 0

2 0.89/0.89/0.89 0.758 0.0648 0.0291 23.83 0

3 0.78/0.78/0.78 0.814 0.0726 0.0324 22.86 0

4 0.67/0.67/0.67 0.878 0.0825 0.0366 21.75 0

5 0.56/0.56/0.56 0.953 0.0953 0.0419 20.48 0

6 0.44/0.44/0.44 1.040 0.1128 0.0488 18.99 0

7 0.33/0.33/0.33 1.144 0.1382 0.0585 17.18 0

8 0.22/0.22/0.22 1.273 0.1794 0.0737 14.85 0

9 0.11/0.11/0.11 1.449 0.2623 0.1032 11.49 0

10 0.00/0.00/0.00 1.934 0.6649 0.2297 5.52 0

The best combination is: 1.00/1.00/1.00 for a z score of 24.7 and a p-value of 0.

and displayed using the generic plot() function.

R> plot(perm_out, cex = 2)



26 Regularized Generalized Canonical Correlation Analysis

1.00/1.00/1.00

0.00/0.00/0.00

0.56/0.56/0.56

0.78/0.78/0.78

0.89/0.89/0.89

0.67/0.67/0.67

0.33/0.33/0.33

0.44/0.44/0.44

0.22/0.22/0.22

0.11/0.11/0.11

0.0 0.5 1.0 1.5 2.0
RGCCA criterion

Tu
ni

ng
 p

ar
am

et
er

 s
et

s 
(t

au
)

Permutation scores (10 runs) 
 Best parameters: 1.00/1.00/1.00

Figure 8: Values of the objective function of RGCCA against the sets of tuning parameters, triangles
correspond to evaluations on non-permuted datasets.

The fitted permutation object, perm_out, can be directly provided as the output of rgcca() and
visualized/bootstrapped as usual.

R> fit <- rgcca(perm_out)

Of course, it is possible to define explicitly the combination of regularization parameters to be tested.
In that case, a matrix of dimension K×J is required. Each row of this matrix corresponds to one set of
tuning parameters. Alternatively, a numeric vector of length J indicating the maximum range values
to be tested can be given. The set of parameters is then uniformly generated between the minimum
values (0 for RGCCA and 1/sqrt(ncol) for SGCCA) and the maximum values specified by the user
with par_value.

Cross-validation strategy. The optimal tuning parameters can also be obtained by cross-validation.
We will illustrate this in the next section in the context of SGCCA.

5. High dimensional case study: Glioma Data

Biological problem. Brain tumors are children’s most common solid tumors and have the high-
est mortality rate of all pediatric cancers. Despite advances in multimodality therapy, children with
pHGG invariably have an overall survival of around 20% at 5 years. Depending on their location
(e.g. brainstem, central nuclei, or supratentorial), pHGG present different characteristics in terms of
radiological appearance, histology, and prognosis. Our hypothesis is that pHGG have different genetic
origins and oncogenic pathways depending on their location. Thus, the biological processes involved
in the development of the tumor may be different from one location to another, as has been frequently
suggested.

Description of the data. Pretreatment frozen tumor samples were obtained from 53 children with
newly diagnosed pHGG from Necker Enfants Malades (Paris, France) (Puget, Philippe, Bax, Job,
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Varlet, Junier, Andreiuolo, Carvalho, Reis, Guerrini-Rousseau, Roujeau, Dessen, Richon, Lazar, Le
Teuff, Sainte-Rose, Geoerger, Vassal, Jones, and Grill 2012). The 53 tumors are divided into 3 lo-
cations: supratentorial (HEMI), central nuclei (MIDL), and brain stem (DIPG). The final dataset is
organized into 3 blocks of variables defined for the 53 tumors: the first block X1 provides the expres-
sion of 15702 genes (GE). The second block X2 contains the imbalances of 1229 segments (CGH) of
chromosomes. X3 is a block of dummy variables describing the categorical variable location. One
dummy variable has been left out because of redundancy with the others.

The next lines of code can be run to download the dataset:

R> # Download the dataset’s package at http://biodev.cea.fr/sgcca/.

R> # --> gliomaData_0.4.tar.gz

R> if (!("gliomaData" %in% rownames(installed.packages()))) {

+ destfile <- tempfile()

+ download.file("http://biodev.cea.fr/sgcca/gliomaData_0.4.tar.gz", destfile)

+ install.packages(destfile, repos = NULL, type = "source")

+ }

R> data(ge_cgh_locIGR, package = "gliomaData")

R>

R> blocks <- ge_cgh_locIGR$multiblocks

R> Loc <- factor(ge_cgh_locIGR$y)

R> levels(Loc) <- colnames(ge_cgh_locIGR$multiblocks$y)

R> blocks[[3]] <- Loc

R>

R> # check dimensions of the blocks

R> vapply(blocks, NCOL, FUN.VALUE = 1L)

We impose X1 and X2 to be connected to X3. This design is commonly used in many applications and
is oriented toward predicting the location. The argument response = 3 of the rgcca() function
encodes this design.

R> fit.rgcca <- rgcca(blocks = blocks, response = 3, ncomp = 2, verbose = FALSE)

When the response variable is qualitative, two steps are implicitly performed: (i) disjunctive coding
and (ii) the associated shrinkage parameter is set to 0 regardless of the value specified by the user.

R> fit.rgcca$call$connection

R> fit.rgcca$call$tau

From the dimension of each block (n > p or n ≤ p), rgcca() selects automatically the dual for-
mulation for X1 and X2 and the primal one for X3. The formulation used for each block is returned
using the following command:

R> fit.rgcca$primal_dual

The dual formulation makes the RGCCA algorithm highly efficient, even in a high-dimensional set-
ting.

R> system.time(

+ rgcca(blocks = blocks, response = 3)

+ )

RGCCA enables visual inspection of the spatial relationships between classes. This facilitates assess-
ment of the quality of the classification and makes it possible to determine which components capture
the discriminant information readily.
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R> plot(fit.rgcca, type = "sample", block = 1:2,

+ comp = 1, response = Loc, cex = 2)

For easier interpretation of the results, especially in high-dimensional settings, it is often appropriate
to add penalties promoting sparsity within the RGCCA optimization problem. For that purpose, an ℓ1

penalization on the weight vectors a1, . . . , aJ is applied. the sparsity argument of rgcca() varies
between 1/sqrt(ncol) and 1 (larger values of sparsity correspond to less penalization) and controls
the amount of sparsity of the weight vectors a1, . . . , aJ . If sparsity is a vector, ℓ1-penalties are the
same for all the weights corresponding to the same block but different components:

∀h, ∥a
(h)
j ∥ℓ1

≤ sparsityj

√
pj , (22)

with pj the number of variables of Xj .

If sparsity is a matrix, row h of sparsity defines the constraints applied to the weights corre-
sponding to components h:

∀h, ∥a
(h)
j ∥ℓ1

≤ sparsityh,j

√
pj . (23)

5.1. SGCCA for the Glioma dataset

The algorithm associated with the optimization problem (13) is available through the function rgcca()
with the argument method = "sgcca".

R> fit.sgcca <- rgcca(blocks = blocks, response = 3, ncomp = 2,

+ sparsity = c(0.0710, 0.2000, 1),

+ verbose = FALSE)

The print() function allows summarizing the SGCCA analysis,

R> print(fit.sgcca)

and the plot() returns the same graphical displays as RGCCA. We skip these representations for
sake of brevity.

Of course, it is still possible to determine the optimal sparsity parameters by permutation. This is
made possible by setting the par_type argument to "sparsity" (instead of "tau") within the
rgcca_permutation() function. However, we will use another approach in this section.

Cross-validation strategy. The optimal tuning parameters can be determined by cross-validating
different indicators of quality, namely:

• For classification: Accuracy, Kappa, F1, Sensitivity, Specificity, Pos_Pred_Value,
Neg_Pred_Value, Precision, Recall, Detection_Rate, and Balanced_Accuracy.

• For regression: RMSE and MAE.

This cross-validation protocol is made available through the rgcca_cv function and is used here for
predicting the location of the tumors.

In this situation, the goal is to maximize the cross-validated accuracy (metric = "Accuracy") in a
model where we try to predict the response block from all the block components with a user-defined
classifier (prediction_model = "lda"). Also, we decide to upper bound the sparsity parameters
for X1 and X2 to 0.2 to achieve an attractive amount of sparsity.
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R> set.seed(27) #my favorite number

R> inTraining <- caret::createDataPartition(

+ blocks[[3]], p = .75, list = FALSE

+ )

R> training <- lapply(blocks, function(x) as.matrix(x)[inTraining, , drop = FALSE])

R> testing <- lapply(blocks, function(x) as.matrix(x)[-inTraining, , drop = FALSE])

R>

R> cv_out <- rgcca_cv(blocks = training, response = 3,

+ par_type = "sparsity",

+ par_value = c(.2, .2, 0),

+ par_length = 10,

+ prediction_model = "lda",

+ validation = "kfold",

+ k = 3, n_run = 5, metric = "Accuracy",

+ n_cores = 2)

rgcca_cv() relies on the caret package. As a direct consequence, an astonishingly large number of
models are made available (see caret::modelLookup()). Results of the cross-validation procedure
are reported using the generic print() function,

R> print(cv_out)

and displayed using the generic plot() function.

R> plot(cv_out, cex = 2)

As previously, the optimal sparsity parameters can be used to fit a new model, and the resulting optimal
model can be visualized/bootstrapped.

R> fit <- rgcca(cv_out)

R> print(fit)

Note that the sparsity parameter associated with X3 switches automatically to τ3 = 0. This choice is
justified by the fact that we were not looking for a block component y3 that explained its own block
well (since X3 is a group coding matrix) but one that is correlated with its neighboring components.

At last, rgcca_predict() can be used for predicting new blocks,

R> pred <- rgcca_predict(fit, blocks_test = testing, prediction_model = "lda")

and a caret summary of the performances can be reported.

R> pred$confusion$test

If, for a specific reason, only the block components are wanted for the test set, the function rgcca_transform
can be used.

R> projection <- rgcca_transform(fit, blocks_test = testing)

Stability procedure. It is possible to stabilize the selected variables using the following procedure.

Tenenhaus (1998) defines the Variable Importance in Projection (VIP) score for the PLS method. This
score is used for variable selection: the higher the score, the more important the variable. We use this
idea to propose a procedure for evaluating the stability of the variable selection procedure of SGCCA.
This procedure relies on the following score:
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VIP(xjh) =
1

K

K
∑

k=1

(

a
(k)2
jh AVE

(

X
(k)
j

))

. (24)

SGCCA is run several times using a bootstrap resampling procedure. For each model, the VIPs are
computed, and the variables with the higher VIPs averaged over the different models are kept. This
procedure is available through the rgcca_stability function.

R> fit_stab <- rgcca_stability(fit,

+ keep = vapply(

+ fit$a, function(x) mean(x != 0),

+ FUN.VALUE = 1.0

+ ),

+ n_boot = 100, verbose = TRUE, n_cores = 2)

Once the most stable variables have been found, a new model using these variables is automatically
fitted. This last model can be visualized using the usual print() and plot() functions.

R> plot(fit_stab, type = "sample", block = 1:2,

+ comp = 1, resp = as.character(Loc)[inTraining],

+ cex = 2

+ )

We can finally apply the bootstrap procedure on the most stable variables.

R> boot_out <- rgcca_bootstrap(fit_stab, n_boot = 500)

The bootstrap results can be visualized using the generic plot() function. We use the n_mark

parameter to display the top 50 variables of GE.

R> plot(boot_out, block = 1,

+ display_order = FALSE,

+ n_mark = 50, cex = 1.5, cex_sub = 17,

+ show_star = TRUE)

6. Conclusion

The RGCCA framework gathers fifty years of multiblock component methods and offers a unified
implementation strategy for these methods. The RGCCA package is available on the Comprehensive
R Archive Network (CRAN) and GitHub https://github.com/rgcca-factory/RGCCA.
This release of the RGCCA package includes:

• Several strategies for determining the shrinkage parameters/level of sparsity automatically:
Schaffer & Strimmer’s analytical formulae, cross-validation, or permutation strategy.

• A bootstrap resampling procedure for assessing the reliability of the parameter estimates of
S/RGCCA.

• Dedicated functions for graphical displays of the output of RGCCA (sample plot, correlation
circle, biplot, ...).

https://github.com/rgcca-factory/RGCCA
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• Various implementation strategies for orthogonal block-components or orthogonal block-weight
vectors.

• Strategies for handling missing data. Specifically, multiblock data faces two types of missing
data structure: (i) if an observation i has missing values on a whole block j and (ii) if an
observation i has some missing values on a block j (but not all). For these two situations,
we exploit the algorithmic solution proposed for PLS path modeling to deal with missing data
(see Tenenhaus et al. 2005).

• Special attention has been paid to providing a bunch of "mathematical" unit tests which, in a
sense, guarantee the implementation quality. Also, when appropriate, a particular focus was
given to recovering the results of other R packages of the literature , including ade4 and
FactoMineR.

We believe that the RGCCA package will be a valuable resource for researchers and practitioners who
are interested in multiblock data analysis to gain new insights and improve decision-making.

The RGCCA framework is constantly evolving and extending. Indeed, we proposed RGCCA for
multigroup data (Tenenhaus et al. 2014), RGCCA for multiway data (Gloaguen, Philippe, Frouin,
Gennari, Dehaene-Lambertz, Le Brusquet, and Tenenhaus 2020; Girka, Gloaguen, Brusquet, Zujovic,
and Tenenhaus 2023) and RGCCA for (sparse and irregular) functional data (Sort, Tenenhaus, and
Le Brusquet 2023). In addition, maximizing successive criteria may be seen as sub-optimal from an
optimization point of view, where a single global criterion might be preferred. A global version of
RGCCA (Gloaguen 2020), which allows simultaneously extracting several components per block (no
deflation procedure required), has been proposed. Also, it is possible to use RGCCA in structural
equation modeling with latent and emergent variables for obtaining consistent and asymptotically
normal estimators of the parameters (Tenenhaus, Tenenhaus, and Dijkstra 2023). At last, several
alternatives for handling missing values are discussed in Peltier, Le Brusquet, Lejeune, Moszer, and
Tenenhaus (2022). Work in progress includes the integration of all these novel approaches in the next
release of the RGCCA package.
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