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A B S T R A C T   

Biodiversity is a key component of agricultural ecosystems and belongs to one of the exceeded planetary 
boundaries. In the quest for innovation to mitigate impact, it is essential to have tools to assess the anthropogenic 
impact on biodiversity. In this study, we developed a new indicator, I-BIO that aimed to predict the impacts of 
management practices and the influence of the landscape on overall biodiversity at species group level. I-BIO 
encompassed four groups: microorganisms, vegetation, invertebrates and vertebrates. This predictive indicator 
was built using DEXi software that facilitates the design of hierarchical decision trees, based on input variables in 
the form of qualitative classes, aggregated using utility functions. I-BIO was constructed using data from a long- 
term platform in Scotland and then applied to two data sets in France and one in Scotland. The results showed 
that the lowest class is predominant for all branches especially for invertebrates and soil invertebrates. Monte 
Carlo sampling was used to test for sensitivity. Then, a validation step was carried out to compare I-BIO outputs 
with real data using data on the four groups from Scottish and French datasets. I-BIO predictions of weed and soil 
invertebrate abundance conformed to field data. Due to low numbers of samples, validation of microorganisms, 
flying invertebrates and vertebrates predictions require more data. Future developments of I-BIO will focus on 
predictions specifically to assess the impact of management on species richness. Avenues for improvement 
include a better integration of landscape features and the history of agricultural practices as they both have a 
great influence on biodiversity.   

1. Introduction 

Conservation of biodiversity as an essential element of ecosystems 
has been on the agenda for decision makers since the Rio Conference in 
1992 (Le Guyader, 2008). It is well established that loss of biodiversity is 
considered as a major issue regarding sustainability of the planet, having 
exceeded planetary boundaries (Campbell et al., 2017). A growing 
number of studies highlight its major role in the supply of many 
ecosystem services to mankind (Sandifer et al., 2015). Nevertheless, due 
to the complex relation between biodiversity and ecosystem services, 
this contribution remains subject to investigation (Duncan et al., 2015). 
In spite of the growing awareness of politicians, managers and civil 
society and the regulations put in place, recent publications show a 

continued dramatic decline in biodiversity, in terms of species abun
dance and diversity across many ecosystems: in protected areas (Hall
mann et al., 2017), in grassland and forest (Seibold et al., 2019) as well 
as in cropped agroecosystems (Le Roux et al., 2008). These studies 
addressed decline of invertebrates while others focus on birds or plants 
(Boatman and Brickle, 2004; Donald et al., 2001; Robinson and 
Sutherland, 2002; Stanton et al., 2018) and highlight the role of agri
cultural intensification as a cause of this decline. Intensification of 
agriculture has increased globally over the past 50 years through 
intensive use of synthetic inputs, mineral fertilizers and pesticides, and 
simplification of agricultural landscapes by removing semi natural 
habitat to increase field size, and reducing crop diversity to focus on 
more profitable crops (Mortensen and Smith, 2020). 
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In response to this tremendous transformation of agriculture, alter
native approaches have been developed. Among them, organic farming 
has shown a clear potential to improve levels of biodiversity in farmland 
with an average gain of 30 % shown by several reviews and meta- 
analyses (Smith et al., 2020; Tuck et al., 2014). Nevertheless, other le
vers than minimising chemical inputs also promote biodiversity: 
reducing physical disturbances due to tillage (Christel et al., 2021), 
diversifying cropping systems (Viguier et al., 2021; Tibi et al., 2022) and 
landscape (Tscharntke et al., 2021), and continuous cover cropping 
represent the three columns of conservation agriculture, which can also 
reduce deleterious impact of agriculture on biodiversity (Bitew and 
Abera, 2019). Beyond this categorization of well-established agricul
tural practices, the integration of best practice management options to 
achieve better sustainability are key drivers in the design of innovative 
cropping systems supporting biodiversity conservation (Hawes et al., 
2021). 

Besides the question of solution, development of assessment method 
is a prerequisite to any action in favour of biodiversity conservation or 
more generally to improve agroecological sustainability. Baseline as
sessments of biodiversity are essential for preliminary diagnosis to 
orient any action plan to mitigate or restore biodiversity in agro
ecosystems. These may also support the design of innovative systems 
that promote biodiversity for ecosystem service provision. Since it is not 
possible to “measure” biodiversity directly, any assessment will require 
biodiversity indicators, which is also true when considering sustain
ability. To gain insights in the “indicator zoo” developed over the past 
30 years, Bockstaller et al. (2015) sets out a typology based on three 
types of indicators: causal effect (e.g. semi-natural habitat), measured 
effect (e.g. number of earthworms) and predictive effect indicators (e.g. 
operational model). Causal or indirect indicators and measured or direct 
indicators are most frequently used (Bockstaller et al., 2011; Clergue 
et al., 2005). Relative feasibility of the former and the direct link to 
biodiversity state of the latter explain their popularity. Predictive effect 
indicators are derived from model outputs which require well docu
mented knowledge on causal-effect relationships or statistical relation
ships with consequent datasets. Such indicators present a major 
advantage by making possible ex ante assessment to test innovative so
lutions without heavy field experiments. This modelling approach 
broadens remarkably the range of possibilities for exploring alternative 
solutions (Sadok et al., 2009a). 

With regard to biodiversity, predictive indicators have been devel
oped. While some authors use a scoring system based on scientific 
knowledge (Butler et al., 2009: Jeanneret et al. 2014) or decision tree 
using fuzzy subsets (Sattler et al., 2010), others use DEXi based models, 
i.e. the MASC method (Sadok et al., 2009a; Sadok et al., 2009b: Craheix 
et al., 2012) the DEXiPM models (Angevin et al., 2017; Pelzer et al., 
2012) and more recently with DEXi-CSC (Hawes et al., 2019). DEXi 
software is a tool that aggregates qualitative or quantitative variables 
into classes according to if-then decision rules that result in a hierar
chical structure with a single overall output at the top level. The various 
steps needed to develop this kind of model will be described in the 
material and method section. These methods assess the global sustain
ability of cropping systems integrating the biodiversity in their assess
ment process. However, some mechanisms are poorly considered. For 
example, the MASC method does not integrate the role of some verte
brates like birds, and neither the DEXiPM nor the DEXi-CSC model 
adequately cover soil microorganisms known for their central role in the 
food web and for its numerous biological functions (Bender et al., 2016; 
Singh, 2015; Tiemann et al., 2015). Other models mix ecosystem ser
vices and biodiversity such as in DEXiPM2 and DEXi-CSC that could 
bring greater complexity (Table 1). However, in these examples, little 
account is taken of the impact of landscape management despite the key 
role that landscape plays in biodiversity conservation (Tscharntke et al. 
2021). Connectivity between patches of semi-natural habitats, field size 
or crop diversity are landscape features that could greatly increase 
biodiversity. Ta
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The aim of this article is to present a new predictive indicator, called 
I-BIO, assessing the impact of cropping practices and the influence of 
landscape features on overall arable biodiversity. Actually, biodiversity 
encompasses different dimensions, structural, compositional and func
tional at different levels (Noss, 1990). Here we will focus mainly on the 
compositional, considering species diversity of organisms living above- 
(mammals, birds, insects, …) and below-ground (earthworms, fungi, 
microorganisms, etc). Starting from the biodiversity branch of the DEXi- 
CSC model (Hawes et al., 2019) which is the most recent version, we 
redesigned this branch to obtain a predictive indicator based on simple 
to use accounting of the surrounding landscape and the main crop 
management practices in arable systems. We present first the con
struction of the I-BIO indicator with choices of variables, classes and 
aggregation rules. We tested then the newly developed indicator I-BIO 
and validated it by comparing its outputs to measurements of biodi
versity for a set of different crop production and landscape situations. 

2. Materials and methods 

The design of the I-BIO predictive indicator started with a pre
liminary step defining the situation in which the indicator can be 
applied, followed by the selection of input variables, their parametri
zation (class thresholds, weights) and aggregation rules, based on data 
from the Centre for Sustainable Cropping (Hawes et al., 2019). Finally, 
the indicator was tested and validated against datasets from East of 
Scotland and French sites. 

2.1. Preliminary choices guiding the design 

Preliminary design choices are essential to clearly identify the pur
pose of the indicator, the target users, the object assessed, the spatial and 
temporal scales, and the availability of data (Bockstaller et al. 2015). 
These criteria define the context which should guide the design of the 
indicator so that the tool is relevant to the requirements of end-users. 
The aim of the development of I-BIO is to help agronomists, advisers 
and famers working on innovative cropping systems, to gain insight into 
the impacts of management on biodiversity at the field level. The field 
includes here the cropped area and the field margins which are desig
nated as the uncultivated herbaceous vegetation area between the 
cultivated strip and another patch in the landscape (e.g., ditch, hedge
row, road, field or grassland). I-BIO was developed to cover a large range 
of taxa covering the overall agroecosystem biodiversity, comprising four 
groups: microorganisms, vegetation, invertebrates and vertebrates (see 
section 2.2.1). While Sattler et al. (2010) addressed 3 species within 2 
taxonomic groups, we worked, like most authors, on higher taxonomic 
groups encompassing a broader range of species. I-BIO seeks to balance 
the advantages of modelling specific taxonomic groups with the need to 
account for overall biodiversity which impacts on system functioning. 
Likewise, the SALCA method (Jeanneret et al., 2014) is an example of a 
method assessing specific taxonomic groups (11 “indicator-species 
group”) while the IBEA method (France Nature Environnement, 2013) 
assesses the wild biodiversity as a whole. Last, the data for model 
parametrization covers common agronomic practices, organic matter 
inputs and landscape data (composition and configuration of semi- 
natural habitats, crop diversity within a 1 km radius). 

2.2. Design of the indicator I-BIO 

2.2.1. DEXi software 
The new indicator was designed with the DEXi software (Bohanec, 

2009). This software very user friendly allows the construction of hier
archical decision trees with linguistic rules which facilitate communi
cation among non-specialists (Babuška and Verbruggen, 2003). Input 
indicators are characterized by their name, a description and a scale i.e. 
they are defined as, or transformed into, qualitative classes (e.g. low, 
medium, high). Those input indicators are then aggregated using utility 

functions based on the “if-then” rules and weightings gathered in deci
sion tables. These latter could be filled in the DEXi software automati
cally, semi automatically and by hand. For the first two options, weights 
for every indicator are defined by the user and only two values of ag
gregation are filled by hand for the automatic option and more than two 
values for the semi-automatic option. The software automatically fills 
the rest. For the option “by hand”, the user fills every decision rule 
manually and then DEXi calculates the weight of each input indicator. 
This last option was implemented in the design of I-BIO. The aim is to 
achieve a global, qualitative assessment of the scenario tested. For 
further details of the DEXi tool, see Bohanec (2009) and Pelzer et al. 
(2012). 

2.2.2. Selection and hierarchy of effect and causal indicators 
The first step was to carry out a narrative review to identify and 

select the effect and causal indicators to be integrated in the model and 
their hierarchy in the decision tree. Effects indicators result from the 
assessment of effect of causal indicators (Bockstaller et al., 2015). To 
assess the impacts of a management scenario, biodiversity was split in 
four main groups describing overall biodiversity: microorganism, 
vegetation, invertebrates and vertebrates (Bar-On et al., 2018). The 
invertebrate group is divided into soil and flying invertebrates as or
ganisms in these groups have different lifespan and mobility capacity 
and are therefore likely to show different responses to management 
options. Soil invertebrates spend all their life cycle in or on the soil 
whereas flying invertebrate’ habitats vary with life cycle stages. So, if we 
take the example of tillage practice, the level of impact will differ be
tween these two sub-groups (Coudrain et al., 2016; van Capelle et al., 
2012). The microorganism group, the vertebrate group and the two 
invertebrate subgroups were described by two branches: one related to 
anthropogenic impacts and the other one to trophic resources. The 
former tackles impacts of management directly, while the latter covers 
indirect impacts of management. For example, a strong impact of a 
cropping system on invertebrates or vegetation will decrease trophic 
resource for vertebrates resulting in a decline in abundance. These two 
sub-branches were characterized by relevant indicators in each group. 
For example, the causal indicator “mowing” was added to the vertebrate 
branch in DEXi-CSC as this practice could have a great impact for ground 
nesting birds or young mammals like fawn (Buckingham et al., 2015; 
Jarnemo, 2002; Stanton et al., 2018). The vegetation group was split in 
two branches. The first one deals with the regional context including 
semi-natural flora surrounding fields and the second one describes the 
weed flora within the cropped area. 

The whole biodiversity branch and its related effect-indicators are 
described by 19 causal indicators (Fig. 1). Eleven causal indicators 
characterize the cropping systems, such as crop sequences, crop di
versity, tillage intensity and specificities of phytosanitary treatments 
(number of applications, pre or post emergence, weed target). Eight 
causal indicators are related to local context: trophic resources (soil 
organic matter, microorganism, vegetation and invertebrates), land
scape features (field size, land cover diversity, percentage of semi- 
natural habitats, connectivity). 

The eight effect indicators representing the taxonomic group and 
overall biodiversity reflect a qualitative effect on biodiversity without 
the need to specify the dimension such as abundance or species richness 
(Díaz et al., 2006). 

2.2.3. Choice of qualitative state for effect and causal indicators 
The second step was to select qualitative classes for simple and 

aggregated indicators. The biodiversity branch of DEXi-CSC had only 3 
classes for all branches. The aim was to increase the tree sensitivity and 
to be more precise in the assessment, following guidelines of Craheix 
et al. (2015). For I-BIO, two classes were added at the biodiversity in
dicator level, one class to each group i.e. microorganism, vegetation, 
invertebrates, vertebrates, as well as the two subgroups soil in
vertebrates and flying invertebrates (invertebrates) and the indicators 
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Fig. 1. Tree of I-BIO: a tool assessing the farming practices impacts on the overall biodiversity at field level. Dark green, light green and yellow indicators correspond 
respectively to the global indicator, the taxonomic indicators and main sub-group indicators. Red indicators correspond to “Anthropogenic pressures” sub-branches 
and purple indicators to “Trophic resources” sub-branches. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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“anthropogenic pressures” and “trophic resources” (vertebrates). Thus, 
I-BIO (the overall biodiversity) has 5 qualitative classes: very low, low, 
medium, high, very high; indicators with 4 qualitative classes are 
categorized in: low, low to medium, medium to high, high; other in
dicators (the basic one) have 3 qualitative classes: low, medium, high. 
Thresholds of the qualitative classes are defined in Table 2. All basic 
indicators except two (herbicide timing and tillage intensity) are 
assessed quantitatively and converted to a qualitative class based on 
references or expert knowledge. For herbicide timing and tillage in
tensity, they are directly assessed qualitatively. Some indicators 
required an adaptation to the context of a specific case study. An 
example was the treatment frequency index which enables easy com
parison between farms or regions (Hossard et al., 2017) but is not used in 
Scotland. Without this index for the CSC case study, we have defined the 
indicator levels based on a threshold of number of applications. All 
aggregated indicators are in qualitative classes based on a system of 
references and expertise. The eight effect indicators representing the 
taxonomic groups and the overall biodiversity are expressed on a 
qualitative performance scale (the higher, the better) without any 
quantitative correspondence. Indeed, a shift from a lower to a higher 
class means that the effect on biodiversity is less, but without defining 
the size of that effect. 

2.2.4. Choice of aggregation rules 
The third step was to define utility functions, to aggregate indicators, 

and their relative weight. Utility functions consist of “if – then” linguistic 
rules which means that the class of an aggregated indicator is set ac
cording to the class of input indicators from the lower level of aggre
gation. For instance, if the aggregated indicator Y has two descendant 
indicators X1 and X2 which have respectively low and high qualitative 
classes, then we apply the “if – then” rule that will be “if X1 is low and X2 
high, then Y is high”. Expert knowledge was used to apply the law of the 

maximum i.e. keep the class with the highest impact. Utility functions 
could be set to automatically weight the indicators. However, this can 
lead to compensation effects between indicators. For example, an indi
cator with a low class and an indicator with a high class yields the same 
average class as two indicators with medium class, leading to an infor
mation loss. Furthermore, the distribution of outputs may be unbalanced 
causing a lack of sensitivity. To prevent this, all the utility functions in I- 
BIO were manually fixed in the DEXi software (Table 3). This was ach
ieved using a function of the DEXi software to export the aggregation 
rules to Excel by transforming the qualitative classes in quantitative 
ones. The mean of the input variables was then calculated and ranked 

Table 2 
Thresholds and associated references of the qualitative classes for the indicator I-BIO.   

Low < Medium >¼ High Comment 

Fertilisation (N 
units)  

50  150  Graaf et al. (2019) 

SOM (% C)  2  5  Roussel et al. (2000) 
Land cover diversity Majority of crops  2 types of habitats well 

represented (crop/edge, 
wood)  

More than two habitat types well represented 
(crop, meadow, pond, hedgerow, wood, flower’s 
strip, etc.) 

Expert choice (based on 
the CSC database) 

Semi-natural 
habitat (%)  

1  10  Sirami et al. (2019) 

Connectivity 
(simple method) 

0 or 1 side with SNH 
strip (>= 3m)  

At least 2  More than two and SN strips within the field 
spaced less than 100m 

Expert choice (based on 
the CSC database) 

Connectivity (%)  25  75  Expert choice (based on 
the CSC database) 

Field size (ha)  2  10  Sirami et al. (2019), Martin 
et al. (2020) 

Crop diversity  3  6  Zampieri et al. (2020), 
Keichinger et al. (2021) 

Crop rotation  3  6  Expert choice (based on 
the CSC database) 

AntiMono 
(treatment 
number)  

1  2  Expert choice (based on 
the CSC database) 

AntiDicot 
(treatment 
number)  

1  2  Expert choice (based on 
the CSC database) 

Herbicide timing Preemergence or both    post emergence Expert choice (based on 
the CSC database) 

Insecticide  1  2  Expert choice (based on 
the CSC database) 

Other  1  2  Expert choice (based on 
the CSC database) 

All pesticides  3  6  Expert choice (based on 
the CSC database) 

Tillage intensity Direct sowing  non inversion tillage  ploughing Muneret et al. (2022) 
Mowing  2  3  Buckingham et al. (2015)  

Table 3 
Part of the adaptable utility function for the indicator “Semi-natural flora” with 
the relative weights of each basic indicators.  

Semi natural land covera Field 
sizea 

Crop 
diversitya 

Landscape 
simplificationb 

Low High Low High 
Low High Medium High 
Low High High Medium to high 
Low Medium Medium Medium to high 
Medium High Low High 
Medium High Medium Medium to high 
Medium High High Low to medium 
Medium Medium High Low 
High High Low Medium to high 
High High Medium Low to medium 
High Medium Medium Low to medium 
High Low Medium Low 
Resulting weights 

(calculated by DEXi)    
34% 23% 43% –  

a Three qualitative states: Low, Medium, High. 
b Four qualitative states: Low, Low to medium, Medium to high, High. 
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(Fig. S1). The aggregation rules were then checked and corrected if the 
output given automatically by DEXi did not match expert knowledge or 
the peer reviewed literature. DEXi then recalculated the weights ac
cording to these new qualitative classes (Fig. S2 in supplementary 
material). 

2.3. Sensitivity analysis 

Following recommendation of Bockstaller et al. (2008), we tested the 
sensitivity of I-BIO to assess its ability to discriminate between situation. 
As for quantitative models, we implemented a Monte Carlo sampling 
(MC sampling) approach as described by Carpani et al. (2012) for DEXi 
models to assess sensitivity of the main branches. According to these 
authors, MC sampling performs well for complex models. It is more 
flexible and requires less stringent assumptions than two other methods, 
factorial designs combined with analysis of variance and conditional 
probability. MC sampling is based on a random selection of combina
tions of input variables according to their probabilities of occurrence. In 
our study, 5000 samples were generated and simulated using I-BIO. By 
default, the same probability was attributed to each input variable, 
following Carpani et al. (2012). MC sampling provides a distribution of 
the outputs across the classes of a variable. In case of an unbalance 
distribution in favour of one or two classes, it can be deduced that the 
model may suffer from a loss of sensitivity. 

Regarding landscape features, we tested the sensitivity of five vari
ables related to landscape context: land cover diversity, percentage of 
semi-natural land cover, configuration of semi-natural land cover, field 
size and crop diversity. The sensitivity test was carried out as in (Per
vanchon et al., 2002) by modifying the classes of each input variable 
while the remainder were held constant at the unfavourable class, the 
average class or the favourable class. 

2.4. Case studies assessed by the indicator 

I-BIO was tested on three case studies in Scotland and France, to 
assess the reliance of the results and the ability of the model to 
discriminate situations for which different results are a priori expected. 
For some datasets, validation was carried out by comparing measure
ments of abundance and/or diversity against model outputs according to 
Bockstaller and Girardin (2003). I-BIO outputs were compared with 
observed data for the four groups (microorganisms, vegetation, in
vertebrates and vertebrates). 

2.4.1. East of Scotland farm (EOSF) dataset 
This dataset was taken as part of a wider farm-scale survey of arable 

biodiversity, resilience and crop management conducted during 2007 at 
57 farms across the east of Scotland from Mid-Lothian to Invernesshire. 
Farmers taking part in this survey were volunteers who followed a range 
of organic, integrated and conventional management practices. At each 
farm, two fields were selected as representative of different stages in the 
crop rotation (generally a break crop and a cereal crop). Information on 
the crop management and rotational history for each field was analysed 
for 27 farms contributing between them 24 conventionally managed 
fields, 15 integrated and 15 organic” (Hillier et al., 2009; Hawes et al., 
2010). For this study, 42 fields were selected where all the management 
data required to implement I-BIO scenarios were available to test the 
vegetation branch. 

2.4.2. Noé network in France 
In France, I-BIO was tested on a network of wheat plots in the Noé 

association (https://NOE.org/). The network covers 3 regions in France 
(Charentes, Chalky Champagne region and the Rhône valley) with 6 
different departments. Biodiversity monitoring has been carried out by 
the association on 50 fields since 2020. Several biodiversity indicators 
were evaluated: soil organic matter, microorganism biomass, earth
worm, pollinators, birds abundances, etc. In our study, 36 fields were 

selected to validate the microorganism, flying invertebrates and verte
brates branches. 

2.4.3. ENI (nonintended effects) network database 
The ENI network database (Andrade et al., 2021) is a French program 

launched in 2012 to assess side-effects of agricultural practices and in 
particular pesticide management practices on biodiversity. Several in
dicator groups were measured, covering abundance or/and diversity of 
taxonomic groups of interest for farmers (weed, earthworm, beetle and 
bird). 500 fields were selected across all the country to assure a gradient 
of landscape and pedoclimatic conditions, with 20% of fields in organic 
farming. Selected crops represent the main crop types in France (field 
crops, vineyard, market gardening crops). For several taxonomic groups, 
the monitoring was done in field margins: plants and beetle (Coleop
tera). For our study, 60 fields were randomly selected among the 500 
fields of the ENI database. They were used to test the vegetation and soil 
invertebrates branches. 

2.5. Statistical analysis 

ANOVA and Tukey tests were used to compare boxplot mean of 
classes and the Monte Carlo sampling approach provided a sensitivity 
analysis of I-BIO i.e. a random sampling with replacement among the 
values of each leaf variable of the model (5000 samples). Statistical 
analyses were carried out using RStudio version 1.3.959 and R-statisti
cal packages: Agricolae for the ANOVA and Tukey test and XML, Alg
Design, ggtools, plotrix and genalg for the MC sampling. 

3. Results 

3.1. Distribution of the model outputs 

Results for the overall biodiversity and main branches of I-BIO, the 
different taxonomic groups, for the ENI and EOSF datasets are shown in 
Fig. 2. Globally, the lowest class is largely predominant for overall 
biodiversity and for three out four taxonomic groups (microorganism, 
invertebrates and vertebrates). Only the vegetation and the flying in
vertebrates showed a more even distribution across classes. The verte
brates branch stands out, especially for the ENI dataset, as the medium 
to high class almost reaches 25% compared to less than 5% for the EOSF 
dataset. EOSF outputs were tighter around the lowest class than the ENI 
ones. Thus, the distribution of the invertebrates and soil invertebrates 
across classes was skewed to only the “Low” class. Last, soil in
vertebrates and flying invertebrates showed a marked difference - the 
lowest class of the former exceeds 75% with the ENI dataset, whereas the 
flying invertebrates had the first three classes around 30% and an 
additional fourth class “high”. Flying invertebrates is the only branch 
with four classes although the highest remained largely underrepre
sented. Similarly, soil invertebrates from the EOSF dataset were all in 
the Low frequency category whereas the flying invertebrates have a 
more balanced distribution. 

Fig. 3 shows example of outputs of I-BIO evaluation for the ENI and 
EOSF datasets for some farms as the number of assessed farms were too 
low to show all the results together. For instance, field 311 yield a 
“medium” result for the overall biodiversity, being characterised by a 
very low level of farm inputs (fertiliser and pesticides) and no till, while 
fields 423 and 424 yielded a negative result “very low”, due to more 
agrochemical inputs and tillage for the field 423. This representation 
makes possible direct comparison of the most aggregated indicator, 
overall biodiversity, alongside the main sub-indicators with an addi
tional level of aggregation for invertebrates. Each calculation can be 
traced back to utility functions to understand each aggregation result. 
This ensures transparency of the method, a key feature, besides 
simplicity and flexibility to support the future implementation by 
external users (Craheix et al., 2015). 
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3.2. Sensitivity analysis 

The MC sampling showed an uneven frequency distribution for 
biodiversity indicators and the sub-indicators (Fig. 4). For overall 
biodiversity, the lowest category “very low” yielded the highest fre
quency. This unbalanced distribution in favour of “very low” can be 
observed for the “invertebrates” group and more precisely the soil in
vertebrates and to a less extent for microorganisms. However, for ver
tebrates and especially for vegetation, the distribution is more balanced. 
This uneven frequency distribution was not due to the parametrization 
of the final utility function of “overall biodiversity” which shows the 
following distribution (see Table S2 in supplementary material): for 
“very low” 65 rules out of 256, for “low” 71 rules out of 256, for “me
dium” 54 rules out of 256, for “high” 35 rules out of 256, and for “very 
high” 31 rules out of 256. An explanation may lie in the integration of 
relation between taxonomic group. The distribution shape of the mi
croorganisms group might have influenced the soil invertebrates group 
and exacerbate the effect on the lowest class. This can also be observed 
to a lesser extent for the invertebrates group, influenced by the flying 
invertebrates group, which depends on vegetation. Yet this last group 
based on eutrophic organisms does not depend on another taxonomic 
group and shows a more balanced distribution, resulting in a difference 
in distribution between the flying invertebrates and the soil in
vertebrates group. Likewise, the vertebrates group depends on both the 
vegetation and invertebrates group, the former mitigating the effect of 

the later. When combining both distributions of vegetation and in
vertebrates groups, the distribution of vertebrates may be understood. 
The uneven distribution with the overrepresentation of the lowest class 
in some groups seem to be amplified in the distribution of the overall 
biodiversity. Likewise, the slightly higher percentage in the third class 
relatively to the second comes from its advantage in the vegetation and 
vertebrates groups. However, the shape of the microorganisms group 
remains unexplained. 

Relating to the sensitivity analysis of the landscape variables, Fig. S3 
in the supplementary material indicates that the greatest effect was on 
vegetation and flying invertebrates for which a variation of 3 classes out 
of 4 could be observed. This effect is reduced to a variation of 1 or 2 
classes out of 4, or even no variation, when only one or two input var
iables are changed. This reduction can be observed for medium and 
favourable scenarios while for the unfavourable scenario, the range of 
variation remains at 3 classes out of 4. The effect on global biodiversity 
was the lowest with a variation of two classes out of 5 when all variables, 
or combination of variables are changed, and this only occurred in the 
medium and favourablescenarios. Sensitivity of the vertebrates 
component is intermediate between the most sensitive ones, vegetation 
and flying invertebrates, and the least sensitive one, global biodiversity. 

3.3. Validation of I-BIO 

Validation of the microorganisms branch was limited as there were 

Fig. 2. Illustration of the I-BIO classes distribution with the EOSF (n = 42 fields) and the ENI (n = 60 fields) datasets for the overall biodiversity and the different 
taxonomic groups. Sidebars correspond to the scenario outputs. 
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only 10 fields within the NOE database with microorganisms biomass 
data to use (Fig. 5). However, according to Chantrel-Valat et al. (2021), 
the measured value may correspond to a higher class than low to me
dium, showing that the indicator is not calibrated. The difference be
tween the two classes “low” and “low to medium” is significant (p value 
= 0.0050). Comparison of I-BIO with observed data met our expectation 
for monocotyledon and dicotyledon abundances for the EOSF site 
(Fig. 6a). The difference between boxplots is significant for mono
cotyledons (p value = 0.0293) and for dicotyledons (p value = 0.0227). 
For ENI data, the trend between I-BIO outputs and observed data was the 
opposite to those predicted (Fig. 6b), as the high classes for both 
monocotyledon and dicotyledon abundances are below the other classes 
(p-value = 0,0419). For the EOSF weed richness, the boxplot corre
sponding to the “high” class is significantly higher (p value = 0.0131) 
than “low to medium” class (Fig. 7a). The other boxplots “low” and “low 
to medium” showed lower value of richness than “high” although no 
clear relation existed between I-BIO output and field observations. For 
ENI, even if we focused only on the most abundant hemerophobic 

species (Fried et al., 2018) to avoid biases linked to regional features or 
pedoclimatic context, there was no clear trend and substantial vari
ability between classes. (Fig. 7b). 

Fig. 8a shows a straightforward relation for the soil invertebrates 
branch between I-BIO outputs and field observations of earthworm 
abundance although no significant difference between boxplots could be 
found (p-value = 0,622 Low-Medium to high). The comparison of the 
flying invertebrates branch with coleoptera abundance from the ENI 
dataset showed a positive trend (Fig. 8b) although it was not so clear as 
for earthworms and not significant. The test with observation of but
terfly abundance from the Noé dataset showed a slight positive trend for 
abundance which is a little more pronounced for butterfly richness 
(Fig. 9). 

Finally, it was not possible to validate the vertebrates branch, with 
the Farmland birds data (Fig. 10) from either the NOE or ENI datasets. 
This could be due to the very low number of observations and fields with 
“medium to high” or “high” classes (respectively 3 and 1 occurrences for 
the NOE dataset and 14 and 0 for the ENI dataset). Moreover, it’s not 

Fig. 3. Illustration of the I-BIO indicator outputs with the East of Scotland and ENI datasets (respectively on the left and right) and the input variables.  
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surprising that birds are less impacted by local management practices 
compared to earthworm or coleoptera as other factors such as landscape 
features have a great influence on this group (Martin et al., 2019; 
Stanton et al., 2018). 

4. Discussion 

4.1. Originality of the indicator 

I-BIO was designed to give a prediction of the impacts of manage
ment practices on overall biodiversity at the field level. As for every 
indicator design, a compromise has to be found between feasibility and 
integration of processes (Bockstaller et al., 2015), the former depending 
especially on the amount and availability of data, the latter depending 
on sufficient coverage of all key biodiversity components in the system 
Overall the I-BIO decision tree is more complex and requires more data 
than other predictive DEXI models: the IBEA (France Nature Environ
nement, 2013), the biodiversity branch of MASC 2.0 (Craheix et al., 
2012) and DEXiPM1 (Pelzer et al., 2012) but less than this of DEXIPM 
(Demade, 2014). As a qualitative tool, it also requires less data than 
SALCAbd (Jeanneret et al., 2014). We did not select species groups for 
the different taxonomic groups like SALCA method but did not restrict to 
a global assessment of biodiversity as in IBEA. Like MASC 2.0 and 
DEXIPM 1, I-BIO addresses general taxonomic groups but, in our case, 
we tried to cover the whole range of groups from microorganisms to 
vertebrates, the former being only tackled by MASC2.0, and the latter 
only by SALCAbd. In comparison with DEXiPM2, I-BIO did not address 
ecosystem services linked to biodiversity for sake of simplicity because 
relation between both are complex (Duncan et al., 2015). 

A major innovation in I-BIO is to consider direct impact of field and 
landscape management and indirect impact through trophic relation. 
Indeed, when a taxonomic group is impacted, for instance vegetation, 
higher groups in the trophic chain are also impacted by a reduction of 
their trophic resources, for example “flying invertebrates” (Bruun et al., 
2022; Sohlenius, 1990). Another innovation in I-BIO is the integration of 
landscape variables. In order to better embed semi natural habitats, we 
created a branch for the semi natural flora which plays an important role 
in maintaining biodiversity (Bailey et al., 2010; Jeanneret et al., 2003; 

Fig. 4. Bar charts representing the distribution of the results of 5000 Monte Carlo simulations of I-BIO for the “Overall Biodiversity” and the four taxonomic groups 
(microorganisms, vegetation, invertebrates and vertebrates). The X-axis represents the classes of the studied variable (1 Very low, 2 Low, 3 Medium, 4 High, 5 Very 
high) and Y-axis gives the relative frequency of occurrence of the class (i.e. within the 5000 simulations). 

Fig. 5. Comparison of I-BIO outputs for the microorganisms branch with 
observed data of microorganisms biomass for the Noé dataset (n = 10, p value 
= 0.0050). The number of plots for each class is shown in parentheses. 
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Martin et al., 2019; Sirami et al., 2019; Tscharntke et al., 2021). The 
IBEA method tackles some landscape variable like density, diversity, 
connectivity of landscape elements but also includes the quality of semi 
natural and natural habitat particularly the combination of tree species, 
presence of dead wood or intra-forest ponds. However, despite this 
example, functional aspects of landscape components remain poorly 

integrated in biodiversity indicator assessment and would be a useful 
avenue for future work (Fahrig et al., 2011; dos Santos et al., 2021). 

4.2. Sensitivity 

Qualitative methods assessing agricultural systems sustainability 

Fig. 6. Comparison of I-BIO outputs for monocotyledon abundance and dicotyledon abundance (number of individuals) with observed data: a) and c) EOSF data (n =
42, p value = 0.0293 for monocotyledon abundance and p value = 0.0227 for dicotyledon abundance), b) and d) ENI data, the sub-list encompassed the hundred 
most abundant species (n = 60, monocotyledon abundance Medium-High p-value = 0.0419, dicotyledon abundance Low-High p-value = 0.725). For the sake of 
readability, we removed two very high points for the EOSF data: the first one at 3284 for the Monocotyledon abundance and the second one at 3972 for the 
Dicotyledon abundance. The number of plots for each class is shown in parentheses. 

Fig. 7. Comparison of I-BIO outputs for weed richness with observed data: a) EOSF data all the species (n = 42, Low to medium-High p value = 0.0131), b) ENI data 
only the most abundant hemerophobic species (n = 60, Low-Medium to high p-value = 0.814). The number of plots for each class is shown in parentheses. 
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Fig. 8. Comparison of I-BIO outputs for invertebrates branch with corresponding observed data a) the soil invertebrates branch with earthworm abundances for ENI 
data (n = 24, Low-Medium to high p-value = 0.0622) and b) the flying invertebrates branch with coleoptera abundance for ENI data (n = 60, Low-Medium to high p- 
value = 0.425). The number of plots for each class is shown in parentheses. 

Fig. 9. Comparison of I-BIO outputs for the flying invertebrates branch with observed data for the Noé dataset (n = 21): a) Butterfly abundance (Low to medium- 
Medium to high p-value = 0.76), b) Butterfly richness (Low to medium-Medium to high p-value = 0.448). The number of plots for each class is shown in parentheses. 

Fig. 10. Comparison of I-BIO outputs for the vertebrates branch with observed data of farmland birds: a) Noé dataset (n = 16, Low-low to medium p-value = 0.524) 
and b) ENI dataset (n = 60, low-medium to high p-value = 0.425). The number of plots for each class is shown in parentheses. 
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have shortcomings in terms of sensitivity, which due to the inherent 
structure of the DEXi model, are limited by the threshold effect. I-BIO 
attempts to mitigate this by adding more classes to some branches, but is 
still limited by the total number of decision rules due to combinatory 
explosion. I-BIO resulted in a total of 256 decision rules and although we 
developed a method to cope with this inflation (see section 2 and Fig. S2 
of the supplementary material), it is uncertain that the method can be 
implemented for a higher number of rules. In any case, a trade-off has to 
be found between sensitivity of the tool and the problem of combinatory 
explosion. One possibility to resolve this sensitivity problem is to 
implement a quantitative method combining decision rules and fuzzy set 
like the CONTRA method which was tested to design an assessment 
method of grassland management on biodiversity (Bockstaller et al., 
2017). 

The results of the MC sampling approach showed an uneven distri
bution of I-BIO outputs for the overall biodiversity, skewed to the low 
class. This may be explained by the structure of the tree, although the 
behaviour for one branch, microorganisms remain unexplained. The 
results obtained may be compared with the outputs in Carpani et al. 
(2012) for the MASC1 model (Sadok et al., 2009b) for which extreme 
classes had a nil probability and always two mediums took the majority 
of probability. For our indicators, no nil probability was observed. If we 
calculated a root mean square deviation in relation to a balance distri
bution (probability = 0.20) it was slightly smaller than for MASC 1, a 
value of 21.3 for I-BIO against 22.5 for MASC 1 but not enough to 
conclude to a better sensitivity. Nevertheless the uneven distribution of 
I-BIO reflects the actual sensitivity of biodiversity to perturbations due 
to arable management (Coudrain et al., 2016; Martin et al., 2020). 

As advised by Carpani et al. (2012), MC sampling may be completed 
by two other approaches: ANOVA and conditional probabilities. Unlike 
MC, the ANOVA makes possible the calculation of a sensitivity index for 
each input variable at each “node” of the tree, i.e., an output variable 
resulting from this aggregation of two or more variables. However, if the 
model is too large, there could be computational problems. The condi
tional probabilities method calculates a sensitivity index for all the 
variables along the tree i.e., at each aggregation level. Due to lack of 
time, it was not possible to implement both complementary approaches 
in this study. But for the conditional probabilities, taking into account 
similarity in the size of the tree and the number of aggregation level, 
some comparison can be made at least for basic variables. 

Regarding the sensitivity analysis of landscape variables, a possible 
explanation for the variation across indicators could rely in the fact that 
flying invertebrates are the most mobile and therefore most likely to be 
affected by the larger scale, landscape variables. In-field organisms like 
soil invertebrates, with low dispersal ability, are least affected and this 
lessens the average, overall impact on global biodiversity. 

4.3. Validation of the model 

Following Bockstaller and Girardin (2003), we assessed the predic
tive quality of I-BIO in which is rarely shown in in publications pre
senting a new indicator. Jeanneret et al. (2014) is one exception, where 
a validation test was presented for two taxonomic groups for grasslands 
but not for arable plots. The validation of I-BIO covered a larger range of 
taxonomic groups. However, number of plots for the test remain low, 
especially for the “microorganisms” group. Overall, I-BIO performed 
well for earthworm data and better with abundance data than richness 
data, although even there, the predictive power remained weak which is 
not surprising regarding the simplified qualitative design of I-BIO. The 
validation results are somewhat similar to SALCAbd for which they 
found significant, positive relations for a slightly larger sample (n = 77) 
even though the correlations were weak (Spearman coefficient = 0.58 
for plants and 0.39 for grasshoppers). In the case of SALCAbd, results 
concerned species richness and not abundance. 

The poor performance of I-BIO for the vegetation branch may be due 
to the fact that these data were observed at the field margin and not in 

the centre of the field, so less influenced by agronomic practices. 
Landscape data are typically heterogeneous, especially for the percent
age of semi natural habitats and their connectivity. Indeed, some data
sets included detailed landscape features i.e. percentage of crops and 
semi-natural habitats within a radius of 1 km whereas others had little 
or no data on landscape context. Thus, I-BIO was restricted, in some 
instances to using the medium class or using expert opinion in the 
absence of appropriate data. This was especially the case for the East of 
Scotland farm dataset. 

Improvements to the causal indicators for predicting impact on the 
soil invertebrates include additional information on tillage intensity and 
other pesticides. For the tillage intensity, the “high” class should include 
animated agricultural equipment such as rotative or disc harrow and 
lafforge spade. For the pesticides, a distinction should be made between 
fungicide, molluscicide and herbicide as the latter will have less impact 
on soil invertebrate abundance and diversity. 

As recommended by Bockstaller and Girardin (2003), we compare 
sub-indicators dealing with one taxonomic group. For very broad groups 
like invertebrates, the comparison with one specific taxonomic group (e. 
g. earthworms) may be questionable. Ideally, it should be compared to a 
set of observations (earthworms, carabidae, etc.). Likewise, the mea
surement of microorganism biomass covers a very broad range of or
ganisms including bacteria and fungi, and should therefore be 
completed by a comparison with abundance or diversity measurements 
of specific taxonomic groups. A multispecies indicator like this proposed 
by Sirami et al. (2019) could be put forward. This would even be 
appropriate for I-BIO at the level of overall biodiversity. But in any case, 
this would require on one site multi-taxonomic observations for a very 
large sample. 

4.4. Implementation and utility 

In their methodological framework on the validation of indicators, 
Bockstaller and Girardin also pointed out the need for end-user valida
tion. At this stage of development of I-BIO, it was not possible to test the 
utility among potential users but some points may be discussed. 

A first point is the relevance of the indicator for end users, i.e. 
whether the theme addressed by the indicator is an issue of concern for 
them or not (Bauler, 2012). In case of a negative answer, the probability 
that the indicator will be used, is expected to remain low. Farmers are 
more interested in taxonomic groups supporting ecosystem services like 
pest regulation and concerned by groups involved in disservices like pest 
damage to crops (Busse et al., 2021). Therefore I-BIO which does not 
explicitly address biodiversity in relation to ecosystem services will not 
be of interest to all farmers but only those involved in biodiversity 
conservation, like farmers working on rewilding (Corson et al., 2022). 
Nevertheless, Kelemen et al. (2013) showed that farmers are generally 
aware of the most obvious expressions of biodiversity (diverse species 
and varied landscape) and ethical and social values were important for 
all farmers. This may be due to the increasing concern over biodiversity 
loss by the whole society, including farmers. 

According to Craheix et al. (2015), simplicity, flexibility and trans
parency are key characteristics to foster implementation of a tool by 
other users than the designer of the tool. 

Simplicity is ensured by predictive indicators in form of decision tree 
based on linguistic rules which are easier to understand for non- 
specialists (Phillis and Andriantiatsaholiniaina, 2001) than quantita
tive models. However, some utility functions like this for the overall 
biodiversity with 256 rules are not so easy to understand and require 
some explanation. In spite of some points, the methodology and the tool 
are simple to use. Input data may remain qualitative, based on expertise 
or expert assumption. Many input data are available in farmers’ trace
ability information system. An effort has to be made, without this being 
an issue for advisers and their farmers, to assess the intensity of herbi
cide use which is separated by target between herbicide for the control 
of monocotyledons (grass species) or dicotyledons. However, a 
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bottleneck lies in data collection of landscape variables, proportion of 
semi-natural elements and their connectivity. But some tools like Google 
may help to assess qualitatively these landscape variables or through a 
semi quantitative approach as proposed by Manneville et al. (2014) in 
the BIOTEX method. Furthermore, in arable land where these variables 
may be easily set to the lowest category in many locations. 

The indicator is useful for relative comparison of biodiversity levels 
between different sites in the same dataset but it is complicated to 
compare sites in different datasets. I-BIO allows a relative comparison 
but does not provide an absolute scale. Besides, the tool is very flexible 
since it is very easy to change a value and to get a result. This may 
support discussion between stakeholders by providing quick answers to 
question like what can happen if I change this management practice. 
However, the drawbacks are the lack of sensitivity due to its qualitative 
form and the uneven frequency distribution on the side of the “low 
class”. The design of a quantitative indicator based on fuzzy decision like 
the CONTRA method would mitigate this issue. Lastly, transparency is 
supported by the form in which the results are presented by the tool, 
where basic indicators and all the aggregated results are available and 
can be traced. Aggregation functions (utility functions) are also trans
parent even if they are not always easy to understand. But here again 
DEXi offers synthesis of decision rules to facilitate an overview of the 
rules. 

5. Conclusions 

With the improvements described above, I-BIO not only provides a 
framework for understanding arable ecosystems and comparing man
agement practices but can be developed as a predictive tool and decision 
aid for farmers and their advisers, based on a greater level of detail and 
complexity than previously available. Indeed, I-BIO was built to assess 
the impact of management practices on four taxonomic groups, covering 
the whole range of diversity from microorganisms to vertebrates, and 
encompasses both field management and landscape variables (compo
sition and configuration). A key novelty of this indicator lies in the 
assessment of direct impact and indirect impact on the trophic chain. 
The use of decision tree ensures simplicity and feasibility but the 
drawback is a certain lack of sensitivity for some groups. Predictive 
quality assessment delivered mitigated results but, in some cases, 
satisfactory for species abundance. This work should be continued with 
other datasets and for microorganisms. Last, the tool should be tested by 
end-users. 
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Fried, G., Villers, A., Porcher, E., 2018. Assessing non-intended effects of farming 
practices on field margin vegetation with a functional approach. Agric. Ecosyst. 
Environ. 261, 33–44. https://doi.org/10.1016/j.agee.2018.03.021. 

Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., 
Stenmans, W., Müller, A., Sumser, H., Hörren, T., Goulson, D., De Kroon, H., 2017. 
More than 75 percent decline over 27 years in total flying insect biomass in protected 
areas. PLoS One 12. https://doi.org/10.1371/journal.pone.0185809. 

Hawes, C., Squire, G.R., Hallett, P.D., Watson, C.A., Young, M., 2010. Arable plant 
communities as indicators of farming practice. Agric. Ecosyst. Environ. 138, 17–26. 
https://doi.org/10.1016/j.agee.2010.03.010. 

Hawes, C., Young, M.W., Banks, G., Begg, G.S., Christie, A., Iannetta, P.P.M., Karley, A.J., 
Squire, G.R., 2019. Whole-systems analysis of environmental and economic 
sustainability in arable cropping systems: A case study. Agronomy 9. https://doi. 
org/10.3390/agronomy9080438. 

Hawes, C., Iannetta, P.P.M., Squire, G.R., 2021. Agroecological practices for whole- 
system sustainability. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 16 
https://doi.org/10.1079/PAVSNNR202116005. 

Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S., Smith, P., 2009. The carbon 
footprints of food crop production. Int. J. Agric. Sustain. 7, 107–118. https://doi. 
org/10.3763/ijas.2009.0419. 

Hossard, L., Guichard, L., Pelosi, C., Makowski, D., 2017. Lack of evidence for a decrease 
in synthetic pesticide use on the main arable crops in France. Sci. Total Environ. 575, 
152–161. https://doi.org/10.1016/j.scitotenv.2016.10.008. 

Jarnemo, A., 2002. Roe deer Capreolus capreolus fawns and mowing - Mortality rates 
and countermeasures. Wildlife Biol. 8, 211–218. https://doi.org/10.2981/ 
wlb.2002.035. 

Jeanneret, P., Schüpbach, B., Pfiffner, L., Walter, T., 2003. Arthropod reaction to 
landscape and habitat features in agricultural landscapes. Landsc. Ecol. 18, 253–263. 
https://doi.org/10.1023/A:1024496712579. 

Jeanneret, P., Baumgartner, D.U., Freiermuth Knuchel, R., Koch, B., Gaillard, G., 2014. 
An expert system for integrating biodiversity into agricultural life-cycle assessment. 
Ecol. Indic. 46, 224–231. https://doi.org/10.1016/j.ecolind.2014.06.030. 
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