
HAL Id: hal-04095363
https://hal.inrae.fr/hal-04095363

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Assessment of Nitrogen Nutrition Index of Winter
Wheat Canopy from Visible Images for a Dynamic

Monitoring of N Requirements
Christelle Gée, Emmanuel Denimal, De Yparraguirre„ Laurence Dujourdy,

Anne-Sophie Voisin

To cite this version:
Christelle Gée, Emmanuel Denimal, De Yparraguirre„ Laurence Dujourdy, Anne-Sophie Voisin. As-
sessment of Nitrogen Nutrition Index of Winter Wheat Canopy from Visible Images for a Dynamic
Monitoring of N Requirements. Remote Sensing, 2023, 15 (10), pp.art. 2510. �10.3390/rs15102510�.
�hal-04095363�

https://hal.inrae.fr/hal-04095363
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: Gée, C.; Denimal, E.; de

Yparraguirre, M.; Dujourdy, L.;

Voisin, A.-S. Assessment of Nitrogen

Nutrition Index of Winter Wheat

Canopy from Visible Images for a

Dynamic Monitoring of N

Requirements. Remote Sens. 2023, 15,

2510. https://doi.org/10.3390/

rs15102510

Academic Editor: Wenjiang Huang

Received: 1 April 2023

Revised: 3 May 2023

Accepted: 5 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Assessment of Nitrogen Nutrition Index of Winter Wheat
Canopy from Visible Images for a Dynamic Monitoring
of N Requirements
Christelle Gée 1,* , Emmanuel Denimal 2, Maël de Yparraguirre 1, Laurence Dujourdy 2

and Anne-Sophie Voisin 1

1 Agroécologie, INRAE, Institut Agro, Université Bourgogne Franche-Comté, F-21000 Dijon, France
2 Institut Agro, Cellule d’appui à la Recherche en Science des Données, F-21000 Dijon, France
* Correspondence: christelle.gee@agrosupdijon.fr

Abstract: Hand-held chlorophyll meters or leaf-clip-type sensors indirectly and instantaneously mea-
sure leaf N content. They can provide an N nutrition index (NNI) value that is crucial information for
adjusting the amount of N fertilizer to the actual N status of the plant. Although these measurements
are non-invasive and non-destructive, they require numerous repetitions at the canopy scale. The
objective of this work was to explore the potential of visible images to predict nitrogen status in
winter wheat crops from estimating NNI and to compare these results with those deduced from
classical methods. Based on a dark green colour index (DGCI), which combines hue, saturation and
brightness, a normalized DGCI (nDGCI) was proposed as the ratio between the measurements of
the study microplot and those of the over-fertilized microplot. The methodology was performed
on winter wheat microplots with a nitrogen gradient. Half of the microplots were grown with a
single cultivar (LG Absalon) and the other half with a mixture of four wheat cultivars. The impact of
optical device (digital camera or smartphone), the white balance (Manual or Automatic), the crop
growth stage (two-nodes or heading) and cultivars (single or mixed) on the relationship between
(DGCI, nDGCI) and NNI was evaluated. The results showed a close correlation between the nDGCI
values and the NNI_NTester values, especially on a single cultivar (LG Absalon; R2 = 0.73 up to 0.91
with smartphone). It suggested that the relationship is highly sensitive to the wheat cultivar. This
approach with no specific calibration of images is promising for the estimation of N requirements in
wheat field.

Keywords: wheat; DGCI; proximal sensing; fertilization; nitrogen nutrition index; N-tester

1. Introduction

The balance-sheet method was widely used for decades as a reference method to
calculate the amount of nitrogen (N) fertilizer to supply to winter wheat [1,2]. Even this
method is based on rigorous scientific knowledge, it remains difficult to minimize N losses
whilst maximizing crop yield and quality. A mismatch between the science-based method
and its implementation was evidenced [3]. Among other reasons, it appears particularly
difficult to accurately predict the actual crop N requirement in advance (i.e., at the end
of winter). Therefore, alternative methods were proposed for a dynamic fertilization
management [4], through a better adjustment of N fertilization (as dates/rates of N inputs)
to the wheat crop N requirements. For this, these methods use a weekly estimation of the
crop’s nitrogen status all along wheat growth using the N nutrition index (NNI) [5,6], so as
to synchronize the periods the dates/rates of inputs with plant N requirements [7–9]. NNI
is calculated as the ratio of the measured N concentration (%N) and the N concentration
critical value (%Nc) for a defined dry biomass [10]. The calculation of the NNI, therefore,
necessarily involves destructive field sampling for dry biomass and N content in biomass.
Proxi- or remote-sensing techniques are promising for indirect estimation of NNI, as they
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have the advantages of being fast, non-destructive and reliable [11]. As leaf N content is
strongly correlated with chlorophyll content [12], it can be estimated indirectly on the basis
of the optical properties of leaves [13,14]. Thus, hand-held chlorophyll meters (Greenseeker
(NTech Industries, Inc., Ukiah, CA, USA)) or leaf-clip-type sensors such as Yara N-Tester
(Yara International ASA, Oslo, Norway) or SPAD-502 (Minolta Camera Co., Osaka, Japan)
or Dualex Scientific+ (Force-A, Orsay, France) were developed to measure indirectly the
leaf chlorophyll content instantaneously. Nevertheless, studies on the correlation between
conventional (Chlorophyll meter readings, CMR) or reflectance (NDVI) measurements
are affected by genotypes and growth stage [15–17]. For this reason, a normalized CMR
(or CMR index) was proposed. It corresponds to the ratio between the CMR of plants
and that of N over-fertilized plants [18,19]. Since they require contact measurement of the
leaf, they are still tedious to use on a stand scale. With imagery, a non-contact approach,
using the reflectance signal, has been developed to characterize the intrinsic parameters
of vegetation. This approach is based on colour vegetation indices (CVIs) that combine
simple mathematical operations on reflectance [20]. For fertilization [21,22], these indices
are mainly based on Red, RedEdge and Near Infrared wavelengths (NDVI: Normalized
Difference Vegetation Index [23], SAVI: Soil Adjusted Vegetation Index [24], NBI: Nitrogen
Balance Index [25]). Based on visible images, the low-cost smartphone approach could
also offer a promising solution. In the visible range, the most common vegetation index is
the excess green index (ExG or 2g-r-b index) proposed by Woebbecke et al. [26]. Another
visible band index, the triangular greenness index (TGI) was explored to leaf chlorophyll
content by remote sensing [27]. The correlation coefficient between TGI and chlorophyll
meter readings was −0.86. However, it was found that the hue (H), saturation (S) and
brightness (B) of CVIs showed strong correlation with chlorophyll meter readings [28,29].
Thus, Karcher and Richardson [30] proposed a specific vegetation index developed in the
HSB colour space, the Dark Green Colour Index (0≤ DGCI≤ 1). It is particularly correlated
with the nitrogen status of crops. They also demonstrated that correlations between colour
and chlorophyll are dependent to cultivar but did not explore the effect of cultivar on the
relationship between DGCI and NNI. DGCI was first proposed to assess the N status of
turfgrass, it was later used for rice, soybean or maize crops with visible images taken at
leaf scale and using the colour disks of standard calibration board [30–34]. According to a
calibration process of DGCI (corrected leaf DGCI) for illumination, these studies revealed
a strong correlation (R2 > 0.85) between DGCI and chlorophyll meter readings (CMR).
The calibration is based on the use of standardized yellow (DGCI = 0) and dark green
(DGCI = 1) disks. The range of DGCI values is correlated to a leaf colour chart (LCC)
developed to guide the real-time needs-based fertilizer N application in rice. Depending on
the number of colour panels, different LCC [35–37] were developed with a colour ranging
from yellow-green (N deficient) to dark green (N excess). Moreover, a mobile application
was also developed [38,39]. The extension of this method to the quantification of rice
canopy was explored [40,41] using unmanned aerial vehicle (UAV) imaging technologies.
The results indicated the ability of DGCI values to assess (R2 = 0.67) plant N status in
the field in large-scale. However, for all these studies very few address the cultivar effect
looking at the correlation between DGCI values and leaf chlorophyll (SPAD measurements)
or leaf N concentration. To continue this field approach at the canopy scale, the objective
of this work is to explore the potential of DGCI and nDGCI values to predict N status in
winter wheat crops from estimating NNI and to compare these results with those deduced
from classical methods.

To validate the protocol for image acquisition, the impact of different factors on the
relationship between normalized DGCI (nDGCI) values and Yara N-Tester readings (CMR)
were tested: (1) DGCI vs. nDGCI to evaluate the impact of standardization of image data,
(2) different optical systems (a digital camera and two smartphones) to evaluate the effect
of optical parameters internal to the optical sensors and of lighting through the study of
white balance setting (Manual or Automatic), (3) the impact on crop growth stage and
(4) cultivars (one or mixture of cultivars).
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2. Materials and Methods
2.1. Field Experimental Site

Winter wheat (Triticum aestivum L.) crops were seeded in November 2021 in 24 microplots
(3 rows and 1.50 m length each) at the experimental site of the “Institut National de
Recherche pour l’agriculture, l’alimentation et l’environnement” (INRAE), located in
Bretenière (Eastern France, 47◦13′25′′N; 5◦5′57′′E, altitude = 206 m). Soil measurements
indicated a silty-clay soil. The main characteristics of the soil were a high silt and clay
content (50 and 45%, respectively) and a low sand content (5%). Among the microplots,
half concerned a winter wheat cultivar LG Absalon and the other half concerned a mixture
of cultivars (LG Absalon, Lipari, Rubisko and Tenor), designated hereafter as Mixture
(Figure 1).

Figure 1. Schematic representation of the layout of the 24 microplots randomly distributed according
to the five nitrogen application modalities (T0 to TMax) and according to the two wheat cultivars (LG
Absalon or Mixture).

2.2. Nitrogen Gradient in the Experiments

A wide range of N rates were used to obtain a wide range of wheat NNI values, using
several applications of N input doses of 50 kg N.ha−1 in the form of NH4NO3. Five nitrogen
fertilization rates ranging from 0 (T0, no N fertilizer) to 320 kg N.ha−1 (Tmax) were, thus,
carried out with different splitting of the N inputs (T1 = 1 input to T3: 3 inputs) from the
end of winter to heading. To consider local variations through replications, each of the
modalities was doubled in a random design (Figure 1). Over-fertilized microplots (Tmax)
were used as controls for the maximal levels of NNI (Table 1). For the Tmax modality, a
maximum N rate of 80 kg N.ha−1 was applied to overcome any N deficiency.

Table 1. Levels and dates of N fertilizer inputs (in kg N.ha−1) for the five rates (T0, T1, T2, T3, Tmax).

N Fertilizer Inputs
through 50 kg N.ha−1 Dose 14 February 7 March 28 March 18 April Total

T0 0 dose 0 0 0 0 0

T1 1 dose 0 50 0 0 50

T2 2 doses 0 50 50 0 100

T3 3 doses 0 50 50 50 150

TMax Over-N
fertilization 80 80 80 80 320

2.3. Sampling and Measurements

The measurements were carried out in 2022 on three dates (22 April, 3 May and
17 May) corresponding to two key fertilization stages on BBCH (Biologische Bundesanstalt,
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Bundessortenamt and Chemische Industrie) scale [42]: BBCH 32 for the two nodes de-
tectable (22 April, 3 May) and BBCH 51 for the beginning of heading (17 May). On each
observation date, three types of measurements were performed simultaneously on a single
observation area of 0.25 m2 of microplots: aerial biomass samples, N content destructive
measurements, readings from a Yara N-Tester chlorophyll meter [43] and digital visible
images for the calculation of DGCI. This observation area corresponded to the area covered
by a downward-facing camera located 1 m from the ground. The photographs were taken
under homogeneous light conditions with three different optical systems: Canon EOS 760D,
a Japanese camera; Realme, a Chinese smartphone and Galaxy Samsung 10+, a Korean
smartphone. This involved working with sensors from different brands and ensuring
that all sensors offer a ‘Manual’ white balance mode. These optical device configurations
ensured that all the upper leaves were clearly visible and avoided saturation of the photo
sensor in some image areas. The objective was to evaluate the effect of the camera type and
internal calibration on the DGCI and nDGCI values and on the relationship between NNI,
DGCI and nDGCI.

Leaf transmittance measurements with the N-Tester were carried out according to
the protocol indicated on the manual of the device, via the clamp of a series of 30 leaves,
considering the last spread leaf of the wheat plants. The device provides an average value
per series of 30 measurements. It was repeated twice for each observation area. The average
of these two values were used in the following. To associate the Yara N-Tester chlorophyll
meter readings (CMR) with an NNI value, readings were normalized to the maximal value
obtained on over-fertilized microplot. Indeed, the value given by the chlorophyll meter
can depend on several factors: the effect of the cultivar (with different green colour of leaf
orientations), the growth stage of the wheat and the effect of the experimenter (who can
pinch the leaf at different places or the height at which the leaf is pinched can make the
measurements vary). This approach was explored by many researchers, suggesting using a
normalized CMR (or CMR index): the raw reading of the plants divided by that of fully
N-fertilized plants [44,45] at the same growing stage and in the same growing season. The
normalized values for crop sensor readings for Yara N-Tester were calculated as follows:

N − Tester index =
N − Tester readingobserved plot

N − Tester readingover− f ertilized plot
(1)

Then, relationships between crop sensor ratio (i.e., SPAD, Yara N-Tester) index and
nitrogen nutrition index values were deduced from models detailed in [3,44]. Concerning
the model for the Yara N-Tester measurements, the equations are as follows:

I f N − Tester reading ≤ 0.92 NNINTester = 0.0771.e2.5232x (2)

I f N − Tester reading > 0.92 NNINTester = 1425.4 x3 − 4001.4x2 + 3748.7x− 1171.2 (3)

With x = N − Tester index
Within each observation area, biomass samples were taken by sampling the entire

aboveground biomass of the wheat plants over a length of 50 cm in three rows. The dry
biomass (DM in t.ha−1) was then deduced from weighing oven drying (80 ◦C) for 48 h. The
NNI was then calculated using the equations of the N dilution critical curve for wheat [10].

I f DM < 1.55 t.ha−1 then %Nc = 4.4; I f DM ≥ 1.55 t.ha−1 then %Nc = 5.35DM−0.442 (4)

NNI =
%Nobs

%Nc
(5)
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2.4. Image Processing-DGCI Indicator Calculation

From the initial image (RGB: Red, Green, Blue), a vegetation image is deduced using
an appropriate thresholding to extract only the vegetation pixels via a MetaIndex developed
by Gée et al. [46] This index is a combination of the six most popular vegetation indices
for characterizing vegetation. It uses a consensus vote to classify a pixel as vegetation,
which makes the classification more robust than a simple index. Then, by converting the
processed RGB image into the HSB (Hue, Saturation, Brightness) colour space, the DGCI
raw value (without any correction or calibration) of each vegetation pixel is calculated from
the equation [30] defined as follows:

DGCI raw value =
Hue−60

60 + (1− Saturation) + (1− Brightness)
3

(6)

Finally, the DGCI value of the vegetation image is calculated as the average of the
DGCI raw values of the vegetation pixels (Figure 2). The DGCI limits are between 0 (yellow
hue, potentially reflecting low N content) and 1 (dark green hue, potentially reflecting high
N content). Even if the HSB colour space is that which mimics the human perception of
colour and is device–independent, it is also sensitive to lighting conditions [22,31].

Figure 2. Illustration of the calculation of the DGCI, dark green colour index, from a visible image in
a wheat stand.

A normalized DGCI, nDGCI, was also calculated (Equation (7)) as the ratio of the
DGCI value of the observed microplot image to that of the image of an over-fertilized
microplot (Tmax). The aim of this new indicator, nDGCI, assuming that the same shooting
parameters are used for both plots, is to avoid any image calibration based on the use of
a colour chart and to overcome the differences in the solar illumination conditions and
internal parameters of the optical sensors.

nDGCI =
DGCIobserved plot

DGCIover− f ertilized plot
(7)

Table 2 describes the modalities (crop growth stage, camera, white balance) and
number of images taken during the three measurement dates.
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Table 2. Description of the characteristics of the optical sensors for the set of images used at each
observation date.

Growth
Stage Date

Camera
Type

Camera Set-Up Datset Number
of Images CultivarWhite Balance

BB
C

H
32

(t
w

o-
no

de
s)

22nd April
Canon Automatic 16

32

LG Abs (7)/
Mixture (9)

Samsung Automatic 16 LG Abs (7)/
Mixture (9)

3rd May

Canon Automatic 20

60

LG Abs (8)/
Mixture (12)

Realme Automatic 20 LG Abs (8)/
Mixture (12)

Samsung Manual 20 LG Abs (8)/
Mixture (12)

BB
C

H
51

(h
ea

di
ng

)

17th May

Canon Manual 20

59

LG Abs (9)/
Mixture (11)

Realme Manual 20 LG Abs (9)/
Mixture (11)

Samsung Manual 19 LG Abs (9)/
Mixture (10)

Furthermore, among the shooting parameters, the white balance (WB) is likely to have
an influence on the dark green colour index (DGCI) and, therefore, two settings (manual
vs. automatic) were tested. Unlike manual mode, in automatic mode, the WB values can
change depending on the lighting conditions of the observed scene, which can disrupt the
normalized DGCI value.

2.5. Statistical Analysis

In order to explore the potential of the DGCI index as a proxy for estimating the NNI
usually derived from conventional methods (biomass, N-Tester), relationships between
the (DGCI, nDGCI) and N-Tester index were assessed by linear regression through the
coefficient of determination (R2). Different linear regressions were studied by examining
the influence of four factors. Plant-related factors were studied through (1) the wheat
cultivar (pure one or a mixture of four) and (2) the growth stage (BBCH 32 and BBCH
51). In addition, factors related to the optical sensors were explored: (3) white balance
(Manual vs. Automatic) and (4) camera type (Canon EOS 760D; Realme smartphone;
Galaxy Samsung 10+ smartphone). Finally, special attention was paid to the type of camera
used to verify the generalization of the linear relationship between nDGCI and NNI. From
a statistical point of view, to assess the significant influence of this factor on the slope and
intercept of the regression, an analysis of the covariance (ANCOVA) was used. It requires
prior attention to ensure that the classical statistical assumptions of the data were fulfilled.
Statistical analyses were performed in R (version 4.2.1, [47]) and RStudio [48], an integrated
development environment for R.

3. Results

In this section, the objective is to understand how DGCI and nDGCI values vary as
a function of four factors: optical device, white balance, growth stage and wheat cultivar.
Thus, the conditions of use of these new indices are explored. Results concerning a mixture
of varieties are presented in the appendices.

3.1. Comparison between DGCI and nDGCI Values

Figure 3 shows a comparison between DGCI and nDGCI values as a function of WB
setting (automatic vs. manual) for each camera (Canon EOS 760D, Realme and S10+)
according to the LG Absalon wheat cultivar. For each device, depending on the WB
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modality, the DGCI values showed differences that were statistically significant, except for
the S10+. However, with the nDGCI values, which smoothened the results, no difference
was observed between the two WB settings or even between the devices. Thus, the
methodology implemented for the nDGCI, indicates values more stable than DGCI values
regardless of the type of device used. For the Canon and the S10+, however, the automatic
mode showed a greater dispersion of the nDGCI values, unlike the Realme device. The
type of WB seemed to have an influence on the result of the measurement, which confirms
that for the use of the nDGCI, it is necessary to set up the WB at a constant value using the
manual mode. The nDGCI, which is based on data standardization, is independent of the
device [22,31], but also of the lighting conditions which are eliminated if the manual mode
of the WB is selected correctly.

Figure 3. Comparison between DGCI and nDGCI values as a function of the white balance (WB)
setting (automatic vs. manual) for each camera (Canon EOS 760D, Realme and S10+) according to the
LG Absalon wheat cultivar. (Significance of the codes: p-value < 1 × 10−4 (****), p-value < 0.001 (***)
and p-value > 0.05 (ns)).

When measurements were made on the mixture of wheat cultivars, similar results
(with a higher dispersion of measurements) could be observed in Figure A1. In these
figures, the outliers concerning the values of DGCI and nDGCI are observed. The analysis
of the images associated with these values shows that the lighting conditions were not
correct, with most often a strong dark area in the image. These data were, subsequently,
removed from the dataset.

3.2. Impact of the Devices on nDGCI Values

Focusing on the nDGCI values and for the wheat cultivar LG Absalon, we investigated
whether the ‘Device’ factor had an influence on the results. Figure 4 shows that regardless
of the white balance setting, the effect of the device was not statistically significant (ns)
when the white balance was in manual mode. In the automatic mode, there was a different
effect of the devices on values: the digital camera (Canon EOS 760D) did not react the same
as the two smartphones (Realme and S10+). Thus, it confirmed that in manual mode, the



Remote Sens. 2023, 15, 2510 8 of 16

intrinsic parameters of the three devices had no influence on the DGCI values. Concerning
measurements made on the mixture of wheat cultivars, similar results were observed with
the manual mode (Figure A2), but with the automatic mode of WB, a different effect was
observed between S10+ and Realme.

Figure 4. Study of the impact of the three devices (digital camera: Canon EOS 760D and two
smartphones: Realme and S10+) on the nDGCI values measured on the wheat cultivar (LG Absalon)
according to the according to the white balance mode (Automatic or Manual). (Significance of the
codes: p-value < 0.05 (*) and p-value > 0.05 (ns)).

3.3. Relationship between nDGCI and Yara N-Tester

After examining the influence of optical factors (optical device and white balance)
on DGCI and nDGCI values, the investigations focused on the effect of these factors on
the relationship between nDGCI values and N-Tester index deduced for N-Tester values.
Figure 5 presents a global result of this relationship according to the LG Absalon wheat
cultivar; results concerning a mixture of varieties are presented in Appendix A (Figure A3).
Regarding the results of Figure 5 (Panel A), the linear relationship involving nDGCI values
of the whole dataset, independently of any optical factor (device and white balance), the
quality of the linear regression was low (R2 = 0.43). However, when considering the white
balance modalities (Panel A), the quality of the linear regression was greatly improved with
Manual mode (R2 = 0.76) compared to Automatic mode (R2 = 0.33). The same results were
observed in the case of a mixture of wheat cultivars (Figure A3). By carrying on the analysis
of this relationship while keeping optimal working conditions, i.e., with the LG Absalon
wheat cultivar with the WB set to Manual, Figure 5 (Panel B) shows that the improvement
of the quality of the linear regression considering the plant-related factors: growth stage
and cultivar. The close relationship (R2 = 0.76) was maintained in the case of the BBCH 51
(heading) growth stage (R2 = 0.77) and was slightly less tight for the BBCH 32 (two nodes)
stage (R2 = 0.72) with, in both cases, a significant positive relationship (p-value < 0.05).
In the case of the BBCH 32 stage (two-nodes), it is difficult to conclude on the declining
quality of this relationship because the dataset containing the WB set to Manual was too
small (20 over 60, see Table 2) and the trend still showed a strong relationship. Concerning
the mixture of wheat cultivars (Figure A3), compared to the single cultivar LG Absalon, the
quality of the linear relationship deteriorated from (R2 = 0.76) to (R2 = 0.51) when the WB
was set to Manual (Panel A). As for the LG Absalon wheat cultivar, as regards the growth
stage of BBCH 51 (heading) (Panel B), the quality was also improved (R2 = 0.64).
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Figure 5. Relationship between the normalized DGCI (nDGCI) and the N-Tester index deduced
from Yara N-Tester values for the dataset concerning the LG Absalon wheat cultivar and whatever
the optical device with the WB set to Automatic or Manual (Panel (A)) and among wheat growth
stage: BBCH 32 (two-nodes) or BBCH 51 (heading) (Panel (B)) and among devices: Canon EOS 760D,
Realme and Samsung S10+ (Panel (C)).

To further analyse the influence of the different factors in the relationship, the possible
influence of each device was evaluated (Figure 5, Panel C) on the linear regression (slope
and intercept). For this study, the following plant factors were selected: the wheat cultivar
LG Absalon and the BBCH 51 (heading) growth stage. Moreover, the WB was set to Manual.
The relationship between nDGCI and N-tester index for BBCH 51 (heading) showed that
the linear relationship is slightly degraded for the cultivar mixture (R2 = 0.64, Figure A3,
Panel C) compared to a pure cultivar (LG Absalon, R2 = 0.77, Figure 5, Panel C). However,
under these conditions, a close relationship was obtained for each device with a coefficient
of determination ranging from 0.81 for the Canon digital camera to 0.91 for the smartphones.
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The quality of the linear regression seemed to be slightly better for the two smartphones,
the Realme (R2 = 0.92) and the Samsung S10+ (R2 = 0.9) compared to the Canon camera
(R2 = 0.81). The slopes of the linear regressions for the smartphone data, Realme and
S10+, were parallel; but the intercepts are offset. For the Canon camera and the Realme
smartphone, the intercepts were relatively close, but the slopes were slightly different.
Finally, for the Canon camera and the S10+ smartphone, the intercepts were different
and the slopes slightly different. From these observations, we used an analysis of the
covariance, ANCOVA, to test for a general linear model, the influence of the devices on
the linear regression (slope and intercept). For this purpose, one interaction term (‘Device’
modality) was inserted into the linear model (nDGCI~N-Tester index). Concerning the
slope of the relationship, the result of ANOVA table indicated a p-value = 0.25, which
means that the interaction (i.e., the device) was not statistically significant and, so, the
variation of the nDGCI (via the slope) was not different for the three devices.

Consequently, the statistical analysis was further developed by exploring the effect
of the interaction (i.e., device) on the intercept. In practice, this involves making two
adjustments: one with k lines of identical slopes, and another with a single line (identical
slopes and ordinates for the k lines). After, the result of the comparison of these fits was
carried out with an F-test, which was found to be statistically significant (p-value = 0.006).
This means that a difference between the intercepts was highlighted. In conclusion, the type
of device did not seem to influence the slope of the linear regression but it had a statistically
significant effect on the intercept. In the case of a mixture of wheat cultivars, the results
are presented in Appendix A (Figure A3, Panel C), the quality of the linear relationships
deteriorated from R2 = 0.74 (for the Realme Smartphone) to R2 = 0.49 (for the digital Camera
Canon). Regarding ANCOVA, the result was different from that obtained for LG Absalon.
For the mixture of cultivars, there was no statistical difference between the devices. We can,
therefore, assume a single relationship (a single line), whatever the optical device.

4. Discussion

Visible imaging seems to be a promising alternative to N-Tester chlorophyll meter.
Previous results indicate that there is a strong relationship between nDGCI values and
the N-Tester index values independent of optical devices, provided that the white balance
setting is selected in Manual mode. In the literature, the DGCI index relies on a calibration
based on the use of a Munsell (or MacBeth) colour chart, which makes it usable only at the
plant leaf scale [32,33]. By proposing a normalized DGCI (nDGCI), based on a measurement
of an over-fertilized plot, it becomes possible to work easily at the plant stand level to
prescribe a dynamic fertilization management from local information.

Response of the nDGCI to Leaf Nitrogen Status

In a dynamic management of nitrogen fertilization in wheat, the measurements ob-
tained with the nDGCI indicator were first compared with that of the NNI_NTester deduced
from Equations (2) and (3). Working with optimal experimental conditions (i.e., only one
cultivar and WB set on Manual and a sufficient nDGCI dataset), this led us to work at
BBCH 51 (heading) wheat growth stage with a dataset of 27 observables.

The results are presented in Figure 6 (left panel). The values of nDGCI agreed well
with NNI-NTester, where the best correlation was obtained for smartphones (R2 = 0.91 for
the Realme and R2 = 0.86 for the S10+). The statistical analysis of ANCOVA type showed,
as before, that the slope of the linear regression was not influenced by the type of device
(no significant statistical effect) but the intercept was sensitive to the device type. Therefore,
a calibration curve per device type seems necessary to transform the nDGCI back into the
N-Tester index and then into NNI_Tester. Further measurements are needed to confirm this
trend and to further investigate the effect of wheat growth stage and the robustness of these
relationships over time. In Figure 6 (right panel), the quality of the relationship between
the NNI_NTester values and the NNI data from the laboratory’s biomass measurements,
which gives access to direct measurements of plant nitrogen, was also investigated. These
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results confirm that the relationship is best for the wheat growth stage BBCH 32 (two-nodes)
(R2 = 0.95) than for the BBCH 51 (heading) stage (R2 = 0.55). This result is consistent with
the literature which considers it at a key stage to fertilize [34].

Figure 6. Relationships by device type between the normalized DGCI (nDGCI) and NNI_NTester
deduced from N-tester readings (NNI_NTester) for the LG Absalon cultivar dataset and for all
the optical device with the WB set to Manual and considering the wheat growth stage BBCH 51
(heading) ((left) panel). Relationships (regardless of the optical device) between NNI_NTester and
NNI derived from biomass measurements ((right) panel) according to the wheat growth stage (BBCH
32, two-nodes vs. BBCH 51, heading).

Concerning the mixture of wheat cultivars, the results presented in Figure A4 are
of lower quality compared to those obtained for a single cultivar, but the same trends
are observed. In Figure A4, left panel, the best correlation is obtained for smartphones
(R2 = 0.75 for the Realme and R2 = 0.66 for the S10+). In addition, the strong relationship ob-
served between NNI_NTester and NNI (deduced from biomass, see Equations (4) and (5))
for the cultivar LG Absalon is, in the case of the mixture, non-existent. This shows that this
relationship seems very sensitive to the wheat variety.

In the literature, the replacement of NNI by optical measurements was well studied,
looking, in particular, at the effect of cultivar and growth stage of wheat. For example,
specific relationships were found between SPAD measurement and NNI of winter wheat
at early stem elongation [49] or at flowering for durum wheat [16]. These results seem
to show that, in the absence of calibration or normalization of the CMR, it is impossible
to find a relationship that is not dependent on growth stage or genotype. Another work
reported the use of normalized reflectance signals, such as NDVI, to prescribe variable
nitrogen fertilization on a winter wheat crop [15]. However, the results showed that values
tend to vary between genotypes, years and sites. Nevertheless, Prost and Jeuffroy [44]
found a non-cultivar dependent exponential relationship between SPAD index and NNI
at flowering stage for winter wheat (Triticum aestivum L.), with an r2 equal to 0.89. These
promising results give us hope that a similar relationship will be found with the use of
nDGCI. This requires further experiments focusing on the study of different cultivars rather
than the comparison between a cultivar and a mixture of different cultivars.

However, to go as far as recommending a nitrogen fertilization using visible imagery,
it will be necessary to concentrate the nDGCI measurements with the WB set to Manual
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mode and at the wheat growth stage BBCH 32 (two-nodes) and then identify the best model
to correlate nDGCI to NNI.

5. Conclusions

This study demonstrated the potential of the nDGCI to replace the contact measure-
ments issued from Yara N-Tester readings independently of the optical device used. The use
of normalization of DGCI improved the acquisition protocol with the absence of a colour
chart, allowing its adoption for proximal sensing applications (drones and ground robots).
This result was conditioned by the fact that the study microplot and the over-fertilized
microplot must be measured simultaneously to calculate the nDGCI with the white balance
set to the same Manual mode.

This work showed the best results for the winter wheat crop on a single variety (LG
Absalon). The results suggest that the relationship between nDGCI and NNI_NTester is
highly sensitive to the wheat variety. Although the wheat growth stage BBCH 32 (two-
nodes) is a crucial stage for N fertilization, it was not possible to confirm this because of a
lack of data on this stage. However, further experiments are needed to expand the dataset
and study this relationship with other cultivars during the wheat growing season and in
different years. Nevertheless, this is a promising study to monitor the nitrogen status of
crops using low-cost, visible-imaging techniques to adjust nitrogen inputs as closely as
possible to crop needs.
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Appendix A

Figure A1. Comparison between DGCI and nDGCI values as a function of the white balance (WB)
setting (Automatic vs. Manual) for each camera (Canon EOS 760D, Realme and Samsung S10+) con-
cerning a mixture of wheat cultivars. (Significance of the codes: p-value < 0.01 (**), p-value < 0.05 (*)
and p-value > 0.05 (ns)).
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Figure A2. Study of the impact of the three devices (digital camera: Canon EOS 760D and two
smartphones: Realme and Samsung S10+) on the nDGCI values measured on a mixture of wheat
cultivars according to the Automatic or Manual white balance mode (significance of the codes:
p-value < 0.05 (*) and p-value > 0.05 (ns)).
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